

GSoC 2021 Proposal
Boost.Geometry

Personal Details

Name Ayush Kumar Gupta

College Indian Institute of Technology,Roorkee

Major Computer Science and Engineering

Program B Tech CSE

Email ayush.gupta02071@gmail.com

Homepage Github:https://github.com/ayushgupta138

Mobile No +91 9879897031

Time Zone IST (UTC +0530)

Availability

●​ My summer vacations start from 10th June - 2 August and the code
coding phase extends from 7 June - 16 August, which is almost entirely
under the vacation period. So, I can easily devote 40-45 hrs per week to
the project.

●​ My intended start and end date match with the GSoC timeline with some
prior work on the topics on which my proposal is based.

●​ I have no prior commitments planned for my vacations. I shall keep the

https://github.com/ayushgupta138

community posted in case of any change of plans.

Background Information

I am currently in my sophomore year, pursuing B Tech in Computer Science and
Engineering from Indian Institute of Technology, Roorkee.
Some of the courses taken which are relevant to the project are :

●​ Data Structures - Included complexity analysis (asymptotic complexity
Big O/Theta/Omega) , linear lists, sparse tables, stacks and queues
(implementing various queuing systems), hashing (LZW algorithm),
search trees (AVL Trees, Red-Black Trees, set and multiset
implementations in STL) , Multiway Trees (B-Tree), Graphs and their
traversal.

●​ Discrete Structures - Included Number theory(Chinese Remainder
theorem, Euler Totient, Prime factorization, Modular arithmetic, Euclid’s
gcd), Set theory, Graph theory (theoretical aspects), Logic, Abstract
algebra(groups, rings, field), discrete logarithm.

●​ Design and Analysis of Algorithms - Included Algorithmic
techniques(Divide and Conquer, Strassen matrix multiplication, Knapsack
problem, Dynamic programming, Travelling salesman problem,
Backtracking, Branch and bound), Graph algorithms (Breadth first
search, Depth first search, Krushkal’s, Prim’s and Sollin’s algorithm,
Shortest path problems, Topological sorting, Bipartite matching), P/NP
class problems, Parallel algorithms, Miscellaneous
algorithms(Randomized algorithms, Approximation algorithms, Number
theoretic algorithms).

●​ Computer Architecture and Microprocessors

●​ System Software

●​ Operating Systems

●​ Object Oriented Analysis and design

●​ Software Engineering

Programming Background

I was introduced to traditional C++ (C++ 98) programming during my high school
years. My work since freshman year includes working with modern C++, Java,
Matlab, Python and Dart.

I have developed some projects during my college days. Some of them include -
parallelization of Computer Vision algorithms using CUDA programming on
GPUs, which uses the concept of template metaprogramming, Wifi based
applications, etc.

Being a competitive programmer, I have encountered various geometry
algorithms and I understand the importance of template metaprogramming
techniques in C++ STL and other standard libraries. Since then C++
metaprogramming techniques have intrigued me. Here is my competitive
programming background
https://codeforces.com/profile/ayush_gupta .

My interests include generic programming, lambda expressions, constexpr
expressions, type inference , etc. Apart from this I am also interested in the field
of Deep Learning and Quantum Computing.

I was introduced to Boost C++ some months back, and the mechanism of tag
dispatch interested me a lot. Since Boost is an organization which heavily uses
these techniques, it was an easy choice.

The reason for specifically choosing Boost.Geometry was my competitive
programming background which made me very interested in implementation of
Computational Geometry algorithms through generic programming.

I plan to continue the work on computational geometry and metaprogramming
techniques in C++ and continue contributing to Boost.Geometry after this
Summer of Code 2021.

I am comfortable with Visual Studio and Visual Studio Code integrated with gdb.
For documentation purposes I am most familiar with Doxygen. I am comfortable
with both Windows and Ubuntu 20.04 operating system.

My Rating of the following are:

https://codeforces.com/profile/ayush_gupta

1.​ C++ 98/03 : 3
2.​ C++ 11/14 : 4
3.​ C++ Standard Library: 4.5
4.​ Boost C++ Libraries : 3.5
5.​ Git : 3.5

Some of my previous contribution to Boost.Geometry are:

Status : merged

Git : Update unit test for parse.hpp

Github: https://github.com/boostorg/geometry/pull/806

Status : merged

Git : Fix Documentation error in Area strategy

Github: https://github.com/boostorg/geometry/pull/822

Status : merged

Git : Fix #define directive convention in area_result.hpp and default_area_result.hpp

Github: https://github.com/boostorg/geometry/pull/826

​

Project Proposal

This project proposal is not from the Boost.Geometry’s suggested projects. This
proposal contains a project of my interest, on which I would love to work if
selected for GSoC 2021. I propose the design and implementation of the

https://github.com/boostorg/geometry/pull/806
https://github.com/boostorg/geometry/pull/822
https://github.com/boostorg/geometry/pull/826

following 3D functions:

1)​ Extension of area function to 3D geometries for surface area computations.
2)​ Extension of distance function to 3D point sets.
3)​ Extension of convex hull for 3D point sets.

As seen in the issue https://github.com/boostorg/geometry/issues/683, output of
convex_hull function was erroneous for 3D point sets. Moreover Boost.Geometry
currently does not have support for polyhedral surfaces (Pull request
https://github.com/boostorg/geometry/pull/789 to be reviewed and merged).

My project proposal is dependent on the following work:

Work done so far

Through the pull request https://github.com/boostorg/geometry/pull/789 on
Polyhedral Surfaces, the following features have been implemented:

1.​ Definition of polyhedral surface geometry with the default and list based
initialization and tag,point_type,ring_type,Poly_ring_type type traits.

2.​ Polyhedral Surface tag definition.
3.​ Polyhedral concept definition and corresponding concept checks.
4.​ Wkt read and write features.

But since, only polyhedral surfaces have been defined, some of the
metafunctions are yet to be implemented.

Since my project proposal requires that the above functionality be implemented, I
will try to implement these functionalities before the GSoC coding period starts.

Area Extension(ST_3DArea() from PostGIS specs)
Since the current version of Boost.geometry(1.76) has no support for calculating
area and surface areas of 3D geometries, I propose the following plan for
extending the area free function to 3D geometries like 3D planar rings, 3D planar
polygons and surface area of polyhedral surface.

1.​ Area function extension for 3D planar rings
For achieving this purpose, I propose a different strategy/Policy for 3D
calculations.

There are three methods(derivation can be found here [1]) to compute the
area of planar rings in three dimensions:

https://github.com/boostorg/geometry/issues/683
https://github.com/boostorg/geometry/pull/789
https://github.com/boostorg/geometry/pull/789

 Fig 1.1 - Planar ring surface area

1)​ Standard formula [Goldman,1994] - This method includes
choosing an arbitrary point P(not necessarily on the ring) and finding
the area of each of the triangular faces of the pyramid. Then the
projection of the area on the ring is calculated and summed up.
The derivation of the formula can be found here [1].

The formula reduces to :

2*A(ring) = n * , where n is the unit
𝑖=0

𝑛−1

∑ (𝑉
𝑖

− 𝑃) × (𝑉
𝑖+1

− 𝑃)

normal vector to the plane of the ring.
With a choice of P as origin,

2*A(ring) = n *
𝑖=0

𝑛−1

∑ (𝑉
𝑖
 × 𝑉

𝑖+1
)

This method computes, 6*n+3 multiplications and 4*n+2 additions
and one square root operation operation.

2)​ Quadrilateral Decomposition [Van Gelder, 1995] - In this method
instead of decomposing a ring into triangles, it is decomposed into
quadrilaterals. Then the area of these quadrilaterals are computed
using cross products and summed up. The final formula comes out
to be:

Where h = floor((n-1)/2) and k= 0 if n is odd and k=n-1 if n is even.

This method computes 3*n+3 multiplications and 5*n+1 additions.

3)​ 2D projection [Snyder & Barr,1987] - This is the most efficient

method to compute the area of planar rings using less number of
additions and multiplications as compared to the above mentioned
methods.

This method first discards one of the three dimensions and then
computes the area of the projected 2D polygon using the existing
boost::geometry::area() function. The choice of which coordinate to
ignore is as follows:

First, the normal vector to the plane is calculated, the dimension with
the greatest absolute value is ignored.(This is done to increase the
robustness of the function, as compared to the case where we
ignore the dimension randomly).

Let the normal vector to the plane be n = (, ,) and c = x,y,z be 𝑛

𝑥
𝑛

𝑦
𝑛

𝑧
the coordinate that is discarded.

Area of the planar ring is then given by:

Where A is the ring area and A) is the area of the (Ω) (𝑃𝑟𝑜𝑗

𝑐
(Ω)

projected 2D polygon.

The computation cost of this algorithm is : n+5 multiplications, 2*n+1
additions, 1 square root operations, and a small overhead to choose
which coordinate to discard.

I propose the 2D projection method for area computation of 3D
planar rings because it is the most efficient method and uses the
previously implemented boost::geometry::area() function.

2.​ Area function extension for 3D planar polygons

Based on the above implementation for the area of 3D planar rings, I
propose to extend the area function to 3D planar polygons in a similar way
as the current implementation of 2D polygon using area function for 2D
rings(Calling functions for interior and exterior rings).

3.​ Area function extension for polyhedral surfaces

Since polyhedral surfaces are represented as a collection of 3D planar
rings, the surface area of the polyhedral surface can be computed using
the area function described above, iterating through the polyhedral
surface using boost::range::iterators.

If time permits, then after the implementation of the proposed functions, I would
also define 3D boxes and implement the surface area function for the same.

Convex Hull Extension(ST_ConvexHull from PostGIS specs)

Since the current implementation of boost::geometry::convex_hull() uses
Graham-Andrew strategy for hull calculation, the extension of the same
strategy is not possible for 3D point sets. The following are some of the most
efficient algorithms for convex_hull():

1)​ Divide and conquer[Preparata and Shamos 1985] - The divide and
conquer algorithm is the most efficient algorithm for 3D hull computation.
Having a recurrence relation:

T(n)=2*T(n/2)+O(n)
The algorithms achieves a complexity of for all possible inputs. θ(𝑛𝑙𝑜𝑔𝑛)
The algorithm is completely described in [2] and [3].

2)​ Randomized Incremental Algorithm[Clarkson and Shor 1989] - The

randomized incremental algorithm is an algorithm that can be practically
implemented with an expected complexity of O(nlogn). This algorithm is
different from the incremental algorithm which adds a point at every
iteration. As mentioned in [4], the algorithm processes the points in a
random order, in order to minimize the number of points added to the hull.
Moreover a conflict graph is also maintained for easy and time efficient
insertion of points.

3)​ QuickHull Algorithm for 3D points[Barber, Dobkin and Huhdanpaa] -

The QuickHull algorithm is one of the many variants of the original
Randomized Incremental Algorithm which differs only in the choice of
points to be added. At each step the point to be added is the farthest one,
which minimizes the total points to be added. The performance of
QuickHull algorithm is better than that of Randomized incremental.

Since the Divide and conquer algorithm is practically very difficult to implement

and there is no clear implementation of the same, I propose the implementation
of the QuickHull algorithm for hull construction. The QuickHull algorithm has an
expected time complexity of O(nlogn).

Moreover, the expected time complexity of the QuickHull algorithm is the same
as the Divide and Conquer approach (O(nlogn)). I propose the implementation
mentioned in [5] for the QuickHull algorithm.

a)​ Before point addition b) After point addition

Distance function Extension(ST_3DDistance from PostGIS
specs)

The current implementation of boost::geometry::distance() function only works for
2D geometry objects and discards all the points other than the first two points. I
propose to extend the distance function to 3D geometry objects.

Since there are large combinations of geometry objects for which distance
function needs to be implemented, I propose the implementation of a subset of
the complete combinational implementation of distance function.

a)​ Distance calculation between a 3D point and a planar ring.
b)​ Distance calculation between a 3D point and a planar polygon.
c)​ Distance calculation between a 3D point and a polyhedral surface.

Here by distance I mean shortest distance between two geometries.

1.​ Point and Planar Rings

I propose the projection method for shortest distance calculation
between a 3D point and the planar ring. This is the most efficient
method for distance calculation as it uses the previously optimized
boost::geometry::distance() function. The rough method is as
follows:
First we find the projection of the 3D point onto the plane of the ring
and then find the shortest distance in 2D realm. The final shortest
distance would be:

 𝑑
𝑚𝑖𝑛

= 𝑑2 + 𝑟2

Where,

d is the perpendicular distance between the point and the plane of
the ring.

r is the minimum 2D distance between projected point and planar
ring.

The formula for finding d is given here [6].

2.​ Point and planar polygon

Similar to the current Boost.Geometry implementation for distance
between point and polygon, I propose the implementation of
distance function for 3D planar rings using the above mentioned
function.

3.​ Point and polyhedral surface

There are two ways to find the distance between a 3D point and a
polyhedron.

a)​ Distance between two convex point sets[Gilbert, Johnson
and Keerthi 1988 [7]] - The GJK algorithm is a general
purpose algorithm for calculating shortest distance between
two convex sets in any arbitrary dimension in O(mlogm)
time,where m is the total number of points in two convex point
sets. Since a point is by default a convex set, the algorithm
can be used to compute distance between points and convex
polyhedron and distance between two convex polyhedrons.

b)​ Using visible face method - In this method, similar to the one
used in QuickHull and Randomized Incremental Algorithm, we
first identify all the faces visible from a given point and
compute only the distance of those planes to the given point.

The distance would be the minimum of the distance
calculated.

 Since both the methods have some pros and cons, the algorithm I propose both
the algorithms for distance calculation. My implementation would depend on the
suggestions of the mentors and the demands of the community. I am open to
implementation of both the mentioned algorithms.

Proposed Milestones and Schedule

Community bonding phase(May 17 - June 7)

●​ Familiarize with the community.
●​ Implement some meta functions for polyhedral surfaces.
●​ Discuss and finalize specific algorithms to be implemented.
●​ Finalize algorithms and start implementation of area extension for planar

rings

Phase 1 (June 7 - June 20)

●​ Finalize area extension for planar rings and planar polygon
●​ Complete area extension for polyhedral surfaces.
●​ Unit testing of the area function extension and documentation.

Phase 2 (June 21 - July 6)

●​ Implement helper functions and decide optimal data structures for 3D
convex hull.

●​ Implement QuickHull algorithm for convex hulls.
●​ Finalize convex hull, unit testing and documentation.

Phase 3 (July 7 - July 20)

●​ Implement distance function extension for planar rings and polygons using
the above mentioned algorithms.

●​ Implement distance function for a point and polyhedral surface.
●​ Finalize distance function for two convex sets (Depends on which

algorithm is chosen during the community bonding phase).
●​ Unit testing and documentation.

Phase 4 (July 21 - August 7)

●​ Final code review and potential bug fixes.
●​ Finalize all proposed functions.
●​ Finalize documentation and statistical testing.

August 8 - August 16

Buffer period for unexpected delays.

Plans beyond Summer of Code time frame

After the implementation of all the proposed functions, I plan to further extend
distance function for other 3D geometry combinations. I also plan to implement
the 3D box geometry and implement the proposed functions for the same.

Competency Test

I have implemented a prototype of a Randomized incremental algorithm for 3D
convex hulls. Since I propose to implement the QuickHull algorithm, it only
requires a small modification in the Randomized Incremental Algorithm to arrive
at QuickHull algorithm. The prototype implementation constructs the hull only for
boost::model::multipoint.

Link to my competency test is:

(will add in final proposal)
The competency test contains the code as well as some results produced by the
code on multipoints.

Acknowledgement

(will add in final proposal)
References

[1] - http://geomalgorithms.com/a01-_area.html#3D%20Polygons

[2] - Section 3.4.3 in Computational Geometry - An Introduction by Franco P.
Preparata and Michael Ian Shamos
https://book4you.org/book/953554/9475f0

[3] - Section 4.2.2 in Computational Geometry in C by Joseph O'Rourke
 https://book4you.org/book/437694/e8f3fe

[4] - https://link.springer.com/content/pdf/10.1007/BF02187740.pdf

[5]-https://www.researchgate.net/publication/2641780_The_QuickHull_Algorithm
_for_Convex_Hulls

[6] - https://mathinsight.org/distance_point_plane

[7] - https://graphics.stanford.edu/courses/cs448b-00-winter/papers/gilbert.pdf

[8] - https://www.medien.ifi.lmu.de/lehre/ss10/ps/Ausarbeitung_Beispiel.pdf

http://geomalgorithms.com/a01-_area.html#3D%20Polygons
https://book4you.org/book/953554/9475f0
https://book4you.org/g/Joseph%20O'Rourke
https://book4you.org/book/437694/e8f3fe
https://link.springer.com/content/pdf/10.1007/BF02187740.pdf
https://www.researchgate.net/publication/2641780_The_QuickHull_Algorithm_for_Convex_Hulls
https://www.researchgate.net/publication/2641780_The_QuickHull_Algorithm_for_Convex_Hulls
https://mathinsight.org/distance_point_plane
https://graphics.stanford.edu/courses/cs448b-00-winter/papers/gilbert.pdf
https://www.medien.ifi.lmu.de/lehre/ss10/ps/Ausarbeitung_Beispiel.pdf

