
One sensible objection to the current team balancing algorithm is that it produces teams that are 
very different from each other, even if the mean skill is similar. That is, they might have very 
similar mean skill, but the standard deviation could be very different. 
 
The ideal balancing algorithm would produce teams that are “indistinguishable.”  Being 
indistinguishable actually has a precise definition in information theory, Mutual Information. If the 
mutual information between two random variables, x and y, is low, it means that learning x 
doesn’t tell you anything about the distribution of y. To translate that into our context, it means 
that learning which team a player is on shouldn’t tell you anything about the player’s skill, and 
learning the player’s skill shouldn’t tell you anything about which team they are on. 
 
Starting with the definition of mutual information where  is the continuous random variable of 𝑠
the skill, and  is the discrete random variable of the team, the mutual information is 𝑖
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From bayes rule, we get 𝑝(𝑖, 𝑠) = 𝑝(𝑠|𝑖)𝑝(𝑖)
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Cancelling and factoring  𝑝(𝑖)
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The second term is the KL-Divergence between and , so we’re measuring the average 𝑝(𝑠|𝑖) 𝑝(𝑠)
KLD between a team’s skills, and the overall distribution of skills on the server. Because teams 
are constrained to have the same number of players, p(i) is constrained to be 0.5 for both 
teams. 
 
If and are both normal with params  and respectively, then this becomes 𝑝(𝑠|𝑖) 𝑝(𝑠) µ
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The goal of balancing the teams is to make this metric as small as possible, that is, each team 
should have a distribution of skills that is as close as possible to the overall distribution of skills 
on the server. In this case, p(i) is constrained to be 0.5 for both teams, because we want the 
teams to have the same number of players, so we can ignore it. 
 

As a practical matter, goes to -∞ if the standard deviation is 0 (if all of the players have the log
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same skill) and the server’s standard deviation is in the denominator throughout, so we need to 



smooth our estimates of the standard deviations by adding a constant prior to our standard 
deviation calculation. This roughly corresponds to assuming that each player’s skill isn’t a fixed 
quantity but has some small distribution of values. 
 
Example plot: 
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more clear. 
 
We can incorporate team preference into this using the same strategy. Define a bernoulli 
variable for each player that describes their team preference from 0 to 1. We want to maximize 
the mutual information between the team preference and the team selection. This ensures that 
players who prefer different teams are placed on different teams. It does not specify which team 
should be which, so the teams should be swapped after the optimization so that as many of the 
team preferences as possible match up.. Let  be the average team preference of team  and  𝑡

𝑖
𝑖 𝑡

be the average over the whole server. The mutual information is then proportional to 
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So in total, we want to minimize 
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where is a parameter to control how much we care about team preference. α
 
We can optimize this either by hill climbing, or simulated annealing. 


