
Section Notes 4  (Worksheet) 

 
Assembly Instructions and Bitwise Operators 

 
Overview: 

●​ Registers 
●​ Assembly Operands (Immediates, Registers, Memory) 
●​ Condition Codes 
●​ Jumps 
●​ Control Flow (loops) 
●​ Procedure Calls 
●​ Bitwise Operators 

 

Meet the Registers 

 

Register 

Data Registers 
AX 

BX 

CX 

DX 

Pointer Registers 

IP 

SP 

BP 

Internal memory storage locations within the processor 
 
primary accumulator, typically contains the return value 
 
base register (indexed addressing) 
 
count register (loop counts, etc.) 
 
data register (input/output operations, misc.) 
 

instruction pointer -- address of next instruction to be executed 

stack pointer -- current offset value within the program stack 

base pointer -- base of the subroutine stack, used to reference parameter 
variables 

 

Important Observations! 

●​ Registers are commonly known as EAX, EBX, etc. -- the additional “E” means the register is 
32-bits, rather than the  16-bit, two-character registers. (Fun fact: RAX is the 64-bit version of 
EAX) 



 

●​ Stacks grow down in memory. This means that addresses decrease as the stack grows. 

●​ The top of the stack’s address is contained in the register %ESP, and is the lowest address of all 
stack elements. 

●​ (%register) returns the value contained at the address the register refers to 

●​ %register returns the address the register refers to 

●​ <cmd> <v1> <v2> treats v1 as the (src / destination) and v2 as the (src / destination) 

 

Exercises 

 
pushl %ebp stores %ebp on the stack. What two instructions does it equal, and why are the others 
wrong? 

a.​ subl $4, %esp 
​ movl %ebp, (%esp) 
 

b.​ addl $4, %esp 
​ movl %ebp, %esp 
 

c.​ subl $4, (%esp) 
​ movl (%ebp), %esp 

 

popl %ebp pops the top value off the stack and stores it in %ebp. What two instructions does it equal, 
and why are the others wrong? 
 

a.​ movl (%esp), %ebp 
​ addl $4, (%esp) 
 

b.​ movl %esp, %ebp 
​ addl $4, %esp 
 

c.​ movl %esp, %ebp 
​ addl $4, %esp 
 

d.​ movl (%esp), %ebp 



​ addl $4, %esp 
 

 

 



Assembly Operand Specifiers 

 
Assembly instructions can take three different types of operands: a constant, or immediate, value, a 
register value, or a memory value. 
 

Type Form Operand value Example 

Immediate $Imm Imm $42 

Register Ea R[Ea] %eax 

Memory Imm(Eb, Ei, s) M[Imm + R[Eb] + R[Ei] * s] $42(%esp, %edx, 4) 

 
Things to note: 

1.​ b for “base”, i for “index”, s for “scale” or “size” 
2.​ s has to be one of 1, 2, 4, or 8 

 
The “Memory” operand form is one of many ways to access memory, and is considered the most general. 
This is the most useful form to remember, because we can derive all of the others from it. In essence, the 
other forms leave off some of the arguments. One way to think of those forms is as supplying “default” 
arguments to this specifier, where the defaults are 0 for Imm, R[Eb], and R[Ei], and 1 for s. 
 
The full list of memory operand specifiers is given in Figure 3.3 of the text (pg. 169).  
 

 

 



Exercise 1 

Assume the following values are stored at the indicated memory addresses and registers. 
 

Address Value Register Value 

0x100 0xFF %eax 0x100 

0x104 0xAB %ecx 0x1 

0x108 0x13 %edx 0x3 

0x10C 0x11   

 
Fill in the missing value for each operand: 
 

Operand Value 

%eax 0x100 

0x104  

$0x108  

(%eax) 0xFF 

4(%eax) 0xAB 

9(%eax, %edx)  

260(%ecx, %edx)  

0xFC(, %ecx, 4)  

(%eax, %edx, 4)  

 
 
 

 



Exercise 2 

 
A function with prototype int decode(int x, int y, int z); is compiled into assembly. The body of the code 
is as follows: 

 
1 # x at %ebp+8, y at %ebp+12, z at %ebp+16 
2 movl  12(%ebp), %edx 
3 subl  16(%ebp), %edx  
4 movl  %edx, %eax  
5 sall  $31, %eax  
6 sarl  $31, %eax  
7 imull 8(%ebp), %edx  
8 xorl  %edx, %eax 

 
Parameters x, y, and z are stored at memory locations with offsets 8, 12, and 16 relative to the address in 
register %ebp. The code stores the return value in register %eax. Write the C code for decode that will 
have an effect equivalent to our assembly code. 
 

int decode(int x, int y, int z) { 
​  
} 

 

 



Condition Codes 

 
EFLAGS is a 32 bit register that contains separate bits for each of the condition flags, which are set 
automatically by the CPU to represent the result of the previously executed instruction. Examples of 
condition flags include the following: 
 
CF: Carry Flag  ​ The most recent operation generated a carry out of the most significant bit.  Used to 

detect overflow of unsigned operations. 
ZF: Zero Flag​ The most recent operation yielded zero. 
SF: Sign Flag ​ The most recent operation yielded a negative value. 
OF: Overflow Flag ​The most recent operation caused a two’s-complement overflow (negative or 

positive) 
 
Typically these flags are set or cleared as the result of an instruction (e.g. add, sub, cmp, etc.) and 
can then be used to conditionally set a single byte (set), jump to a new part of the program (jmp) or 
transfer some data (mov). 

Exercise 

For each one of the following, determine which flags are set by the add instruction and why. 
[a] 
movl $0x40, %eax 
movl $0xffffffc0, %ebx 
addl %eax, %ebx 
[b] 
movl $0x2a, %eax 
movl $0xffffffc0, %ebx 
addl %eax, %ebx 
[c] 
movl $0x7FFFFFF0, %eax 
movl $0x2c, %ebx 

addl %eax, %ebx  



Jumps 

 
There are two methods of performing jumps: direct and indirect. For direct jumps, the destination is 
specified as a label (e.g. jmp .L1 or, after compiling, jmp 0x8049994) and is encoded as part of 
the instruction. For indirect jumps, the jump target is read from a register or a memory location and is 
preceded by a ‘*’.  For example: 
 
jmp *%eax 
 
uses the value in register %eax as the jump target. 
 
Certain jumps are combined with certain condition flags to create conditional jumps: 

 
 

Exercise 

Which of the condition flags do each of the above jump instructions use in determining if it will execute 
the jump? 
 
 
 
 
 
 
 

 
 

Conditional jump 
instruction 

Jump condition 

je  

jne  

js  

jns  



jg ~ZF & ~(OF ^ SF) 

jge ~(OF ^ SF) 

jl (OF ^ SF) 

jle  

ja ~CF & ~ZF 

jae ~CF 

jb CF 

jbe CF | ZF 

 
((unsigned)v1 > (unsigned)v2) ⇒ v1 - v2 
 
 
 
CF: Carry Flag  ​ The most recent operation generated a carry out of the most significant bit.  Used to 

detect overflow of unsigned operations. 
ZF: Zero Flag​ The most recent operation yielded zero. 
SF: Sign Flag ​ The most recent operation yielded a negative value. 
OF: Overflow Flag ​The most recent operation caused a two’s-complement overflow (negative or 

positive) 

 

 



Control Flow: Loops 

 
Let us now see how loops are implemented using conditional jumps. The following is a simple 
function to compute a Fibonacci sequence: 

 
int fibonacci(int n) { 
   int i = 0; 
   int val = 0; 
   int nval = 1; 
   do { 
       int t = val + nval; 
       val = nval; 
       nval = t; 
       i++; 
   } while (i < n); 
   return val; 
} 
 

Generate the assembly code in the cs61 machine: 
$ gcc -O2 -S -m32 fibonacci.c 
 
Let's look at the code of this function, and focus on the code inside the loop. 
 
 

Register Variable Initially 

%ecx i 0 

%ebx val 0 

%edx nval 1 

%esi n n 

%eax t 0 

 
 
fibonacci: 
​ pushl   %ebp​ ​ ​ # save old value of %ebp 

xorl​ %ecx, %ecx​ ​ ​ # i = 0 
   ​ movl​ %esp, %ebp​ ​ ​ # %ebp = base of current stack frame 
​ movl​ $1, %edx​ ​ ​ # nval = 1 
   ​ pushl   %esi​ ​ ​ # save previous value of %esi 
   ​ movl​ 8(%ebp), %esi​​ # load n into %esi 
   ​ pushl   %ebx​ ​ ​ # save previous value of %ebx 
   ​ xorl​ %ebx, %ebx​ ​ ​ # val = 0 
   ​ jmp ​ .L2​ ​ ​ ​ # jump to .L2 
.L7: 
   ​ movl​ %eax, %edx​ ​ ​ # nval = t 
.L2: 
   ​ addl​ $1, %ecx​ ​ ​ # i++ 
   ​ cmpl​ %esi, %ecx​ ​ ​ # compare i to n 
   ​ leal​ (%edx,%ebx), %eax​ ​ # t = val + nval 



   ​ movl​ %edx, %ebx​ ​ ​ # val = nval 
   ​ jl  ​ .L7​ ​ ​ ​ # Jump if i < n 
   ​ popl​ %ebx​ ​ ​ ​ # restore %ebx 
   ​ movl​ %edx, %eax​ ​ ​ # Set nval (==val) as the ret. value 
   ​ popl​ %esi​ ​ ​ ​ # restore %esi 
   ​ popl​ %ebp​ ​ ​ ​ # restore %ebp 
   ​ ret​ ​ ​ ​ ​ # pop return address and jump to it 
 
Note that assembly code instructions do not always appear in the same order as the corresponding 
code in the C program. For example, i is incremented near the beginning of the loop in the assembly 
program, but is incremented at the end of the loop in the C source program. The compiler is free to 
re-arrange the order of the instructions as long as it does not change the meaning, or behavior, of the 
code. 
 
Which line in the assembly actually causes the code to loop?  What lines are important in making 
sure that we don’t loop forever? 
 
 
Now we’ll look at fibonacci defined slightly differently: 
 

int fibonacci(int n) { 
​ // ignoring negative n 
​ if(n == 0 || n == 1) 
​   return n; 
​ else 
​   return fibonacci(n-2) + fibonacci(n-1); 
} 

 
What is the stack going to look like midway through a call to, say, fibonacci(100000)? 
 
 
Let’s try one more time: 

int fibonacci(int n) { 
   if(n < 3) 
       return 1; 
   else 
       return fibonacci_helper(n-2,1,1); 
} 

 
int fibonacci_helper(int n, int n0, int n1) { 
   if(n == 0) 
       return n1; 
   return fibonacci_helper(n-1, n1, n0+n1); 
} 

 
What’s so different about this particular implementation of fibonacci? What happens to the stack / 
what does the stack look like midway through a call to fibonacci(100000)? 
 

Exercise 

 
Consider the following assembly code: 

# x at %ebp+8, n at %ebp+12 
1  ​ movl    8(%ebp), %esi  (x) 



2  ​ movl    12(%ebp), %ebx  (n) 
3  ​ movl    $-1, %edi       (result) 
4  ​ movl    $1, %edx        (mask) 
5 .L2: 
6  ​ movl    %edx, %eax      (eax = mask) 
7  ​ andl    %esi, %eax​     (eax = eax & x); (eax = mask & x); 
8  ​ xorl    %eax, %edi      (result=result^eax); (result=result^(mask&x)) 
x)) 
9  ​ movl    %ebx, %ecx      (ecx = ebx = n) 
10  ​ sall    %cl, %edx       (mask <<= n) 
11  ​ testl   %edx, %edx      (sets ZF if edx == 0) 
12  ​ jne     .L2             (jump if ~ZF);  
13  ​ movl    %edi, %eax 

 
The preceding code was generated by compiling C code that had the following overall form. Your task is 
to fill in the missing parts of the C code to get a program equivalent to the generated assembly code.  
Recall that the result of the function is returned in register %eax.  You will find it helpful to examine the 
assembly code before, during, and after the loop to form a consistent mapping between the registers and 
the program variables. 

a.  Which registers hold program values x, n, result, and mask? 
b.  What are the initial values of result and mask? 
c.  What is the test condition for mask? 
d.  How does mask get updated? 
e.  How does result get updated? 
f.  Fill in all the missing parts of the C code. 

 
1  int loop(int x, int n) 
2  { 
3      int result = _________; 
4      int mask; 
5      for (mask = __________; mask __________; mask = _________) { 
6          result ^= __________; 
7      } 
8      return result; 
9  }  



Procedure Calls 

 

Vocabulary 

Caller  

Callee 

Callee-saved 

 

Caller-saved 

Function that calls a function 

Function that gets called 

Type of register -- the callee function, on return, must 
ensure the registers’ value is the same as when the 
function was called 

Type of register -- the caller function must save the 
register’s value even should the callee function modify the 
value 

void add_one(int x); 
 
int main() { 
​ int x = 1; 
​ add_one(x); 
​
printf("yay!"); 
​ return 0; 
} 
 
void add_one(int x) 
{ 

x += 1; 
return; 

} 

 

 



 

 

Some Questions: 

1.​ Which registers do you think are caller-saved, looking at this function? Callee-saved? 

2.​ What do you think the “ret” command, typically called at the end of the function, does? (Hint: it 
pertains to the return address) 

3.​ How do we know how much space to allocate to each function (i.e. determine the size of the 
function “stack”)? 

4.​ Why are arguments pushed with the first argument pushed on last to the stack? (Hint: think 
printf) 

 

 



Let’s say we are given the following assembly code for a function: 
 

1 pushl %edi 
2 pushl %esi 
3 pushl %ebx 
4 sub $0x24, %esp 
5 movl 24(%ebp), %eax 
6 imull 16(%ebp), %eax 
7 movl 24(%ebp), %ebx 
8 leal 0(, %eax, 4), %ecx 
9 addl 8(%ebp), %ecx 
10 movl %ebx, %edx 
11 subl 12(%ebp), %edx 
…... 
20 popl %ebx 
21 popl %esi 
22 popl %edi 

 
1.​ Why are %edi, %esi,and %ebx pushed onto the stack at the beginning of this function and 

popped off at the end? 
2.​ What about %eax, %edx, and %ecx?  Why aren’t they put on the stack? 
3.​ What do 24(%ebp) and 16(%ebp)refer to? 
4.​ Why do we subtract 0x24 from %esp? What might be put in that area? 

 
Let’s say we are given the following C code for a function: 

int proc(void) { 
   int x, y; 
   scanf("%x %x", &y, &x); 
   return x – y; 
} 

 
And the compiler generates this assembly code for it: 

 
1 proc: 
2   pushl %ebp 
3   movl %esp, %ebp 
4   subl $24, $esp 
5   addl $-4, %esp 
6   leal -4(%ebp), %eax 
7   pushl %eax 
8   leal -8(%ebp), %eax 
9   pushl %eax 
10  pushl $.LC0         # Pointer to string "%x %x" 
11  call scanf 
12  movl -8(%ebp), %eax 
13  movl -4(%ebp), %edx 
14  subl %eax, %edx 
15  movl %edx, %eax 
16  movl %ebp, %esp 
17  popl %ebp 
18  ret 

 
Let’s assume procedure proc starts executing with the following register values: 
 

%esp = 0x800040 



%ebp = 0x800060 
 
Suppose proc calls scanf (line 11) and scanf reads values 0x46 and 0x53 from the standard input. Assume 
the string “%x %x” is stored at memory location 0x300070 (i.e., the label .LC0 is translated to the 
address 0x300070). 
 
a. What value does %ebp get on line 3? 
b. At what addresses are local variables x and y stored? 
c. What is the value of %esp after line 10? 
d. What does the stack frame look like before line 11? If the line numbers all the way on the left were 

the addresses of the instructions, what value would the call instruction push onto the stack? 
 
 
 

 



Bitwise Operators 

 

Description c notation Computer Algebra 

Bitwise not (ones’ complement) ~  ¬

Bitwise or | | 

Bitwise and & & 

Bitwise xor ^  ⊕

Left shift << << 

Right shift (logical) >> 
 

Right shift (arithmetic) >> 
 

 
 
The above table shows the bitwise operators available in c along with their computer algebra counterpart. 
One operator to note in particular is right shift. Logical right shift will shift the bits to the right and 
always fill with 0s while arithmetic shift will retain the sign bit while shifting. The C standard doesn’t 
specify which should be used so either could be. Unsigned right shifts are always logical, most platforms 
use arithmetic right shift for signed data.  
 

Given the value -13 how can we force a logical right shift of 1 bit (-13 1)?  
 
 
 

De Morgan’s Laws 
 
De Morgan’s laws (also known as De Morgan’s theorems) are two rules that allow certain boolean 
logic statements to be converted from using not,and logic to not,or.  The theorems are as follows: 
 
~(A & B) = ~A | ~B  
~(A | B) = ~A & ~B 
 
Using these laws it is sometimes possible to reduce the number of gates needed to represent certain 
logical statements. For an example see: http://www.allaboutcircuits.com/vol_4/chpt_7/8.html 

 
 
 

When am I ever going to use this stuff anyway? 
 
There are a number of uses for these types of operators, some of which you may use everyday without 
knowing it: masks and hash functions. We’ll look at hash functions in next section. A mask or bitmask 

http://www.allaboutcircuits.com/vol_4/chpt_7/8.html


is a value that when combined with the & operator can be used to isolate certain bits. It is used in IP 
routing among others. Your IP address is part of a subnet. All IP addresses on the same subnets can 
reach each other directly. That is any two addresses can communicate without passing through a router. 
The way you find the range of addresses on the subnet is with a mask. For example, you may have 
seen an address like:  
 

ip 192.168.0.125 subnet mask 255.255.252.192 
 

This means we are using 26 bits for the mask. We can write 255.255.255.192 in binary as: 
 

11111111.11111111.11111111.11000000 
 

Similarly, we can write the IP address 192.168.0.125 in binary as: 
 

11000111.10101000.00000000.01111101 
 

By applying & to these two addresses we can find the subnet: 
   11000111.10101000.00000000.01111101 
 & 11111111.11111111.11111111.11000000 
   11000111.10101000.00000000.01000000 
 
This means that any machine between: 
11000111.10101000.00000000.01000000 
and 
11000111.10101000.00000000.01111111 
are on the same network. This can be written in the more familiar 192.168.0.64 through 192.168.0.127. 
 

 
   
Another good use of bitwise operators is to generate simple hashes. 
 
A string hash pjw - Aho, Sethi, and Ullman pp. 434-438 (Compilers: Principles, Techniques, and Tools, 
Addison-Wesley, 1986): 
 

unsigned pjw(char* ki, int length) { 
    unsigned g,h = 0; 
    for (int i = 0; i < length; ki++, i++) { 
        // The top 4 bits of h are all zero 
        h = (h << 4) + *ki;      // shift h 4 bits left, add in ki 
        g = h & 0xf0000000;      // get the top 4 bits of h 
        if (g != 0)              // if the top 4 bits aren't zero, 
            h = h ^ (g >> 24);   //   move them to the low end of h 
        h = h ^ g; 
       // The top 4 bits of h are again all zero 
    } 
    return h; 
} 

 

Exercises 

 
What does this do: 
 
​ unsigned g( unsigned x ) { 



​ ​ unsigned s, r, o; 
​ ​ s = x & -x; 
​ ​ r = x + s; 
​ ​ o = x ^ r; 
​ ​ o = (o >> 2)/s; 
​ ​ return r | o; 

} 
 
 
Overflow checking (now without overflowing!)(Assuming 32 bit architecture) 
 
One problem that you had to protect against in pset1 was what would happen if some code called your 
library in a way that would cause integer overflow. We can take advantage of bitwise operators to check 
if two numbers will overflow without causing an overflow: 
 

// Check if adding x to y will cause an overflow. 
int will_adding_overflow(int x, int y){ 
    uint32_t z = ~(x^y) & 0x80000000; 
    return (z & ~(((x ^ z) + y) ^ y))>>31; 
} 

 
 
Can you come up with a similar function that will test if subtraction will overflow? 

// Check if subtracting y from x will cause an overflow. 
int will_subtracting_overflow(int x, int y){ 
 
 
 
} 

 
 
 

 
 

 

 


	Section Notes 4  (Worksheet) 
	 
	Overview: 
	●​Registers 
	●​Assembly Operands (Immediates, Registers, Memory) 
	●​Condition Codes 
	●​Jumps 
	●​Control Flow (loops) 
	●​Procedure Calls 
	●​Bitwise Operators 
	 
	Meet the Registers 
	Important Observations! 
	 
	Exercises 


	 
	 
	Assembly Operand Speciﬁers 
	 
	 
	Exercise 1 
	Exercise 2 

	 
	 
	Condition Codes 
	Exercise 

	Jumps 
	Exercise 

	 
	 
	Control Flow: Loops 
	Exercise 

	Procedure Calls 
	 
	 

	Bitwise Operators 
	Exercises 


