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Introduction 

The second workshop on the HEP Analysis Ecosystem took place 23-25 May 2022 at IJCLab in 

Orsay, to look at progress and continuing challenges in scaling up HEP analysis to meet the 

needs of HL-LHC and DUNE, as well as the very pressing needs of LHC Run 3 analysis. Since the 

original HSF Analysis Ecosystem workshop, held in Amsterdam five years ago, the ecosystem of 

software used for analysis in High Energy Physics (HEP) has evolved considerably, which was 

reflected in the preparation and organisation of the workshop. 

2 

https://doi.org/10.5281/zenodo.7003963
https://creativecommons.org/licenses/by/4.0/
https://indico.cern.ch/e/aew2
https://indico.cern.ch/event/613842/


 

 

To set the scene, looking back to the report from that first workshop, the central ideas put 

forward have been vindicated and many of the inchoate ideas proposed have become a 

concrete reality. In particular, the increasing use of Python drove, and was supported by, a new 

PyROOT interface. Python access to the most powerful machine learning interfaces from data 

science is now well supported, with considerable development of data bridges, e.g., the widely 

used Uproot package. As these external pieces have become vital to modern HEP, a suite of 

packages that focus on HEP needs to access and use Python data science tools has grown up, 

with the Scikit-HEP project providing a focus for this part of the community. Using ROOT has been 

made a lot easier, with a mature Conda installation option and modularity being planned for new 

components. Declarative interfaces have become capable and are being used for analysis at 

scale, with RDataFrame and Coffea being the most notable. These interfaces are used in the 

development of prototype Analysis Facilities, with backend independence, notebook interfaces, 

and many attractive properties in, e.g., SWAN and Coffea-Casa and the development of 

Distributed RDataFrame (real metrics for success are still, however, a work in progress). 

The use of continuous integration, encapsulation, code analysis and workflow management tools 

has improved in the community, which aids both scale-out and data preservation. 

Although users interact increasingly with Python, as expected, C++ remains widespread and 

necessary, with no other language really challenging it in HEP. The performance of I/O in ROOT 

has been improved hugely with RNTuple, which beats all other available formats. These critical 

low-level improvements link back to Analysis Facility development and continuing R&D on 

different storage interfaces, e.g., object stores. 

In a few places technology predictions from five years ago did not come to pass, such as memory 

resident analyses based on persistent memory technology or super-high core count CPUs (e.g., 

Xeon Phi failing to compete with GPUs). In other areas, such as metadata handling, there was 

little general progress although the problem is still seen as relevant and common between 

experiments. 

Even with these considerable advances in tooling, there remain many open questions and 

pressing needs that merited a second workshop. With the improving pandemic situation, the 

workshop was organised as a hybrid event, with 125 people in total registering and more than 70 

attending in-person.  

The workshop was themed around six particular topics, which were felt to capture key questions, 

opportunities and challenges. Each topic arranged a plenary session introduction, often with 

speakers summarising the state-of-the art and the next steps for analysis. This was then followed 

by parallel sessions, which were much more discussion focused, and where attendees could 

grapple with the challenges and propose solutions that could be tried. Where there was 
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significant overlap between topics, a joint discussion between them was arranged. Live notes 

were taken in all of the sessions. An additional session on Analysis Workflow Design was held as 

a breakout. On the final day the topic conveners gave a brief summary of the key points. This was 

then followed by writing sessions, where the outcomes of the workshop started to crystalise. The 

final result of that process and deliberation is given in this document. 

The success of this workshop can be attributed to the engagement of experts from different 

experiments and projects, and their willingness to discuss openly. The opportunities afforded by 

in-person participation were significant, with many intense and interesting discussions between 

participants following on from workshop sessions. The organisers would like to warmly thank 

colleagues at IJCLab, particularly Michel Jouvin, for supporting the workshop at the lab and for 

arranging a memorable dinner. Sponsorship for the workshop was provided by IJCLab, 

CERN-HSF, IRIS-HEP and Nvidia, to whom we are very grateful. 

Topics 

Analysis User Experience and Declarative Languages 

Convenors:​ Jonas Rembser, Alexander Held 
Speakers: ​ Axel Nauman, Jim Pivarski, Sezen Sekmen 

This session focused on the user experience of an analyser performing the final steps in an 

analysis pipeline. Analysis typically starts from centrally produced datasets, which are further 

reduced by filtering events or event content. New columns are calculated and added, including 

information needed for evaluating systematic uncertainties and observables required for the 

analysis. analysers then commonly perform statistical analysis by building statistical models from 

template histograms or directly using data in unbinned models. This workflow was also discussed 

in the “Future Analysis Workflow Design” session. The user experience for statistical analysis was 

not prominently discussed at the workshop, but it is connected to the ease of systematic 

uncertainty bookkeeping. The second main topic of this track was declarative or domain-specific 

languages (DSLs), allowing for the decoupling of physics information from execution details. 

Workshop participants ranked the following three aspects as the top three difficulties in a typical 

analysis workflow: 

1.​ Systematic uncertainties: Dealing with systematic uncertainties was a recurring topic 

throughout this workshop and not just confined to the dedicated track. There is no 

uniform way to handle systematic uncertainties, and analysers must find solutions that 

work for their specific use case. Difficulties arise from the various types of systematic 

uncertainties (those that alter object kinematics are more demanding than weight-based 

uncertainties) and the different approaches to evaluating them. The evaluation may rely 
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on additional columns and metadata and may require tools that are either centrally 

provided or implemented by the analyser. See also the section of this report focused on 

systematics. 

2.​ Metadata: Challenges related to metadata include finding and handling the relevant 

information, including scale factors or other calibration data. Another aspect is 

bookkeeping: tracking and organising all datasets required for the analysis. See also the 

metadata section of this report. 

3.​ Scale-out: The move from prototyping to running at scale on various sites is referred to as 

scale-out. With varying scale-out mechanisms and different environments at each site, 

analysers cannot easily port their analysis from their local machine to something running 

at scale at various facilities. 

Another aspect deemed crucial to the user experience is interoperability, particularly for 

interfaces between analysis stages. Interoperability between ROOT and Scikit-HEP tools is 

mandatory, as well as the interoperability of key objects like histograms (e.g., Boost::Histograms 

in cppyy vs. pybind11, boost-histogram vs. ROOT histograms, TH* vs. ROOT7 RHist). Other 

examples are Python bindings, serialised statistical models (e.g. RooFit workspaces including 

their JSON version and the pyhf JSON format for HistFactory workspaces), and data 

interoperability at the column-level (also in memory). Not everything needs to be interoperable, 

but for novel ideas to flourish, users should not be locked in one particular toolset after writing 

the first code. 

A big discussion topic was onboarding new analysers and first-time user experience. There was 

broad agreement that documentation generally has to be improved, but the situation was better 

than five years ago at the Analysis Ecosystem Workshop I. Several success stories were 

identified, including the regularly-updated LHCb Starterkit. Discussion forums, as well as Slack 

and Mattermost channels, are also important for new users. Having a variety of channels for 

problem discussion can help engage users with different needs. Instant messaging platforms 

allow for quick and informal iterations. Solutions to problems posted in large channels in instant 

messaging platforms can however be difficult to discover for analysers compared to forum posts 

or discussions on GitHub. It was also noted that tutorial writing is challenging: what should be 

addressed in a tutorial? Feedback from users can be essential to inform developers what to focus 

on when providing documentation material. Dedicated hackathons bringing together users and 

developers may be an efficient way of exchanging ideas and creating new material. 

Partially related was the discussion on educating analysers in programming & software 

engineering techniques and simplifying analysis tools, which often appears contradictory. There 

was no general consensus on which direction is more important, as both help to make analysers 

more efficient. It was noted that interest in programming training courses, such as the HSF C++ 

course, is very high. The importance of having physicists with advanced knowledge of C++ in 
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particular was also highlighted, as the personpower for maintaining the large experiment-specific 

frameworks is limited. Library developers noted that users frequently run into relatively basic 

programming issues where more formal programming experience would help. A big 

consideration regarding the complexity of writing an analysis is how high- or low-level the 

interfaces are that analysers are expected to use. High-level interfaces — including DSLs — help 

users to focus on the physics and give developers more flexibility for optimising the backends 

without changing user interfaces. However, access to lower levels, via hooks or similar, was seen 

as crucial to retain the possibility for users to implement more complex analyses. 

The discussion also touched on performance: how can a user learn that their analysis is not 

suffering from an easily-avoidable performance bottleneck? Informal conversations with other 

analysers were pointed out as one solution to get a rough feeling for the expected turnaround 

time of an analysis. Beyond that, experiments might dedicate meetings to review techniques and 

help collect best practices. The importance of profiling tools was also pointed out. They can not 

only help the user with identifying bottlenecks, but their output may also help experts provide 

targeted help. In this context, it is desirable for tools and libraries to expose relevant metrics and 

performance counters where possible. Simple tooling to study whether an analysis is I/O-limited 

could be helpful. Another critical aspect related to performance is the analysis implementation 

time. Time spent writing a very efficient implementation may surpass all the time saved from the 

efficiency. 

Declarative or domain-specific languages are an emerging approach to decoupling physics 

information from execution details. General advantages of DSLs include their self-documenting 

nature and the decoupling from the backend implementation, allowing updates to the backend 

as new technologies become available. One strength of DSLs that was highlighted is the 

readability of the analysis description and the possibility to compare different analyses 

implemented in the same way. This can simplify navigating the analysis landscape, simplifying 

tasks such as finding overlap in analysis event selections. Several efforts to develop DSLs for 

HEP analysis are ongoing, covering both embedded and external domain specific languages. An 

embedded DSL is built on top of a host language like Python, while an external DSL uses its own 

interpreter or compiler. Embedded DSLs are more prevalent in HEP, including func_adl and 

ROOT’s RDataFrame (including abstractions built on top of it). The Analysis Description Language 

Project (ADL) is an example of an external DSL, with CutLang available as an interpreter. A 

disadvantage of embedded DSLs is that users might be tempted to mangle the physics logic with 

execution details, negating one main selling point of DSLs. Hence, it is important to continue 

research and development on external DSLs in parallel. Furthermore, the existing embedded 

DSLs often originate from one specific experiment. Care should be taken to separate the 

development of DSLs and tools to abstract away experiment specific execution details and helper 

routines to not stall the development on either side. Finally, as analysis preservation is of crucial 
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importance to make the most of any physics analysis, it should be integral to the design of any 

analysis description and workflow as a whole. Demanding that users convert their analysis to a 

reproducible one after-the-fact is not sustainable. 

A wishlist for the future emerged when reviewing discussions at the workshop, composed of 

items that we perceive as most important to address. Related to the handling of systematics, this 

list includes automatic optimisation of the analysis’ computation graph to only re-calculate 

quantities when needed. Some tools, like RDataFrame, are already designed around this 

concept, and other tools are encouraged to focus their R&D in this direction to ensure 

sustainable analysis efficiency. Analysis interfaces should support object facades, meaning that 

columns can be grouped into object views for easier reasoning at the level of physics objects. 

This can be done by a user-specified schema or automatic aggregation based on column names. 

Frameworks such as coffea and bamboo are implementing this already. We recommend the 

development of standardised ways to build such object facades to harmonise the access to event 

content in different tools. Furthermore, small frameworks or libraries should help with common 

chores related to systematics and metadata handling where possible. The wishlist also includes 

more documentation and learning material. Related to this is the demand for more available 

Open Data and analyses that use this Open Data to showcase and benchmark different analysis 

approaches. Tooling to help analysers with debugging, identifying performance bottlenecks, and 

optimising their analysis pipelines is another point on the list. 

Analysis on reduced formats or specialist inputs 
 
Convenors:​ Allie Hall, Jana Schaarschmidt, Loukas Gouskos 
Speakers: ​ James Catmore, Lindsey Gray, Michel Hernandez Villanueva, Jackson​
​ ​ Burzynski, Bryan Cardwell, Lukas Alexander Heinrich, Nick Smith 
 

This session included a review of the design ideas and the status of reduced formats used in 

various experiments for previous runs, and concepts for future runs. It also contained a critical 

discussion of cases where specialist, non-standard inputs are needed and how reduced formats 

can be adopted to fit these cases. A cross-over discussion was held to explore questions related 

to storing and evaluating systematic uncertainties using reduced formats.  

During the MC production chain, or similarly the data processing chain, several reduction tiers are 

used, to filter out low level information that is not needed on the analysis level in a standard 

workflow. 

In ATLAS and CMS, the AOD format is the output from the reconstruction, holding detailed object 

information, with a size of about 500 kB/event. In CMS, this is reduced to MiniAOD, through 

slimming and thinning the collections, e.g., removing some tracks and applying preselection cuts, 
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resulting in a size of 30 kB/event. The next reduction stage is called NanoAOD, which are flat 

ROOT ntuples, containing only selected and processed high level objects stored with reduced 

precision for floats, which gives 1-2 kB/event. Systematic uncertainties are recomputed on the fly 

and are therefore not stored. MiniAOD and NanoAOD serve 85% of all analyses, and were in use 

already during LHC Run-2. The size of NanoAOD is strictly monitored, and official changes to the 

format need to undergo approval. Further information on the CMS computing model is available 

in the Phase-2 Computing Model document. 

In ATLAS, during run-2, about 100 different reduced formats were used, tailored for specific 

physics analyses or combined performance studies. These formats contained slimmed object 

collections and entire events were removed that did not pass some criteria (skimming). This 

results in a varying file size typically, but not limited to, 30-50 kB/event, and event skimming 

fractions ranging from well below 1% to above 10%. Although these formats were effective for 

analysis, the huge event-wise overlap between them when made from simulated events (which 

tend to have higher skimming fractions), called for revisions to the model. Consequently, for 

Run-3, ATLAS introduces a common format DAOD_PHYS, which is not skimmed, and which can 

serve 80% of all physics analyses, with a size of around 30-50 kB/event.  A smaller format called 

DAOD_PHYSLITE, primarily aimed  at Run-4, has a size of 10-15 kB/event. The main physics 

objects in PHYSLITE are calibrated as the format is made, removing the need to store inputs for 

calibrations. Currently, inputs for evaluating systematic uncertainties still need to be stored. 

These and other concepts for ATLAS computing are outlined in the HL-LHC CDR. 

The reduction chain in Belle II is also two-staged. Starting from the RAW format (70 kB/event), 

which is the detector output, then comes reconstruction, which is first reduced to the mDST (mini 

Data Summary Table) format with 15 kB/event containing a subset of objects, which is then 

reduced further to uDST (user DST) with 20kB/event, which is a skimmed version of mDST but 

also augmented with analysis objects. There are about 80 skims in use, tailored for specific 

needs. The production of these skims is a bottleneck in the processing chain in Belle II due to the 

high I/O load. Not all analyses can use these skims, but it is important that such analyses are 

supported as well, also in light of reproducibility and long-term data preservation. 

Limitations of these concepts were discussed as well. In CMS, about half of the NanoAODs are 

customised, which means skimmed or the content extended (or both), to fit specific analysis 

needs. There is significant overlap between these customised formats. A possible solution would 

be friend trees, including only the additional information needed for each analysis. Another 

possible solution could be the so-called LegoAOD, that uses central services like ServiceX, Crab, 

Dask etc., to allow users to easily add extra columns without having to copy the rest. Another 

innovative approach is the use of object stores, which can avoid the need to copy columns 

across processing tiers (for example some metadata is duplicated at every stage of the reduction 

chain). 
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It was noticed that the PHYSLITE format from ATLAS is about 5-10 times larger than CMS 

NanoAOD. PHYSLITE is currently at a prototype stage, while NanoAOD are already used in 

physics analysis. A critical review of the content of PHYSLITE will lead to further reduction. 

However, one of the main culprits is the storage of inputs for systematic uncertainties. Future 

R&D work will therefore explore possibilities to reduce this information, using external look-up 

tables, parameterisations or ML models. Not all analyses require the same level of precision, 

calling for a flexible approach for evaluating systematic uncertainties. 

While the large majority of analysis can use reduced formats, it is of crucial importance to look at 

the remaining cases that need special inputs. In particular searches for BSM physics and exotic 

signatures require non-standard objects, such as for example displaced muons, disappearing 

tracks or unique shower shapes, or they rely on low-level information such as energy stored in 

each calorimeter layer or even individual cells. ATLAS also maintains a large list of residual 

formats for combined performance work that cannot use PHYS, for example calibration studies 

that need jet constituents. 

One technical solution was presented, that is to add friend trees that store additional variables, 

but only for a subset of events. A case study for the ATLAS search for displaced jets in the 

calorimeter was performed. Simply adding the required topocluster collection to PHYS would 

increase its size by about 140%, while adding a friend tree holding this collection only for events 

that pass the trigger increases the size by just 2%, which is a very encouraging result. 

The focus for future work on reduced formats must be on special inputs for non-standard 

workflows, since these will ultimately drive the storage needs of the experiments. 

Machine Learning Tools & Differentiable Workflows 

Convenors:​ Nathan Simpson, Lukas Heinrich 
Speakers: ​ Sean Gasiorowski, Vassil Vasilev, Giles Strong, Engin Eren 
 

Since the first Analysis Ecosystem Workshop in 2017, the role of Machine Learning (ML) in High 

Energy Physics (HEP) analysis has grown significantly. Back then, our in-house solution TMVA was 

the tool under discussion at the time, but now usage has shifted almost entirely to 

industry-developed tools and automatic differentiation frameworks, which span methods ranging 

from boosted decision trees (BDTs), XGBoost, and various neural network architectures. 

In terms of applications, the majority of ML approaches are concerned with designing 

observables to be used in a standard HEP inference scheme, e.g., template-based statistical 

inference concerning a physics parameter of interest. There is not yet widespread effort to share 

these trained (e.g., via self-supervision) representations of event data to be adapted for 
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downstream tasks. This is in contrast to fields like computer vision or natural language 

processing, which have many ways to distribute pre-trained models, e.g. through pytorch hub, 

TensorFlow hub, huggingface, and others. This point warrants further discussion to understand 

potential utility. 

While supervised learning is the dominant methodology, unsupervised learning methods such 

as variational autoencoders are gaining interest for applications such as anomaly detection. More 

recently, we have also seen progress in techniques for likelihood-free inference, such as 

likelihood-ratio estimation, which skip the likelihood modelling step entirely in favour of directly 

estimating the implicit likelihood of the underlying physics simulation. 

From a community development perspective, it is important to ensure an efficient pathway from 

new R&D developments within the HEP ML community to use within production settings within 

experiments. To this end, the availability of realistic and openly available datasets and data 

simulators (e.g. fast detector simulation for given experiments) are important, and ML R&D work 

should be encouraged to assess performance in such more realistic environments. 

A difficult tension arises in the context of reduced formats: ML analysis pipelines may aim to 

incorporate increasingly lower-level features (e.g. track or calorimeter data) in order to rely less 

on prior fixed representations provided by reconstruction algorithms and optimise task-specific 

performance. However, the pressure arising from storage constraints encourages only the most 

high-level variables to be retained. Here, the ideas discussed in the workshop on augmenting 

reduced formats with analysis-specific columns may become important. 

It was noted that to a large extent the development of ML components within a physics analysis is 

regarded as a separate activity from the main analysis development, with its own data 

preprocessing pipeline, ML training and evaluation frameworks. As most leading ML frameworks 

(JAX, TenorFlow, PyTorch, Scikit-Learn) focus on a Python user interface, the ongoing efforts 

within the HEP community for python-based analysis workflows are deemed essential to 

overcome this pattern. Additionally, ROOT is maintaining integrations of major external 

frameworks into TMVA and on facilities for efficient data loading from RDataFrame. For 

integrating finalised ML code into larger workflows, inference tools, such as ONNXRuntime, lwtnn 

or SOFIE are important. As the developments on future Analysis Facilities take shape, it is 

important that ML-focused workflows become well-supported on such resources (experiment 

tracking, hyperparameter optimisation, metrics analysis) and some integrations with external 

services (e.g. KubeFlow, MLFlow) may be worth investigating. Additionally, the methods 

developed for continuous tracking and evaluation of ML training runs could also be transferred to 

a generic continuous evaluation of HEP analyses, and is worth investigating to test its utility. 

During the workshop, there was considerable interest in the emerging concept of “differentiable 

programming” (DP) as a generalisation of the gradient-aware computation in the ML context. In 
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this scheme, arbitrary numerical programs can produce not only outputs but also efficiently and 

precisely compute gradient information with respect to either program inputs or program 

parameters. Gradient information can improve ML applications by combining malleable ML 

components with more domain-specific computation to induce stronger inductive bias into the 

model. Similarly, loss functions can be improved by providing differentiable physics-driven 

evaluations of the model output as e.g. in INFERNO or neos. Moreover, gradient information of 

the target function can be used within as powerful labels as demonstrated in e.g. score-based 

training approaches like madminer and madjax. Interest in DP also stems from use cases beyond 

ML, where e.g. gradient information may be important for sensitivity analysis with respect to 

systematic variations, or improve statistical inference as used for example in fitting frameworks 

(pyhf, zfit). There is also movement in the direction of end-to-end detector optimisation, including 

a recent whitepaper on the topic. Communities that have formed from this effort (with a degree of 

cross-pollination) include gradHEP and the MODE collaboration. 

The current practice of analyses based on a fixed reconstruction scheme is comparable to 

standard transfer-learning approaches in ML, where fixed pre-trained layers are used as inputs 

to training a task-specific “tail” (i.e.. each analysis tuning selections on fixed outputs of 

reconstruction, which was optimised on its own set of objectives). The pre-trained layers may 

then be fine-tuned towards the specific task, using small learning rates, by exploiting the 

differentiable nature of the model to re-optimize lower-level features for a given task (i.e. 

analyses being able to adjust e.g. low-level reconstruction parameters). This practice has recently 

become commonplace in industry. Developing an end-to-end differentiable HEP pipeline could 

enable a similar workflow, however the achievable improvement is unknown and should be 

studied in the coming years. 

A major hurdle towards DP is the fact that much of the existing code to analyse HEP data is either 

not written in differentiable programming languages or the computations may fundamentally not 

be differentiable (e.g. hard categorical decisions, array sorting, ..). For the former, ongoing 

developments such as CLAD or Enzyme aim to enable AD for general purpose language and 

ROOT has reported the intention to leverage these to integrate differentiation more deeply into 

e.g. RooFit. On the latter point, effort has been put into consolidating a set of differentiable 

surrogates for common operations in HEP (e.g. histograms) into a package called relaxed. These 

“relaxed” operations are smooth analogues to the equivalent hard operation (e.g. max vs 

softmax) with a tunable level of approximation. The relaxed operations can be used during 

optimisation to find settings for the pipeline with no approximations, and can also be used for the 

final task if desired (possibly incurring a bias, if e.g. using a soft histogram and assuming Poisson 

statistics per-bin). 

We assessed that more effort is needed to study the real-world benefits of DP in different 

applications over other optimisation methods (e.g. Bayesian optimisation), as well as ensuring 
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that the community at-large converges on common tooling and methodological efforts for the 

future. 

 

Systematics and Metadata 

Conveners: Paul Laycock, Teng Jian Khoo 

Speakers: Thomas Kuhr, Stephan Hageboeck 

Metadata and the Data Analysis WG Metadata Paper Review  

In the report from the first Analysis Ecosystem workshop in 2017, the first item under “Missing 

pieces” is: 

●​ Easy access to bookkeeping information and other metadata. Common support for this 

across experiment boundaries. 

It is fair to say that nothing happened in the intervening 5 years. 

The main outcome from the Data Analysis Working Group Metadata paper review (CSBS, arXiv), 

prepared for this workshop, was that the authors had identified a major problem for HEP: 

Metadata; and the panel recommended the community follow up on this important topic. This 

provoked a discussion at the workshop – who would follow up?  Judging from the progress made 

in the last 5 years, the problem is not about to be resolved.  Metadata is a large topic touching 

many areas, so would benefit from having HSF take responsibility for it and systematically follow 

up on the diverse challenges it presents.  An HSF Metadata workshop is proposed, where 

stakeholders from the experiments will be invited to participate and discuss the best way to 

organise followup within the HSF community.  The importance of leveraging the existing 

connections to other HSF working groups and activities was strongly emphasised during the AE2 

workshop. 

Using the HSF Metadata workshop as a catalyst, a comprehensive list of use cases for metadata 

will be collected in an HSF Metadata Report, delivered shortly after the conclusion of the 

workshop.  The report will cover the end-to-end lifecycle of metadata and the data they pertain 

to, addressing issues like metadata scopes, evolution and change of ownership during this 

lifecycle. Often metadata producers are not responsible for metadata usage in analysis and these 

orphaned metadata can become problematic. The HSF Metadata Report should cover all use 

cases, not restricted to analysis, to be able to identify such gaps and ensure metadata systems 

cover every metadata source for its entire lifecycle.  The report will detail the use cases and a 

derived set of requirements, together with a more complete description of metadata scopes.  The 
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paper could also try to look at commonality across use cases and where common HEP solutions 

could be applicable given sufficient buy-in from the experiments. 

The definitions of metadata scopes should address the questions posed by the panel: 

●​ Metadata is data about data. Which data? 

●​ On what does the metadata depend? 

●​ Is the metadata known at the time of data production? 

●​ How is the metadata produced and by whom? 

●​ How is the metadata used and by whom? 

●​ Who is the owner of the metadata, and are there transfers of ownership? 

●​ What relations between different levels of metadata exist and how are they handled? 

The review panel gave more feedback useful for the HSF Metadata Report.  While they greatly 

valued the work of the Data Analysis Working Group Metadata paper [2] authors and found the 

paper provided a good overview of several existing approaches, the guidelines lacked sufficient 

technical details to fully represent “technical specifications” for future analysis metadata system 

implementations. A certain technical elucidation of guidelines would be desirable, and will also 

greatly facilitate the overall understanding of metadata use in view of analysis preservation and 

reuse.  This detailed understanding could then help future metadata system designers find 

commonality while keeping flexibility to extend metadata schemata to cover particular specific 

scenarios. A concrete example of progress in this area may be the CERN Analysis Preservation 

framework that uses composable JSON schema to describe analysis steps that allow both 

common and particular JSON fields.  A detailed report from the panel will be made available in 

the coming months. 

Systematics 

While recognised as an essential component of experimental analysis, the book-keeping and 

processing of systematic uncertainties was considered the largest pain point in analysis software. 

The step from coding the nominal analysis workflow to including all uncertainties is large: a naïve 

loop repeating all work for many variations inflates CPU and disk footprints; while avoiding this 

demands a complex optimisation process requiring tracking of all and only affected columns of 

data. 

ATLAS is developing algorithm sequences for object corrections that includes optimisation logic 

for generating collections with variations applied and filtered for quality, but variation tracking and 

optimised handling is otherwise a task for analysis frameworks, including RDataFrame and 

Coffea. There is convergence in ATLAS and CMS on standardised APIs for extracting systematic 

uncertainties from metadata repositories (ATLAS ‘CP Tools’ and CMS CorrectionLib), but these are 

considered less applicable in LHCb and other experiments that are heavily reliant on data-driven 
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background estimates or very analysis-specific procedures for determining uncertainties. The 

ATLAS model has the benefit of an integrated representation of uncertainties, allowing 

classification during event processing, and preset groupings of relevant/recommended 

systematics on a per-object-collection basis. CMS has entirely decoupled the application of 

systematic corrections from the nominal object corrections, which offers a much more nimble 

workflow with minimal software dependencies and a low CPU load. This decoupling requires that 

uncertainties be parameterised rather than propagated via alterations of the nominal procedure, 

so has implications on experimental workflows beyond the pure technical solution. 

The data dependencies for object systematics encourage the use of an object-based APIs, but 

the increasing popularity of columnar analysis methods suggests that these be satisfied through 

object facades, which can be constructed e.g. in RDataFrame. Frameworks can then cleanly 

apply variations and track affected columns through downstream operations. 

Recommendation: 

In conjunction with other ongoing innovations, a streamlined analysis workflow incorporating 

systematic uncertainties can be proposed, arising from  an overall consensus at the workshop: 

Analysis should begin from fully calibrated, reduced data formats (NanoAOD, DAOD_PHYSLITE) 

derived from the fully reconstructed AOD data. The nominal analysis workflow should be 

complemented by a loop handling systematic variations computed on the fly to favour CPU 

utilisation over heavier I/O, and with the framework outputting analysis outputs, which might be 

histograms or a small number of final discriminants for all variations. 

This model offers space for collaboration on solutions to various common problems: 

-​ An experiment-agnostic set of labels for systematic variations that can be used for 

tracking during analysis computations, as well as for downstream interpretation 

(visualisation/statistical analysis). This could facilitate inter-experiment statistical 

combinations, and be used not only for object/event uncertainties but also to represent 

MC and background uncertainties of relevance to the wider experimental community. 

-​ A standard API for applying systematic variations to object collections, utilising the labels 

described above. Underlying implementations of access to metadata stores and 

calculations can remain experiment-specific, but a common representation also serves 

analysis description and preservation purposes well. 

-​ Generalised analysis frameworks or other schemes handling optimisation logic, such as 

the RDF::Vary approach, propagating varied columns through all downstream analysis 

operations. 

As a motivation for and test of these common libraries, an analysis challenge is proposed, 

comprising a simultaneous top quark cross-section analysis between ATLAS, CMS and ideally 
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LHCb. This could share MC event generation, to undergo simulation/reconstruction in the 

respective experimental frameworks, and subsequently work from the standard analysis formats, 

but share code where possible. To encourage active participation from the collaborations, the 

main deliverables would be the establishment of a more coherent organisation and tracking of 

uncertainties in CMS and progress with decoupling uncertainties from nominal corrections in 

ATLAS. It is proposed that this challenge be followed up and reported on in the HSF Data 

Analysis Working Group. 

“Real-time” online/trigger-level analysis 

Conveners: Giulio Eulisse, Mike Sokoloff 

Speakers: Caterina Doglioni, Daniel Charles Craik 

“Real-time” online and trigger-level analysis (RTTA) can encompass anything from monitoring 

detector performance to reconstructing physics objects for persistence for later data analysis to 

producing histograms (perhaps multidimensional) that can be used directly in published analyses.  

A key challenge for the immediate future is ensuring that trigger software and offline software 

produce the same (indistinguishable) results, even if executing on significantly different hardware.  

For example, LHCb’s Run 3 first level software trigger (Allen) executes in Nvidia GPUs in real time.   

What level of difference is tolerable when running on different hardware, and what tests do we 

need to demonstrate that we can tolerate the differences? This is critical for generating and 

analysing simulated data in WLCG facilities. In the case of LHCb, Allen provides an x86 back-end 

that produces what are judged to be tolerably indistinguishable results. While Allen compiled for 

x86 is around 4x slower than equivalent hand-optimised x86 reconstruction code, this overhead 

is irrelevant in the overall LHCb context. Experiments require some re-calibration of trigger-level 

data prior to, or during, analysis workflow.  Simulating trigger-level hardware using WLCG 

resources requires the same level of validation.  An interesting question is how WLCG will 

provide heterogeneous resources that reproduce those used in triggering in the future, which is 

probably an inevitable trend, albeit not one primarily motivated by this use case.  These could 

include Nvidia GPUs (used by LHCb), AMD GPUs (used by ALICE), and a variety of FPGAs (used 

at some level by all experiments). 

In the longer term, “real-time” triggers might be able to use elastic resources in addition to the 

bespoke resources dedicated to individual experiments.  LHC experiments typically record data 

during 5 x 106 seconds per year, and they do not acquire data every year. To the extent resources 

sit idle (or mostly idle) for extended periods of time, they are wasted.  A possible alternative 

would be moving (some) data from the experimental halls to elastic resources for higher level 

triggering.  This requires that the bandwidth be available for transporting the data and that the 

elastic resources (potentially CPUs, GPUs, and FPGAs) be available when needed. Such solutions 

were investigated in the context of Run 3 but judged to be unaffordable due to the cost of 
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network infrastructure required. Careful studies of technical, financial, and administrative (policy) 

issues will therefore need to be done before such a model can be seriously considered for the 

future. The potential benefits include more efficient use of hardware (and personnel) and the 

possibility to dramatically expand the computing power available to the highest level triggers on 

short notice. A serious downside is the outsourcing of quality assurance work together with 

associated sociological and management overheads, given that it has to date generally proven to 

be difficult if not impossible to capture & predict all requirements of HEP data processing chains 

in specification documents.  

Analysis Facilities 

 

Convenors:​ Oksana Shadura, Nicole Skidmore 
Speakers: ​ Robert Gardner,  Alessandra Forti, Lindsey Gray, Nick Smith, Enric Tejedor 
Saavedra 
 

Building Analysis Facility Infrastructure 

Analysis facilities (AF) can be broadly described as the infrastructure and services that provide 

integrated data, software and computational resources to execute one or more elements of an 

analysis workflow. These resources are shared among members of a virtual organisation and 

supported by one or multiple organisations. 

At the workshop the community identified the following key areas of analysis facilities that are of 

interest for further investigation: federated identity management, modern data management 

and data delivery techniques, resource sharing mechanisms and efficient methods for sharing 

user environments and many others. In this section a brief explanation of each of key areas and 

ideas discussed at the workshop are summarised for further consideration by the community. 

We expect that this document will help the recently founded the HSF Analysis Facilities Forum 

working group to provide a generic list of requirements for analysis facility providers and 

architects, providing best practice guidelines that will include the design and key features 

provided by future AFs as well as a list of possible research topics to be investigated later.  

Interoperability 

Architects of AFs should provide interoperable solutions, meaning that users should be able to 

navigate seamlessly from one Analysis Facility to another with an extensible and modular design 

to accommodate future needs without disruptions. 

We would also like to acknowledge the importance of simultaneously supporting “legacy” 

analysis methods within the same computing environment (or site, facility) to facilitate adoption 
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from the end-user physics community. This has the added benefit of conveniently introducing and 

benchmarking new methods and providing realistic feedback. 

Identity management integration in Analysis Facilities 

One of the most highly demanded features is the integration of federated identity management in 

Analysis Facilities, which allows using an account from one facility to create an account and log in 

to a different facility and related authorisation schemes including various projects and account 

resource allocations. 

The integration of Federated Identity management is not only limited to AFs. The same problem 

arises when we look at HPCs and external cloud-based resources. WLCG/OSG have to be made 

aware that with highly dynamic and interactive work this problem gets more urgent. Identity 

management is the main building block, but in addition, also authorisation and accounting have 

to be federated. 

Over the workshop, it was also highlighted multiple times that we need to provide the “best 

practices” on how to integrate tokens and federated identity into a new ecosystem. This includes 

a discussion of the integration differences between the WLCG. 

Data organisation, Management and Access 

In terms of DOMA related topics, the majority of the community is concerned about transparent 

movement of data between Analysis Facilities and other storage systems used within HEP. 

Fast access to input data is one of the most important aspects of an AF. The access can be from 

local storage or can be remote. Users need to be able to find the data as they would on any other 

type of experiment resources and to be able to access these resources in a timely manner. The 

output of the analysis needs also to be shareable between AFs and with other sites. To satisfy 

these requirements an AF is expected to be integrated with the experiments’ Data Management 

systems and the experiments’ authentication and authorisation system (see Federated identity 

section).  The access to should be as fast as possible, so it is expected that AFs, which have a 

high degree of repeatedly accessing the same data, will have a system of local caches, in 

particular XRootD based XCaches have the advantage of being fully integrated with ROOT, the 

dominant file format, thus they are able to transfer only portions of files, reducing the volume of 

transfers. The size and the QoS of the caches should be evaluated. 

New workflows may also use different data formats for performance reasons or because they are 

more compatible with columnar analysis. Evaluation of such formats is ongoing in the 

experiments and transformation services, like ServiceX, are envisaged to give the users the 

capability to transform data on the fly from one format to another. ServiceX functionality and 

scalability needs to be tested. 
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Another aspect we discussed during the workshop was the type of storage. Experiments 

applications and services have been designed to use POSIX file systems but the emergence of 

object stores with their scalability and efficiency in serving data raises the possibility that new 

workflows can be adapted to use distributed object stores and experiments would need to 

review their requirements for POSIX. Whilst it is not for the AFs to define this at a general level 

(e.g. the way Nick Smith mentioned in his presentation on the AE2 workshop), AFs themselves 

might support different types of storage, so this should be investigated. 

Resource sharing 

During the IRIS-HEP Blueprint meeting an idea was mentioned to create a multi-site substrate 

project which would federate contributions from multiple resource providers (institutes and public 

cloud), offering a flexible platform for service deployment at the scales needed to test the viability 

of system designs and closely matching to the concept of "infrastructure as code", in case of 

Kubernetes - i.e. the substrate as the medium upon which infrastructure (services) can be 

deployed declaratively and flexibly and also be easily redeployed on the other facilities.  For 

efficient resource sharing, the community expects the integration and co-location of analysis 

facilities with existing centres and proposes the adoption of kubernetes as a substrate to 

maximise resource contributions and utilisation.  This will also require understanding how 

computing resources sharing will be organised, including, importantly, the sharing of storage 

space amongst Analysis Facilities. 

Another important feature for scalable resource sharing is maintaining a clear separation 

between execution engines and the resource sharing layers, which means being able to switch 

between notebook provisioning (fully interactive resources), analysis facility execution 

frameworks (e.g. Dask workers), and traditional batch and SSH login environments. 

An R&D topic that should be investigated is how to implement fair sharing in a scalable 

environment, especially the provision of resources suitable to the type of analysis the user wants 

to perform. A possible solution that was discussed is to design an intelligent portal, 

knowledgeable of the different capabilities at various Analysis Facilities, rather than users having 

to discover or keep track of this information themselves. 

Sharing environment 

The main requirement for users while doing collaborative physics analyses is the ability to share 

code and results.  

We discussed how environments can be shared efficiently, using existing mechanisms, such as 

singularity containers distributed on CVMFS, and how we could share instead of standardise 

environments by providing sharing mechanisms for “data analysis”, “ML training”.  Instead of 
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trying to replicate the same environment at different sites and forcing everyone to use the same, 

the best approach could be to implement a sharing mechanism, i.e. an infrastructure that can 

support any Data Analysis or ML environment the users may require. No analysis can be 

performed with a single environment as different parts of the workflow often have different 

requirements (e.g. an analysis oriented environments such as LHCb’s lb-conda, powering 

environments to perform PID calibration studies). Further interesting mechanisms allowing more 

efficient sharing of  environments and data are export mechanisms to HEPData, sharing cached 

(short-lived) data, and exporting metadata for analysis preservation. 

A key problem is how to preserve user environments when moving from one facility to another.  

To solve this problem we discussed existing mechanisms, such as centrally managed software 

stacks (e.g. LCG releases).  Another opportunity could be to provide container images that 

contain a tested combination of libraries that can be used to perform the standard analysis 

workflows, or to allow users to “bring-your-own” image to take advantage of non-standard 

libraries using MyBinderHub for Jupyter environments and workers. There needs to be a 

preservation strategy for these container images and maintenance of their security and 

authorship providence (software metadata). 

Best development practices for Analysis Facility architects and developers using 
kubernetes 

Currently higher level analysis systems are being developed within a Kubernetes environment, 

and the role of having a flexible (programmable) substrate was noted.  Since the time of the 

workshop, Kubernetes (Cloud Native) has emerged as a promising technology for this role. 

Already we have demonstrated deployments of processing frameworks for columnar data 

(Coffea) and data delivery (ServiceX), plus identity management combined into declarative 

deployments providing an "analysis facility" (Coffea-Casa).  The identified requirements are 

flexible access to infrastructure resources (CPU, disk, GPU and I/O), the declarative nature of 

deployments for reproducibility at multiple centres and providing the capabilities for processing 

frameworks and interactive interfaces. 

Similarly, we need to work on standardising analysis facility deployment tools (today Helm, 

tomorrow its successors or the new tools) and supporting the surrounding infrastructure (Helm 

chart catalogues, container registries). This defines a new training area for system administrators, 

to build a culture of analysis facility providers experienced in the dependent technologies.  

Beyond deployment this includes a new set of troubleshooting skills and infrastructure 

knowledge (pods, containers, controllers, etc.).  

For novel analysis systems and related services we also need to draw the clear distinction with 

site-specific attributes and removal of dependencies (e.g., a site's identity or account 

management service, LDAP, etc.).  
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A “best practice” that the community recommends for future analysis facilities is that developers 

should always ask themselves about portability. For instance, could a facility be deployed at 

different institutions? As well as the scalability of deployment, could an analysis facility be used 

by more than one user community with the experiment specific dependencies removed, or the 

needed hooks properly abstracted? Another question is if the deployment pattern lends itself to 

open source best practices and whether it can be deployed with confidence by a K8s cluster 

operator without significant supervision and what priors are assumed if this is not the case? 

From a security point of view, for analysis facilities built with one or more internet facing services, 

image security is paramount and services for vulnerability scans, patch updates, etc. need to be 

addressed.  

We should also encourage analysis facility developers during the design phase to have in mind 

the following capabilities: privileged interfaces for user management, roles and what metadata is 

needed. A public facing dashboard using open technologies with status reports about the AF 

such as performance metrics and community metrics (such as analysis groups, tasks, users, 

institutions) will help to measure impact. 

Over the course of the workshop we discussed the differences between kubernetes 

"distributions" (e.g. vanilla Kubernetes vs OKD) and how to get applications to work on both 

without the users having to choose. There was an agreement that there should be guidelines for 

K8s apps developers that take into account the differences. The K8s apps code adjustments 

needed, depending on new Kubernetes releases, is another challenge which developers will 

need to keep pace with and could be efficiently resolved through better interaction with the 

Cloud Native community. 

Tracking analysis performance  

To provide an extensive overview on how resources are used and to ensure that an informed 

decision about which AF to use can be made, Analysis Facilities should publish some key 

parameters related to performance (occupancy, etc.). For this reason we need to provide 

instrumentation to understand user modalities, preferences and analysis throughput. This can 

result in a variety of metrics - session/task timings, resource consumption, and contextual system 

"business" markers (the single use systems, many users/groups, undersubscribed and 

oversubscribed resources). 

Examples of metrics that could help to have an insight how and if efficiently used resources in 

analysis facility: 

●​ workflow ID, 

●​ CPU, RAM, swap, 
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●​ I/O (local storage and network), 

●​ software stack, 

●​ job failure rate, 

●​ Time To Completion (TTC), 

●​ data source - entirely local or cached from a Data Lake and formats used on input (PHYS, 

PHYSLITE, AOD, MiniAOD, NanoAOD, NTuple,etc..),  

●​ formats written (columns), ratios. 

A cost-effective or user-effective solution could require users to test jobs on subsamples of the 

data prior to the final submission on the full samples. This option is, for example, already explored 

by the LHCb experiment (exploiting GitLab pipelines) for NTuple productions with the analysis 

productions framework. This validation step allows one to collect many of the metrics mentioned 

above. 

We need to introduce a concept of telemetry for various components of Analysis Facilities that 

will provide an overview of what users are actually doing and which components of the analysis 

pipeline are run. Telemetry in the software stack will likely require a dialog with software analysis 

framework developers to coordinate a common approach as well as to establish an API for tools 

to write their own usage logs and metrics. Most likely a standard set of Kubernetes tools can do 

this, along with some log message format standards. 

Collecting more data could also allow the optimisation of resources requested for known 

workflows. This means that we could, for example, scale user jobs for heterogeneous 

architectures, particularly using accelerators in a more adaptive way and to try to tune analysis 

configurations in a heuristic way through some validation phases. 

The IRIS-HEP Analysis Grand Challenge workflow defines an analysis benchmark that could be 

easily re-implemented and executed on any generic Analysis Facility and help to showcase how 

to use existing analysis facilities on a scale appropriate for this analysis. During the workshop the 

IRIS-HEP Analysis Grand Challenge (AGC) workflow was suggested as one of an analysis facility 

performance benchmarks, giving the possibility to AFs architects or resource managers to 

understand better data analysis bottlenecks at AF. AGC also could be used to explain for the 

users of the analysis facility what it could look like for an efficient data analysis pipeline.  

Collecting user requirements and metrics of success for analysis facilities 

Every project, including Analysis Facilities, needs to determine the success of a project and help 

project managers to evaluate a project’s status, foresee risks and assess the quality of work.  For 

this reason it should be initially envisaged to perform regular user surveys and define key 

parameters to capture the success of analysis facilities. As a baseline to evaluate AF success as a 

project, we could propose to use  the standard key metrics such as a total number of users or a 
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number of analyses or the evolution of usage over time, both in terms of number of users and 

compute time spent. Other examples of metrics could include the number of users per week 

versus time or the number of active users within a given time window and by which method users 

are interacting (interface, traditional batch), the total number, volume and format of files 

consumed/written and shape of workflow statistics. 

Another important category of metrics are the more user-oriented metrics, such as the number of 

reported issues, the time to answer tickets, the time taken to solve the issue, feedback from user 

satisfaction surveys, etc., as well as other user engagement metrics such as quality and user 

satisfaction using prepared documentation, tutorials and quality of user-engagement training for 

a given facility. 

We also need to continue to improve analysis facilities collecting additional user requirements 

and keeping track of improvements over time and the uptake over time.  This also could be 

defined as an additional set of metrics. 

Breakout Session - Analysis Workflow Design 

During the workshop there was a breakout session on Analysis Workflow Design, the summary of 

which is linked here. 

Conclusions / Outcomes 

Here we summarise the main outcomes of the workshop that should be followed up: 

-​ Object facades, which group columnar data into views that allow reasoning about physics 

objects, are important for a good analyser user experience. The HSF Data Analysis 

Working Group should coordinate a harmonisation effort to ensure consistent behaviour 

across different tools in this regard. 

-​ The interoperability of tools should be strongly encouraged and the HSF should 

encourage appropriate discussions between development teams. 

-​ Best practice for onboarding new analysts (in analysis models and programming 

techniques) is a crucial area in which to have continued commitment between the HSF 

Training and Data Analysis groups and the experiments. 

-​ Continued R&D for reduced formats should focus on how to accommodate special inputs 

for non-standard workflows. Possible approaches include the use of friend trees to 

augment existing reduced formats or using object stores to access columns across 

processing tiers. 

-​ The curation of open datasets (or equivalently simulators) along with benchmarks for 

common problems in machine learning is of clear importance, and should be made a 
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focus of the experiments that have sufficient data and meaningful task definitions to suit 

this format. This will bring the field more in-line with industry standards for replication, 

give a better feel for how well new methods perform on certain tasks, and reduce friction 

for non-physics experts to contribute in a meaningful way to particle physics research. 

-​ Differentiable programming received a clear interest from those present in the workshop, 

but lacks thorough comparisons with existing methods at scale, and requires 

concentrated effort to harmonise software and methodology efforts. This should be a 

priority going forward for those involved to make it clear to the field when, how, and if 

these methods warrant usage. 

-​ Metadata requires dedicated follow up and an HSF Metadata Workshop is proposed, 

tentatively for early 2023.  This should be coordinated by a team nominated by HSF 

Coordination. The product of that workshop should be an HSF Metadata Report, covering 

all Metadata use cases through their end-to-end lifecycle.  Discussions on how best to 

provide dedicated follow up, via new or existing working groups or otherwise, will also be 

an important part of the workshop. 

-​ Concerted effort is needed to tackle systematic uncertainty handling, identified as the 

largest pain point in the analysis workflow. Agreement on an idealised workflow for 

analysis of calibrated, reduced analysis formats provides a model for R&D and a set of 

deliverables. A joint top-pair cross-section analysis on open MC between ATLAS/CMS and 

LHCb was proposed as a test challenge for development of common tools to describe 

and extract standard uncertainties both in analysis code and in downstream interpretation 

frameworks. 

-​ The future of computing is moving towards higher concurrency and increased use of 

accelerators. We believe that analysis usage is no exception to this trend.  Many of the 

tools discussed at the workshop should be supported to continue the work of adapting to 

this future reality, and taking full advantage of facility resources that offer accelerators like 

GPUs and FPGAs. That is clearly an element of the path towards our ultimate goal of 

reducing time to insight, by making results available within interactive time scales. The 

HSF, through its various working groups, should attempt to foster best practice and 

knowledge sharing in this transition. 

-​ As a particular specific aspect, the numerical stability and reproducibility of 

multi-architecture codes should be studied, with an understanding of when 

sufficient and acceptable architecture independence of results has been 

achieved. 

-​ Community involved in development modern AFs identified the following key areas of 

analysis facilities that are of interest for further investigation and improvements: Identity 

management integration, modern data organisation solutions and heavy usage of data 

delivery techniques, investigate the object stores, the resource sharing mechanisms and 
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the efficient user friendly methods for sharing user environments between analysis 

facilities and many others. 

-​ With more analysis level services deployed within the Kubernetes environment an 

essential area for improvement is standardisation of analysis facility deployment tools and 

support of the surrounding infrastructure. Defining a new training area for system 

administrators will give analysis facility providers sufficient experience in the dependent 

technologies. 

-​ To provide an extensive overview on how AF resources are used and to ensure that an 

informed decision about which AF to use can be made, it would be useful if Analysis 

Facilities publish key metrics related to performance and usage. It is initially envisaged to 

perform regular user surveys to capture the success of analysis facilities, focusing on 

user-oriented or user engagement metrics. We can also use this to understand user 

modalities, preferences and analysis throughput to guide AF development.  
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