
One sensible objection to the current team balancing algorithm is that it produces teams that are
very different from each other, even if the mean skill is similar. That is, they might have very
similar mean skill, but the standard deviation could be very different.

The ideal balancing algorithm would produce teams that are “indistinguishable.” Being
indistinguishable actually has a precise definition in information theory, Mutual Information. If the
mutual information between two random variables, x and y, is low, it means that learning x
doesn’t tell you anything about the distribution of y. To translate that into our context, it means
that learning which team a player is on shouldn’t tell you anything about the player’s skill, and
learning the player’s skill shouldn’t tell you anything about which team they are on.

Starting with the definition of mutual information where is the continuous random variable of 𝑠
the skill, and is the discrete random variable of the team, the mutual information is 𝑖

 𝐼(𝑖; 𝑠) =
𝑖

∑
𝑠
∫ 𝑝(𝑖, 𝑠) log 𝑝(𝑖,𝑠)

𝑝(𝑖)𝑝(𝑠)⎡⎣ ⎤⎦
From bayes rule, we get 𝑝(𝑖, 𝑠) = 𝑝(𝑠|𝑖)𝑝(𝑖)

 𝐼(𝑖; 𝑠) =
𝑖

∑
𝑠
∫ 𝑝(𝑠|𝑖)𝑝(𝑖) log 𝑝(𝑠|𝑖)𝑝(𝑖)

𝑝(𝑖)𝑝(𝑠)⎡⎣ ⎤⎦
Cancelling and factoring 𝑝(𝑖)

 𝐼(𝑖; 𝑠) =
𝑖

∑ 𝑝(𝑖)
𝑠
∫ 𝑝(𝑠|𝑖) log 𝑝(𝑠|𝑖)

𝑝(𝑠)⎡⎣ ⎤⎦
The second term is the KL-Divergence between and , so we’re measuring the average 𝑝(𝑠|𝑖) 𝑝(𝑠)
KLD between a team’s skills, and the overall distribution of skills on the server. Because teams
are constrained to have the same number of players, p(i) is constrained to be 0.5 for both
teams.

If and are both normal with params and respectively, then this becomes 𝑝(𝑠|𝑖) 𝑝(𝑠) µ

𝑖
, σ

𝑖
µ, σ

(cribbed from wikipedia for the KLD between two normals.

𝑖

∑ 1
2

(µ
𝑖
−µ)2

σ2 +
σ

𝑖
2

σ2 − log
σ

𝑖
2

σ2 − 1⎡
⎢
⎣

⎤
⎥
⎦

The goal of balancing the teams is to make this metric as small as possible, that is, each team
should have a distribution of skills that is as close as possible to the overall distribution of skills
on the server. In this case, p(i) is constrained to be 0.5 for both teams, because we want the
teams to have the same number of players, so we can ignore it.

As a practical matter, goes to -∞ if the standard deviation is 0 (if all of the players have the log
σ

𝑖
2

σ2

same skill) and the server’s standard deviation is in the denominator throughout, so we need to

smooth our estimates of the standard deviations by adding a constant prior to our standard
deviation calculation. This roughly corresponds to assuming that each player’s skill isn’t a fixed
quantity but has some small distribution of values.

Example plot:

The gradients are and which make the criteria for minimizing this a little
𝑖

∑
µ

𝑖
−µ

σ2
𝑖

∑
σ

𝑖

σ2 − 1
σ

𝑖

⎡
⎢
⎣

⎤
⎥
⎦

more clear.

We can incorporate team preference into this using the same strategy. Define a bernoulli
variable for each player that describes their team preference from 0 to 1. We want to maximize
the mutual information between the team preference and the team selection. This ensures that
players who prefer different teams are placed on different teams. It does not specify which team
should be which, so the teams should be swapped after the optimization so that as many of the
team preferences as possible match up.. Let be the average team preference of team and 𝑡

𝑖
𝑖 𝑡

be the average over the whole server. The mutual information is then proportional to

𝑖

∑ 𝑡
𝑖
log

𝑡
𝑖

𝑡()

+ (1 − 𝑡
𝑖
) log

(1−𝑡
𝑖
)

1−𝑡()
So in total, we want to minimize

𝑖
∑ 1

2

(µ
𝑖
−µ)2

σ2 +
σ

𝑖
2

σ2 − log
σ

𝑖
2

σ2 − 1⎡
⎢
⎣

⎤
⎥
⎦

− α
𝑖

∑ 𝑡
𝑖
log

𝑡
𝑖

𝑡()

+ (1 − 𝑡
𝑖
) log

(1−𝑡

1−𝑡(
where is a parameter to control how much we care about team preference. α

We can optimize this either by hill climbing, or simulated annealing.

