
Persistent Web Notification storage database

Author: Peter Beverloo <peter@chromium.org>; Date: March 5th, 2015. Public.

This document describes the design for a database for storing data associated with persistent
Web Notifications on disk. Implementation is tracked in Issue 447628.

Problem statement
Proposed implementation

Explanation of the important classes
Ownership diagram
Threading diagram: creating a persistent notification
Usage of protocol buffers and levelDB

LevelDB database format
Protocol buffer format

Integration with the Quota Manager
Integration with Service Worker unregistrations
Behavior when the database becomes corrupted

Privacy and security considerations
Testing plan for the implementation
Appendix: Features depending on the database
Appendix: Usage by features outside of //content/
Appendix: Impact on the chrome.notifications extensions API

Problem statement

Persistent notifications are inherently more powerful than non-persistent ones: they can outlive
the page they were created by, carry arbitrary data payloads specified by the Web developer
and can be retrieved at any time from any page on the given origin.

While we could store persistent notification data in memory on desktop, the ability for authors to
specify their own data payload means this can have unwanted effects on memory usage.

On Android, notifications can outlive the browser process entirely, so their data needs to be
serialized somewhere. We currently do this in a Pickle stored in the notification’s content intent,
but this does not scale well.

Proposed implementation

The core part of the implementation will be done in //content/browser/notifications/. The
following diagrams illustrate the ownership and threading model. Note that the entire
implementation lives in the browser process.

mailto:peter@chromium.org
https://crbug.com/447628

Explanation of the important classes

The PlatformNotificationContextImpl (implements the PlatformNotificationContext
//content/ API) is the highest level interface which consumers can use to read, write or delete
data using the notification database. It’s owned by the StoragePartitionImpl. All methods for
interacting with the database must be used on the IO thread.

It will own an instance of the NotificationDatabase class, which will be lazily initialized.

The NotificationDatabase class is responsible for actually creating and working with the
LevelDB database. It must be noted that such operations will only happen using a
SequencedTaskRunner on a thread assigned to us by BrowserThread’s blocking pool, given
that file I/O operations will end up being too expensive for other threads.

The NotificationDatabase class will also manage conversions between the input data, the
protocol buffer and the serialized version of said buffer.

Ownership diagram

The StoragePartitionImpl will create the PlatformNotificationContextImpl instance on
the UI thread. It’s exposed as part of the content public StoragePartition interface.

When the RenderProcessHostImpl starts the NotificationMessageFilter, it will pass in the
instance of the PlatformNotificationContextImpl retrieved from the storage partition.

Threading diagram: creating a persistent notification

Today, when the browser process receives an IPC message requesting display of a persistent
notification, we directly use the PlatformNotificationService on the UI thread.

In the new situation, the IPC message will be received on the IO thread. The
PlatformNotificationContextImpl will use a sequenced task runner (retrieved from the
BrowserThread’s blocking pool) to initialize the database, get the next available notification Id
and then write the notification’s data, using that Id, to the database.

When this is done, it will post a task back to the IO thread (to have a consistent
PlatformNotificationContextImpl API), which then tells the
PlatformNotificationService on the UI thread to display the notification.

A similar version of this diagram can be imagined for closing notifications, where data would be
removed from the database rather than added.

Usage of protocol buffers and levelDB

Following the reasoning put forward by the Service Worker team in using the protocol buffers
stored in levelDB combination, we too have elected to use this for the notification database.

https://groups.google.com/a/chromium.org/d/topic/chromium-dev/W3rHuzOlHqA/discussion
https://developers.google.com/protocol-buffers/docs/overview
https://github.com/google/leveldb

LevelDB database format

LevelDB is a fast key-value database. The notification database will imitate the format used by
the ServiceWorkerDatabase implementation, with the following keys.

Key: DB_VERSION (int)

Key: NEXT_NOTIFICATION_ID (int64)
Next id to assign to a persistent notification. Ever incrementing for the lifetime of the
database, even when old persistent notifications get removed.

Key: INDEX:<origin identifier>:
 <service_worker_registration_id>:<notification_id>(empty)
Used as an index to find all notification ids associated with a given service worker
registration id.

Key: DATA:<origin identifier>:<notification_id> (string)
Stores the serialized representation of a NotificationDatabaseData protobuf.

The protocol buffer stored in REG provides flexibility over the data stored in the database
without having to upgrade the database itself to a new version.

As there is no known use-case for storing user data associated with Web Notifications, we’ll
consider this out of scope for the first version of the database.

Protocol buffer format

The following protocol buffer format is suggested to be used for the first iteration.

message NotificationDatabaseData {

 required int64 notification_id;

 optional string origin;

 optional int64 service_worker_registration_id;

 enum Direction {

 LEFT_TO_RIGHT = 0;

 RIGHT_TO_LEFT = 1;

 }

 // To be kept synchronized with PlatformNotificationData.

 optional string title; // Message title.

 optional Direction direction; // i18n direction.

https://code.google.com/p/chromium/codesearch#chromium/src/content/browser/service_worker/service_worker_database.cc
https://code.google.com/p/chromium/codesearch#chromium/src/content/public/common/platform_notification_data.h

 optional string language; // BCP 47 language.

 optional string body; // Message body.

 optional string tag; // Replacement tag.

 optional string icon; // Icon URL.

 optional string data; // Author-provided, serialized data.

}

Most fields are marked optional in accordance with experiences of Google engineers more
familiar with protocol buffers, as noted in the language guide.

Integration with the Quota Manager

The Web Notification database will tie in with the Quota Manager to ensure that (a) notification
data storage will be counted for the origin, and (b) we defer to the Quota Manager to determine
when data for an origin has to be removed.

To achieve this, the PlatformNotificationContextImpl will register a
NotificationQuotaClient with the quota manager proxy. Furthermore, the
NotificationStorage class will notify the quota manager proxy when data for an origin gets
accessed or modified.​

This functionality will be covered with unit tests when the actual database storage is working.

Note that part of the decision to integrate with the quota manager is because authors will have
the ability to provide arbitrary data. While a reasonable limit will be sought in implementation of
that feature, it’s anticipated to be higher than a megabyte.

Integration with Service Worker unregistrations

In order to handle dropped Service Workers, PlatformNotificationContextImpl will register
itself as a ServiceWorkerContextObserver and listen to notifications about unregistered
Service Workers, as well as complete data wipe.

Behavior when the database becomes corrupted

The database will not implement any mechanism for attempting recovery of data. Instead, it will
blow away the storage and starts over, analogous to Service Worker’s DeleteAndStartOver()
functionality.

Privacy and security considerations

The notification database files will be stored in the user’s profile directory:
$PROFILE_DIR/Platform Notifications/

https://developers.google.com/protocol-buffers/docs/proto#simple
https://code.google.com/p/chromium/codesearch#chromium/src/content/browser/service_worker/service_worker_context_wrapper.h&q=DeleteAndStartOver&l=60

The database will not be encrypted or feature any other kind of additional protection, in line with
similar features such as the Service Worker database.

The notification database will register a NotificationQuotaClient with the quota manager to
be aware of requests for removing data for a certain origin. Notifications associated with the
origin for which data is being cleared will be closed as well.

All information stored for a notification is provided by the developer, and may be sensitive to
privacy. This is no different from storing such data in other forms of local storage, however.

Testing plan for the implementation

The project will largely be covered by the existing test suites for the Web Notification API, which
include instrumentation tests , browser tests and layout tests . 1 2 3

A series of unit tests will be added for the database implementation. They will include:

●​ Tests for opening, closing and using the database in memory.
●​ Tests for opening, closing and using the database when written to a file.
●​ Tests for integration with the quota manager, both for commands created by the

manager (getting and clearing data for an origin) and command created by the
notification database system (notifying of data modification / access).

Appendix: Features depending on the database

The following features will be implemented on top of this database.

●​ Implementation of the Notification.get() method, enabling Web developers to get a list of
notifications displayed for their origin. Tracked in Issue 442143.​

●​ Implementation of the Notification.data attribute, enabling Web developers to store some
data with the notifications they show. Tracked in Issue 442129.

Appendix: Usage by features outside of //content/

The PlatformNotificationContext is being defined in the //content/public/ API, exposing
minimal functionality, to enable existing users of persistent Web Notifications living higher up.

3 LayoutTests/http/tests/notifications/, serviceworkerregistration-*.
2 PlatformNotificationServiceBrowserTest and NotificationBrowserTest.
1 NotificationUIManagerTest, Android-specific.

https://crbug.com/442143
https://crbug.com/442129
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/LayoutTests/http/tests/notifications/
https://code.google.com/p/chromium/codesearch#chromium/src/chrome/browser/notifications/platform_notification_service_browsertest.cc
https://code.google.com/p/chromium/codesearch#chromium/src/chrome/browser/notifications/notification_browsertest.cc
https://code.google.com/p/chromium/codesearch#chromium/src/chrome/android/javatests/src/org/chromium/chrome/browser/notifications/NotificationUIManagerTest.java

The notable example here is the Push API, our implementation of which currently requires the
developer to display a notification. If they don’t do this, a forced, persistent Web Notification will
be created by the PushMessagingServiceImpl.

Appendix: Impact on the chrome.notifications extensions API

The chrome.notifications extensions API provides an alternative, Chrome proprietary method of
showing notifications, available to Chrome Apps and extensions. This project will not impact
that API, nor is the database being designed with this API in mind.

It is currently possible for authors to retrieve a list of all their notifications using the
chrome.notifications.getAll() method. This has been implemented on top of the
NotificationUIManager interface, which remains unchanged.

It will be possible to update this implementation to use the database in the future, but that is
considered out of scope for this project.

https://docs.google.com/document/d/1WtORlXmdnziLJTpaUfI_cd-_JEVNdFvlUEh_dusq6WU/edit#
https://code.google.com/p/chromium/codesearch#chromium/src/chrome/browser/push_messaging/push_messaging_service_impl.cc
https://developer.chrome.com/apps/notifications

	Persistent Web Notification storage database
	Problem statement
	Proposed implementation
	Explanation of the important classes
	Ownership diagram
	Threading diagram: creating a persistent notification
	Usage of protocol buffers and levelDB
	LevelDB database format
	Protocol buffer format

	Integration with the Quota Manager
	Integration with Service Worker unregistrations
	Behavior when the database becomes corrupted

	Privacy and security considerations
	Testing plan for the implementation
	Appendix: Features depending on the database
	Appendix: Usage by features outside of //content/
	Appendix: Impact on the chrome.notifications extensions API

