1. Соли состоят из металла и кислотного остатка

Кислотные остатки - это часть кислоты без водорода.

Мы с вами знаем следующие кислотные остатки:

Cl⁻ - хлорид (остаток соляной кислоты)

 SO_4^{2-} - сульфат (остаток серной кислоты)

S²⁻ - сульфид (остаток сероводородной кислоты)

 SO_3^{2-} - сульфит (остаток сернистой кислоты)

 NO_3^- - нитрат (остаток азотной кислоты)

 NO_2^- - нитрит (остаток азотистой кислоты)

 PO_4^{3-} - фосфат (остаток фосфорной кислоты)

 CO_3^{2-} - карбонат (остаток угольной кислоты)

 SiO_3^{2-} - силикат (остаток кремниевой кислоты)

2. В названии соли указаны металл, кислотный остаток и степень окисления металла, если она переменная.

Например, сульфат железа (III)

Шаг 1.

Записываем на первом месте металл, на втором - кислотный остаток:

FeSO4

Шаг 2.

Надписываем заряды металла и кислотного остатка. Заряд металла в данном случае указан в названии. Если он не указан, то это значило бы, что он постоянный, его можно посмотреть в таблице растворимости или периодической системе (номер группы). Заряд кислотного остатка можно посмотреть в таблице растворимости или в списке выше.

Fe³⁺SO₄²⁻

Шаг 3.

Вычисляем наименьшее общее кратное модулей зарядов (число, которое делится на них). Для 3 и 2 наименьшее кратное равно 6.

Шаг 4.

Вычисляем индексы по формуле:

индекс = наименьшее кратное/ заряд.

Помним, что индексы - это количество атомов, поэтому они всегда положительны.

6 : 3 = 2 (Это количество ионов железа).

6:2=3 (Это количество кислотных остатков)

Fe₂(SO₄)₃ Это ответ. [©]

