

राष्ट्रीय प्रौद्योगिकी संस्थान पटना / NATIONAL INSTITUE OF TECHNOLOGY PATNA

संगणक विज्ञान एंव अभियांत्रिकी विभाग / DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING अशोक राजपथ, पटना-८००००५, बिहार / ASHOK RAJPATH, PATNA-800005, BIHAR

Phone No.: 0612-2372715, 2370419, 2370843, 2371929 Ext- 200, 202 Fax-0612-2670631 Website: www.nitp.ac.in

No:- Date:

CS44115: Design and Analysis of Algorithms

L-T-P-Cr: 3-0-2-4

Pre-requisites: Data Structures, Knowledge of Programming languages.

Objectives:

- To provide a solid foundation in algorithm design and analysis.
- Apply important algorithmic design paradigms and methods of analysis.
- Synthesize efficient algorithms in common engineering design situations.

Course Outcomes:

At the end of the course, a student should have:

Sl.	Outcome	Mapping to POs
No.		
1.	Analyze worst-case running times of algorithms using	PO2, PO1
	asymptotic analysis.	
2.	Describe the divide-and-conquer paradigm and explain when an	PO2, PO3
	algorithmic design situation calls for it.	
3.	Describe the dynamic-programming paradigm and explain	PO2, PO3
	when an algorithmic design situation calls for it.	
4.	Describe the greedy paradigm and explain when an algorithmic	PO2, PO3
	design situation calls for it.	
5.	Analyzing capability for a given problem and decision about	PO2, PO3
	choosing efficient algorithm type to solve	

UNIT I: Introduction: 9Lectures

Algorithm, performance evaluation of algorithms, space & time complexity, notion of optimality, Master's Theorem. **Divide and Conquer:** General Concept, Finding the maximum and minimum, Quick Sort, Merge Sort, Binary Search, Strassen's matrix multiplication.

UNIT II: Greedy Algorithm:

8 Lectures

General Concept, Knapsack Problem (Fractional Knapsack), Job Sequencing with Deadline, Huffman's Codes, Minimum Cost Spanning Tree- Kruskal's Algorithm, Prim's Algorithm, Single Source Shortest Path-Dijkstra's Algorithm.

UNIT III: Dynamic Programming:

8 Lectures

General Concept, Matrix-Chain Multiplication, Knapsack Problem DP solution, Activity selection problem DP solution, Single Source Shortest Path- Bellman Ford Algorithm, All pairs shortest paths, Traveling salesman problem.

UNIT IV: Backtracking:

9 Lectures

Basic idea, 8-Queens problem, Graph Coloring, Hamiltonian Cycles. **Branch-And-Bound:** Basic idea, LC search, the 15-puzzle problem, LC Branch-and-Bound, 0/1 Knapsack Problem.

UNIT V: Graph Algorithms:

7 Lectures

Breadth First Search (BFS), Depth First Search (DFS), Strongly Connected Components, Bi-Connected Components and DFS, Euler Tour,

UNIT VI: Introduction to NP-Completeness:

3 Lectures

Basic concepts on NP- hard and NP-Complete Problems, Discussion on one NP- hard graph problem-CDP.

Text/Reference Books:

- 1) *Introduction to Algorithm*, 2e, by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, PHI
- 2) Beginning Algorithms by Simen Harris, James Ross, Wiley India.
- 3) Fundamentals of Computer Algorithms by E. Horowitz and S. Sahni, Galgotia,