# ANDHRA LOYOLA INSTITUTE OF ENGINEERING AND TECHNOLOGY VIJAYAWADA-8

**ACADEMIC YEAR: 2020-2021** 

YEAR: III ECE SEMESTER: II

SUBJECT NAME: MICROWAVE ENGINEERING

Cognitive levels L1– Remember, L2-Understanding, L3- Applying /Analyzing

#### Question - Bank for unit-1 to unit-3

#### Unit-1

| Q.No | Question                                                                                                                                                                                                                      | Marks | Cognitive level |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------|
| 1    | What are microwaves? Explain the advantages of microwaves.                                                                                                                                                                    | 5M    | L1              |
| 2    | An air filled rectangular waveguide of inside dimensions 7 x 3.5 cm operates in the dominant TE10 mode. (i) Find the cut off frequency. (ii) Determine the phase velocity of the wave in the guide at a frequency of 3.5 GHz. | 5M    | L1              |
| 3    | Derive the field expressions for TM wave propagation in rectangular waveguide.                                                                                                                                                | 10M   | L2              |
| 4    | Derive the wave equation for a TE wave and obtain all the field components in a rectangular waveguides.                                                                                                                       | 10M   | L2              |
| 5    | Derive expressions for cut off wavelength and cut off frequency for TM waves propagating through rectangular waveguides.                                                                                                      | 5M    | L2              |
| 6    | Derive the expressions for phase velocity and group velocity.                                                                                                                                                                 | 6M    | L2              |
| 7    | Calculate the guide wavelength (in cm) at 7 and 12GHz for an air filled waveguide with a=2.54 cm, b=1.5cm.                                                                                                                    | 4M    | L2              |
| 8    | Discuss about the impossibility of TEM mode in Waveguides.                                                                                                                                                                    | 3M    | L2              |
| 9    | Explain about dominant and degenerate modes in a rectangular waveguides.                                                                                                                                                      | 3M    | L2              |
| 10   | Calculate the cutoff frequencies of air-filled wave guide with a=3.24cm and b=2.2cm, for the TE10, TE20, TE01, and TM11 modes.                                                                                                | 7M    | L2              |
| 11   | A TE10 Wave at 10.0 GHz propagates in a rectangular Wave guide (a=2.5cm and b=1.25cm) filled with Teflon having $\varepsilon r = 2.1$ . Determine the wave Impedance.                                                         | 3M    | L2              |
| 12   | An air-filled rectangular wave guide has dimensions of $a = 6$ cm and $b = 4$ cm. The signal frequency is 3 GHz.                                                                                                              |       |                 |

| <b>^</b> | toff frequency, group velocity fo |           | elength, Phase | 10M | L3 |
|----------|-----------------------------------|-----------|----------------|-----|----|
| i) TE10  | ii) TE01                          | iii) TE11 | iv) TM11       |     |    |

### Unit-2

| Q.No | Question                                                                                                             | Marks | Cognitive level |
|------|----------------------------------------------------------------------------------------------------------------------|-------|-----------------|
| 1    | What is a cavity resonator? Derive the expression for resonant frequency of rectangular & circular cavity resonator? | 7M    | L1              |
| 2    | Explain about Dielectric losses in Micro strip lines.                                                                | 3M    | L1              |
| 3    | Derive the characteristic equation of a Circular waveguide.                                                          | 10M   | L2              |
| 4    | Derive the field equation for rectangular cavity resonator in TEmnp mode, starting from wave equation.               | 10M   | L2              |
| 5    | Derive the field equation for rectangular cavity resonator in TMmnp mode, starting from wave equation.               | 10M   | L2              |
| 6    | Compare rectangular and circular waveguides.                                                                         | 4M    | L2              |
| 7    | Derive the expressions for Q- factor and coupling co-efficients in cavity resonators.                                | 7M    | L2              |
| 8    | Explain about dominant modes in circular waveguide.                                                                  | 3M    | L2              |
| 9    | Explain the different excitations techniques used in rectangular and circular wave guides.                           | 5M    | L3              |

# Unit-3

| Q.No | Question                                                                                                                                                                                                                               | Marks | Cognitive level |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------|
| 1    | What are the limitations of conventional tubes at                                                                                                                                                                                      | 10M   | L1              |
|      | microwave frequencies? Explain.                                                                                                                                                                                                        |       |                 |
| 2    | With necessary equations, explain the velocity                                                                                                                                                                                         | 10M   | L1              |
|      | modulation process with Applegate diagram in two                                                                                                                                                                                       |       |                 |
|      | cavity klystron amplifier.                                                                                                                                                                                                             |       |                 |
| 3    | Explain the operation of Two Cavity klystron with neat sketches and derive its output power and efficiency?                                                                                                                            | 10M   | L2              |
| 4    | A 2-cavity klystron is operated at 10GHZ with $V_0$ =1200V, $I_0$ =30mA, d=1mm, L=4cm, Rsh=40K $\Omega$ , neglecting the beam loading. Calculate a) input RF voltage $V_1$ for maximum output voltage, b) voltage gain, c) Efficiency. | 10M   | L2              |

| 5 | Derive the expression for bunching process and                         | 10M | L2 |
|---|------------------------------------------------------------------------|-----|----|
|   | voltage gain of Two-cavity klystron.                                   |     |    |
| 6 | Explain the operation of Reflex klystron with neat                     | 10M | L2 |
|   | sketches and derive its bunching parameter?                            |     |    |
| 7 | Klystron having following parameters: operating                        | 10M | L3 |
|   | frequency 9GHZ with V <sub>0</sub> =1200V,I <sub>0</sub> =25mA, d=1mm, |     |    |
|   | L=4cm, Rsh=30K $\Omega$ , neglecting the beam loading.                 |     |    |
|   | Calculate a) input RF voltage V <sub>1</sub> for maximum output        |     |    |
|   | voltage, b) voltage gain, c) Efficiency.                               |     |    |

## Unit-4

| Q.No | Question                                                                                                                                                                                             | Marks | Cognitive level |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------|
| 1    | Explain about different types of magnetrons.                                                                                                                                                         | 4M    | L1              |
| 2    | Draw the diagram of helix travelling-wave tube and explain its operation.                                                                                                                            | 6M    | L1              |
| 3    | Derive the expression for Axial Electric field in helix type travelling wave tube.                                                                                                                   | 5M    | L2              |
| 4    | Derive the Hull cut-off voltage equation.                                                                                                                                                            | 10M   | L2              |
| 5    | Explain the nature of four propagation constants in helix travelling-wave tube.                                                                                                                      | 10M   | L2              |
| 6    | Explain the operation of 8-cavity cylindrical magnetron?                                                                                                                                             | 5M    | L2              |
| 7    | What is Hartree condition in Magnetron? Derive the equation for Hartree voltage.                                                                                                                     | 6M    | L2              |
| 8    | Derive the equation for gain of TWT amplifier.                                                                                                                                                       | 5M    | L2              |
| 9    | b) An X-band pulsed cylindrical magnetron has $V_0$ =30KV, $I_0$ =30A, B0= 0.34Wb/Sq.m, a=5cm, b=10cm. Calculate a) cyclotron angular frequency b) Cut-off voltage c) Cut-off magnetic flux density? | 10M   | L3              |

## Unit-5

| Q.No | Question                                                                        | Marks | Cognitive level |
|------|---------------------------------------------------------------------------------|-------|-----------------|
| 1    | Explain the different types of Microwave attenuators.                           | 3M    | L1              |
| 2    | What are the various applications of Magic Tee? Explain.                        | 4M    | L1              |
| 3    | Explain in detail about waveguide irises, tuning screws and posts neat diagram? | 7M    | L1              |
| 4    | Derive the S-Matrix of H-Plane Tee.                                             | 7M    | L2              |
| 5    | Derive the S-matrix of E plane Tee and also write its characteristics.          | 10M   | L2              |
| 6    | What is magic tee? Derive the S matrix of a Magic Tee.                          | 10M   | L2              |
| 7    | Find the Hybrid ring S-parameters and explain with neat sketch.                 | 6M    | L2              |
| 8    | Explain the design & Working principle of a Gyrator?                            | 5M    | L2              |
| 9    | Explain briefly about circulators and isolators.                                | 10M   | L2              |

| 10 | Explain different types of directional couplers with neat sketches and derive the S- matrix for directional coupler? | 10M | L2 |
|----|----------------------------------------------------------------------------------------------------------------------|-----|----|
| 11 | Derive the S-parameters for 10dB directional coupler,                                                                |     |    |
| 11 | Directivity D=30dB. Assume that it is lossless and VSWR at each port is 1.0 under matched conditions.                | 10M | L3 |

#### Unit-6

| Q.No | Question                                           | Marks | Cognitive level |
|------|----------------------------------------------------|-------|-----------------|
| 1    | Draw a neat diagram of a microwave bench setup and | 5M    | L1              |
|      | explain in detail about all the components.        |       |                 |
| 2    | What are the different precautions have to be made | 3M    | L1              |
|      | while measuring parameters at Microwave range?     |       |                 |
| 3    | Draw and explain in detail about IMPATT diode.     | 5M    | L2              |
| 4    | Discuss about construction and operation of        | 5M    | L2              |
|      | TRAPATT diode.                                     |       |                 |
| 5    | Define VSWR and explain the procedure for          | 5M    | L2              |
|      | measurement of Low and High VSWR.                  |       |                 |
| 6    | Explain the concept of Gunn effect with necessary  | 7M    | L2              |
|      | figures.                                           |       |                 |
| 7    | Explain the procedure for measurement of           | 5M    | L2              |
|      | Attenuation.                                       |       |                 |
| 8    | Explain the process of Frequency measurement using | 5M    | L2              |
|      | microwave bench?                                   |       |                 |
| 9    | What is bolometer? How it is used for microwave    | 5M    | L2              |
|      | measurements?                                      |       |                 |
| 10   | Explain the method of measurement of impedance at  | 5M    | L2              |
|      | microwave frequencies with suitable block diagram. |       |                 |
| 11   | Explain the procedure for measurement of Phase     | 5M    | L2              |
|      | shift.                                             |       |                 |

Faculty: G.VIJAYA KUMAR