Flow control in QUIC

Robbie Shade (rjshade@google.com)
May, 2016

Overview
Stream flow control
Connection flow control

Other considerations and implementation details
RST mid-stream

RST in reply to RST
BLOCKED frames
Default values

Auto-tuning max receive window
Rationale

Algorithm

Overview

QUIC provides both stream and connection level flow control, similar to HTTP2. An
endpoint sends WINDOW_UPDATE frames to the peer to increase flow control window size,
and BLOCKED frames to indicate it has data to write but is blocked by flow control.

A motivating example is a server with limited memory: it needs a mechanism by which it
can limit the amount of data each client can send it, to avoid allocating arbitrarily large
buffers.

mailto:rjshade@google.com

Stream flow control

Stream flow control is the mechanism by which one endpoint of a QUIC connection informs
the other end about how much data it is willing to receive on each stream.

In QUIC, flow control works by advertising the absolute byte offset in the stream which an
endpoint is willing to receive. For example, if we tell the peer that they can send up to byte
200 on stream N, and they have already sent 150 bytes on that stream they may only write
another 50 bytes before blocking. As we free up memory by consuming data from the
stream, we will send a WINDOW_UPDATE frame allowing the peer to send more data.

flow control receive window == max flow control receive window

"l'
\{

flow control receive offset

Figure (a): Empty stream

There is a maximum flow control receive window size which is chosen independently by
each endpoint. An endpoint should base this decision on available resources - if you are
not constrained by memory then set a large window of 100 Mb for example, whereas a
busy server may set a window of 64 Kb. Figure (a) shows an empty stream after creation. It
has not received any data from the peer, so its flow control receive window is equal to the
maximum stream receive window. As data arrives, this receive window will shrink -
eventually reaching 0 if the peer sends exactly enough data to fill it.

gaps in buffered data due to out of order delivery

flow control receive window

|
>

|
|
|
:
flow control receive offset
data consumed by stream
buffered data in sequencer

highest received byte offset

Figure (b): Stream has consumed some data, some buffered

This picture shows the situation after the peer has sent some data. We have consumed
some bytes, and buffered some more. There are gaps in the buffered data as packets have
arrived out of order. Notice that the flow control receive window has shrunk based on the
highest received byte offset and not the amount of bytes buffered. This is reasonable as
the peer does not send stream data with gaps: if there are gaps below the highest received
offset this must be because packets have been reordered or dropped in the network.

We keep track of the highest byte offset we have seen on each stream. As new frames
arrive we check to see if we need to change this offset, but it only ever increases. When a
stream terminates the peer must inform us of the highest byte offset they have written to
the stream. They can do this by either sending a data frame with a FIN, or a RST stream
frame which contains a final byte offset.

flow control receive window
[} [}
[} ‘ .I
} [}

(max receive window) / 2
< »

flow control receive offset

Figure (c): Stream has consumed enough data to trigger WINDOW_UPDATE

Now we get a chance to consume some more data from the stream. The heuristic used to
determine when to send a WINDOW_UPDATE is the same as that used in Chromium'’s
HTTP2 implementation:

bool send update =
(flow control receive offset - consumed bytes) < (max receive window /

2);

flow control receive window

A
\ 4

max receive window

A

»
>

flow control receive offset

Figure (d): New receive window

We send a WINDOW_UPDATE pushing out the flow control receive offset such that it =
(consumed bytes + max receive window).

https://code.google.com/p/chromium/codesearch#chromium/src/net/spdy/spdy_stream.cc&sq=package:chromium&type=cs&l=337&rcl=1463483832
https://code.google.com/p/chromium/codesearch#chromium/src/net/spdy/spdy_stream.cc&sq=package:chromium&type=cs&l=337&rcl=1463483832

Connection flow control

On its own, stream flow control is not sufficient to protect the receiver from too much
incoming data. A client could open up to max_streams streams (currently 100) and send up
to the per-stream flow control limit bytes on each stream. Therefore, in addition to limiting
data sent on individual streams, we also require that the QUIC connection (potentially
containing many streams) is itself flow controlled.

Connection flow control works in the same way as stream flow control, but the bytes
consumed, and highest received offset, are the aggregate across all streams. As data is
consumed by a stream it updates both its own bytes consumed field, and also the
connection level flow controller.

For example, consider three streams, each of which has received some amount of data, but
that data has not yet been fully consumed by the application.

e Stream 1 has received 100 bytes, and the application has consumed 80 bytes.
e Stream 2 has 90 bytes, and the application has consumed 50 bytes.
e Stream 3 has received 110 bytes, and the application has consumed 100 bytes.

Aggregating these gives a connection level flow control state where the connection has
received 300 bytes, and consumed 230 of them.

stream 1
I
T I — highest received offset
stream 2 \
I
Lo
stream 3

consumed bytes

Figure (e): Individual streams with various offsets

consumed bytes highest received offset

\

connection | | | | | |
[}

Figure (f): Connection level flow control aggregated across open streams

Having an overall connection level flow control window means that an individual slow
stream (talking to a slow backend for example) won't completely starve the connection:
WINDOW_UPDATEs at the connection level will allow other streams to progress, while the

slow stream is blocked from receiving more data.

Other considerations and implementation details

There are some edge cases which must be considered when dealing with stream and
connection level flow control. Given enough time (1 RTT hopefully?), both endpoints must
agree on flow control state. If one end believes it can send more than the other end is
willing to receive the connection will be torn down when too much data arrives. Conversely
if endpoint A believes it is limited to sending X bytes, while endpoint B expects up to Y bytes
(and Y > X), then we can get stuck in the situation where A is stalled on writing, waiting for a
WINDOW_UPDATE which will never come.

RST mid-stream

What happens to connection level flow control when one side decides to reset a stream
before it has finished sending/receiving data (e.g. the user closes a tab in Chrome)? On
receipt of a RST frame, endpoint A will tear down the state for the matching stream, and
ignore further data frames on that stream. This could potentially result in the endpoints
getting out of sync: the RST may have arrived out of order (this is not TCP!) and there may
be further bytes in flight (which B has counted against its connection level send window as
they were sent).

Unless A can figure out how many bytes B sent on the stream it can't make the same
adjustment in its flow controller receive window and the endpoint states will drift apart. To
solve this, we include the final byte offset sent on the stream in every RST frame. This
means that receiving a RST frame tells an endpoint definitively how many bytes the peer
sent on that stream, and we can adjust our connection level window appropriately.

RST in reply to RST

B also needs to know how many bytes A sent on the stream which has been reset. A can't
just tear down stream state on receipt of a RST - it also needs to tell B how many bytes it
sent. There are two ways that an endpoint can definitively inform the peer of the number
of bytes sent on a stream:

e RST frame with final byte offset
e Data frame with FIN bit set

Therefore the protocol requires that on stream termination each endpoint must send
either a RST or a data frame with FIN. If you receive a RST and have sent neither a FIN nor a
RST, you send a RST in response. You can then rest assured that the connection will deliver
this to the peer, that you have the final byte offset sent by the peer, and you can adjust
your connection level flow control state before tearing down the stream locally.

BLOCKED frames
A QUIC endpoint will send a BLOCKED frame (as described in the wire spec) if it has data to
send but is currently flow control blocked. Ideally these will be sent very infrequently as the

https://docs.google.com/document/d/1WJvyZflAO2pq77yOLbp9NsGjC1CHetAXV8I0fQe-B_U/edit#heading=h.i8ix4z2uj1d4

endpoints adjust their windows via WINDOW_UPDATE to accommodate the current data
rate, but BLOCKED frames have been invaluable for debugging and monitoring purposes.

Default values
At the time of writing, QUIC has the following default flow control values (from Chromium’s
quic protocol.h):

// Minimum size of initial flow control window, for both stream and session.
const uint32_t kMinimumFlowControlSendWindow = 16 * 1024; // 16 KB

// Maximum flow control receive window limits for connection and stream.
const QuicByteCount kStreamReceiveWindowLimit = 16 * 1024 * 1024; // 16 MB
const QuicByteCount kSessionReceiveWindowLimit = 24 * 1024 * 1024; // 24 MB

The 16 KB minimum value is necessary to allow 0-RTT requests with bodies. Current
implementations will advertise much larger windows during the handshake, via the kSFCW
(Stream Flow Control Window) and kCFCW (Connection Flow Control Window) tags in the
CHLO and SHLO.

Chromium currently sets:
CFCW: 15728640 // 15 MB
SFCW: 6291456 // 6 MB

Google’s servers currently set:
CFCW: 1572864 // 1.5 MB
SFCW: 1048576 // 1 MB

https://code.google.com/p/chromium/codesearch#chromium/src/net/quic/quic_protocol.h
https://code.google.com/p/chromium/codesearch#chromium/src/build/linux/debian_wheezy_amd64-sysroot/usr/include/stdint.h&l=52&ct=xref_jump_to_def&cl=GROK&gsn=uint32_t
https://code.google.com/p/chromium/codesearch#chromium/src/net/quic/quic_protocol.h&l=72&gs=cpp:net::kMinimumFlowControlSendWindow@chromium/../../net/quic/quic_protocol.h%257Cdef&gsn=kMinimumFlowControlSendWindow&ct=xref_usages
https://code.google.com/p/chromium/codesearch#chromium/src/net/quic/quic_bandwidth.h&l=17&ct=xref_jump_to_def&cl=GROK&gsn=QuicByteCount
https://code.google.com/p/chromium/codesearch#chromium/src/net/quic/quic_protocol.h&l=75&gs=cpp:net::kStreamReceiveWindowLimit@chromium/../../net/quic/quic_protocol.h%257Cdef&gsn=kStreamReceiveWindowLimit&ct=xref_usages
https://code.google.com/p/chromium/codesearch#chromium/src/net/quic/quic_bandwidth.h&l=17&ct=xref_jump_to_def&cl=GROK&gsn=QuicByteCount
https://code.google.com/p/chromium/codesearch#chromium/src/net/quic/quic_protocol.h&l=76&gs=cpp:net::kSessionReceiveWindowLimit@chromium/../../net/quic/quic_protocol.h%257Cdef&gsn=kSessionReceiveWindowLimit&ct=xref_usages

Auto-tuning max receive window
Most TCP implementations allow the size of the receive buffer to be auto-tuned, e.g. see

tcp_moderate_rcvbuf in the Linux tcp manpage. A similar scheme has been implemented for
QUIC as follows.

Rationale

As with many of the TCP auto-tuning counterparts, the basic idea is to start with relatively
small initial window size, and then grow the window as necessary. For simplicity,
auto-tuning may increase the window size, but never decreases (contrast with congestion
control).

The ideal size of the window is one that is large enough that it can encompass the
bandwidth delay product (BDP) to the peer or the consuming application, whichever is less,
but not much larger. A smaller window size than this ideal may harm throughput, and
larger would be wasteful.

As the window update is central to QUIC's flow controller design, it provides a very
convenient point to implement an auto-tuning mechanism that finds the ideal window size.
Specifically, the algorithm will compare the interval between successive flow control
window updates to the (smoothed) RTT estimate already maintained by QUIC. If the flow
control window is too small to keep up with the BDP, there will be a window update each
RTT. Alternatively, when the window is sized to the ideal, window updates can be expected
to occur with frequency corresponding to more than the 1 RTT indicative of blocking, but
not too much more. The default target chosen for auto-tuning corresponds to 2 RTTSs.
(since updates are triggered at the half-way point of the window, this corresponds to a total
window size target of 4 RTTSs).

The algorithm also imposes an upper bound on window size, which may be set by as an
additional safety check or in conjunction with explicit memory pressure response
mechanisms.

Algorithm
e As above, the flow control window update triggered when:
available window < max window size / 2,
where available window = max receive window offset - bytes consumed
e to realize auto-tuning, add the following logic just before issuing a window update
e keep track of time interval between subsequent window updates, call this
since_last_update.
e if (since_last_update < RTT * trigger factor) then max window
size = MIN(max window size * increase factor, upper bound).
o trigger factoris?2
o increase factoris?2

http://www.manpages.info/linux/tcp.7.html

e As above, window update sets:
max_received window offset += (max window size - available window)

Default values
Google’s servers default to enable auto-tuning for receive buffers, with the following initial
window size settings:

CFCW: 49152 // 48 KB

SFCW: 32768 // 32 KB

Chromium defaults disable auto-tuning for its receive buffers.

