

Interfaces are all around us. A keyboard, the code-pad of an ATM, the touch screen of a
vending machine, the remote control of a TV are all interfaces. They sit between you
and the machine you want to control. Their function is to translate your button presses
into information a machine can understand and act upon.

Letters or symbols are printed on these buttons to tell you what they do. When you
press the letter printed ‘A’ on your keyboard, the machine assumes that you want to type
the letter A and acts accordingly.

In this article we question the need to print explanatory symbols on buttons. Could we
use buttons the way we want, instead of having to learn which ones to use? Could a
machine understand what we want to achieve, without knowing how to interpret our
actions?

We will show that this is possible under specific, but not uncommon, conditions. To
demonstrate this, we designed a PIN-entering interface that you will use to type a 4-digit
PIN of your choice.

We will progress through 5 different versions of this interface. The first version will use
standard buttons whose color will indicate what they do. The second version will not
have any pre-assigned color on each button. You will assign colors to buttons in your
mind, without disclosing it to the machine, and the interface will nonetheless
understand you. The subsequent versions will go further and remove buttons altogether,
replacing them by points on a 2D map, hand drawn symbols and, finally, simple vocal
commands in a language you will invent.

To start, you should understand how to use our PIN-entering interface. It is a bit
different from a typical code-pad. Instead of pressing directly on digits, the digits are
color-coded. To type a digit, you will press colored buttons to inform the machine of the
color associated with your digit.

Our interface can be broken down into three parts (Figure 1). The top part is where your
4-digit PIN will be displayed. The middle part shows all digits from 0 to 9 colored in
either yellow or grey. The bottom part is for user interaction, for now it contains two
buttons, one yellow and one grey.

Figure 1: Breakdown of the pin entering interface

Think of the machine as asking you: "What color is your digit?". Looking at the digit you
want to enter, you answer: "My digit is yellow" or "My digit is grey" by clicking on the
corresponding button.

For example, if your PIN is 1234. You would start by typing the first digit of our PIN , 1

which is a 1. Because the digit 1 is currently colored in yellow, you would click on the
yellow button. The machine could then immediately discard all the grey digits, and infer
that the first digit of your PIN is either 1, 3, 4, 5, or 6.

The digit's colors will then change and by repeating the process a few times the
machine will identify your first digit with certainty (Figure 2).

1 As indicated by the dark frame around the leftmost digit in the top of Figure 1

Figure 2: Digit identification process. Left: Color-coded digits as visible to the user. Middle: Action taken
by the user. Right: Digit elimination process inside the machine.

Once the first digit is identified, we can repeat the same process for the second digit,
then the third and the fourth. We will refer to this process as ELIM in this article referring
to this straightforward process of elimination.

Entering a code is the best way to familiarise yourself with this interface. Try entering
1234 or any PIN of your choice below in Interaction 1.

Link: https://openvault.jgrizou.com/#/ui/demo_1x2.json

Video: https://youtu.be/DsqyD3eKX3E

https://openvault.jgrizou.com/#/ui/demo_1x2.json
https://youtu.be/DsqyD3eKX3E

Congratulations! You now understand how to use this interface. We describe next what
you can expect to learn from this article in more detail.

Overview
In Interaction 1, you conveyed your intent to the machine via two big brightly colored
buttons. The colors are meant to indicate what the buttons mean. It allows the machine
to confidently translate button presses into their meanings, which seems to be a
necessary condition for any interface to work. ​
​
In what follows, we question this assumption and ask: Could a machine respond to
user’s commands without knowing exactly what those commands mean? Concretely,
could our interface identify your PIN without knowing the colors of the buttons?

We call such an interface a self-calibrating interface because it does not need to be
explicitly calibrated to each user's preferences. It rather learns those preferences on the
fly. We will showcase and decipher such an interface using different versions of our
PIN-entering machine.

https://openvault.jgrizou.com/#/ui/demo_1x2.json

The plan is as follow:

1.​ In section 1, we analyse the interface as presented in Interaction 1 and identify
the various components at play.​

2.​ In section 2, we present the self-calibrating version of our interface. The buttons
lose their pre-assigned colors. You get to decide the buttons' colors in your mind and
use them as such. The machine will nonetheless figure out your PIN, as well as the color
of each button. We will decipher how it works and refine our mental model to include
what we learned.​

3.​ In section 3, we scale our approach to continuous user's actions. A challenging
task because it requires to train a classifier without access to known labels. To
showcase this, our interface will no longer have buttons. You will place points on a 2D
map and decide which areas are associated with which colors.​

4.​ In section 4, we demonstrate the use of richer interaction modalities. You will
enter your PIN by drawing small sketches and using spoken commands. Once again,
you will get to decide what sketches or sounds you want to use, and the machine will
identify both your PIN and a classifier mapping your actions to their meanings.​

5.​ In section 5, we present previous academic work on the subject, position this
work into the human-computer interface and machine-learning landscape, highlight
some remaining challenges, and ask ourselves how this work can be useful with
concrete examples from brain-computer interfaces to the study of language formation.

You do not need to have a theoretical background to understand most of the content in
this article. There is purposefully no math or equation but interested readers will find
relevant scientific literature referenced in section 5. In some sections, we use
machine-learning specific terms to highlight important details. These terms will be
explained but you can also safely skip these sections if not directly relevant to you.

Analysis of the PIN-entering interface
Successfully entering a PIN using Interaction 1 means that you understand the principle
of interaction between you and our interface. If you have a background in computer

science, you probably even know how to implement this at home. Nonetheless, it is
important that we break down and name the various elements at play.

First, we should name three components driving the user behavior:

●​ The user's intent is what the user wants the machine to do. Here entering a
specific PIN, one digit at a time.​

●​ The user's meaning is what the user wants to say to the machine. Here it is
either: "My digit is yellow" or "My digit is grey".​

●​ The user's action is what the user does in order to express their meaning. In
Interaction 1, the user's actions are to press either the left or the right button.

In short, an action conveys a meaning that is used to infer an intent. But inferring an
intent from a meaning requires a bit of context. With our interface, the context is a user
wanting to type a PIN via our interface. In other words, we assume that:

●​ The user aims to type a PIN one digit at a time. Thus their current intent is to type
one of ten possible digits.​

●​ The user follows the established convention of indicating the color of the digit
they want to type. Thus, the possible meanings are yellow or grey.​

●​ The user can perform one of two actions, pressing either the left or the right
button. This is constrained by the design of our interface​

●​ The mapping between the user's actions and their meanings is known. Pressing
the left button conveys the meaning yellow and the right button conveys the meaning
grey.

The latter is the most important element of our story, it explicits that there is a
pre-existing shared understanding between the user and the machine about the
meaning conveyed by the pressing of each button. This information is made salient by
the colors displayed on each button, the left button is yellow and the right button is grey.

Knowing this mapping, the machine can reason as follows: "If a user presses the left
button (action), then it indicates that their digit is currently yellow (meaning), thus their
digit is among the yellow colored digits and all the grey digits can be discarded (intent)."
This is the ELIM algorithm, see Figure X below and notice that the direction of inference
is from left to right.

By iteratively changing the color applied to each digit, we can narrow the possible digits
down to the one the user has in mind (Figure 2). To visualize this process while using
the interface, we added a side dashboard that displays the history of your clicks with
respect to each digit. Because there are 10 possible digits, we are showing 10 individual
panels, one for each digit. See figure X.

After each click of the user, a dot is placed on the button that was pressed (left or right)
to signify a click was made on that button. But this dot is colored differently for each
panel. It is colored with the color that was assigned to the associated digit when the
user pressed the button.

Figure X shows this process for two digits, 0 and 1. The digit 0 is yellow, the digit 1 is
grey, and the user clicks on the left, yellow, button. A dot is placed on the left, yellow,
button on both the panels associated with both digit 0 and 1. But this dot is colored in
yellow for the digit 0 and in grey for the digit 1. The digit 1 can be discarded because a
grey dot is placed on the yellow, left, button. Indeed, if the user wanted to type a 1, they
would have used the grey, right, button instead, because the digit 1 was grey. The digit 0
is however valid.

The valid/invalid status of each digit is shown visually by the color and size of each
panel. When a digit is still valid, its panel is green and large. When a digit is discarded,
the panel is red and smaller.

Try typing a PIN on the explanatory interface below while monitoring the elements on
the dashboard. Make sure to understand how to interpret this side dashboard, we will
use it all along this article. A video is also available for an interactive walkthrough.

Link: https://openvault.jgrizou.com/#/ui/tuto_1x2.json

Video: https://youtu.be/xP3qJ1V28Ws

https://openvault.jgrizou.com/#/ui/tuto_1x2.json
https://youtu.be/xP3qJ1V28Ws

You should now have a clear understanding of how our PIN-entering interface works
and have acquired some element of language such as action, meaning, intent,
context, and action-to-meaning mapping.

In the next section, we introduce the self-calibrating version of this interface in which
buttons have no predefined colors. You will get to decide the colors of each button in
your mind and never explicitly tell the machine about it. The machine will
nonetheless be able to identify your PIN and the colors of the buttons.

Self-calibrating PIN-entering interface

What if the buttons had no colors? In other words, what if the action-to-meaning
mapping - between the position of the buttons (left/right) and their meaning
(yellow/grey) - was not pre-defined?

https://openvault.jgrizou.com/#/ui/tuto_1x2.json

If we look back at Figure X, the chain of inference is now broken. Without a known
action-to-meaning mapping, we cannot infer what the user means, thus we cannot
infer the user intent.

To solve this problem, the usual approach (which we don’t want to use in this article)
is to first learn the action-to-meaning mapping that our user would like to use. The
aim is to calibrate the interface to the user preference before they start using it. To
do so, the user is asked to follow a calibration protocol, which can be direct or
indirect.

When direct, we simply ask the user for elements of the action-to-meaning mapping
using another, already calibrated, interface. For example, we give each user a digital
paint brush that can take two colors (yellow or grey), and ask them to color each
button in the way they would like to use them.

When indirect, the calibration procedure makes use of the interface as normal but
the user is asked to achieve a specific, known, goal. For example, we ask the user to
type the digit 1. Knowing the digit, we can reverse the inference pipeline and follow
this reasoning: “Knowing that the user is typing a 1, if the digit 1 is yellow and the
user is pressing the left button, then the left button means yellow.” (respectively for
all buttons and colors. Figure X illustrates this reasoning.

We will refer to this process as CALIB, because it is the most common method to
calibrate an interface to user preferences.​
​
But CALIB is exactly what we do not want to resort to here. We want to investigate if
and how our interface could self-calibrate. We want to know if and how one can
identify the user intent without knowing the action-to-meaning mapping. Why? For
intellectual curiosity more than practicality. We will review potential applications in
section 5 but for now let’s not ask ourselves why and focus on the how.​
​
Let’s thus imagine that a user is arbitrarily assigning colors to each button in its
mind and uses the interface that way - without telling the machine about its color
choice, nor its intended PIN.

The machine is in trouble, it does not know what digit the user wants to enter and it
does not know what the user means when pressing buttons. The ELIM reasoning
used in section 1 collapses and we can not follow the logical path: "If the user
presses the left button, then they mean that their digit is currently yellow".

If anything, this line of reasoning turns into: "If the user presses the left button, then
their digit is either yellow or grey with equal probability, thus I cannot make any
decision." That sounds like a dead end. So before explaining how we solve this

problem, we think you should see it in action and experience how it feels to be able
to arbitrarily choose buttons' colors.

Interaction 2 works the same way as in Interaction 1 but no colors are displayed on
the buttons. You choose the colors in your mind. And to make it more interesting, we
increased the number of buttons from 2 to 9. That way, instead of having 2 possible
ways to assign colors to the buttons, you now have 510 ways . 2

The colors are in your mind and you can assign them as you please. For example, in
figure X, we show how three users decided to assign colors on the buttons.
Providing that there is at least one button for each color and that you stick with the
same color pattern during the interaction, the machine will infer both your PIN and
the colors of the buttons.

2We need at least one button for each color. If all buttons are yellow and your digit is grey, you would not
be able to express the meaning grey. The number of combinations is 2^N - 2, with N the number of
buttons. And -2 because there are 2 invalid combinations, all yellow or all grey.

Try the interface multiple times, entering different PINs and using different color
patterns. You do not have to use all buttons every time. Only the button you used will
be identified and colored in by the interface. The others will remain black until you
use them . ​3

​
Link: https://openvault.jgrizou.com/#/ui/demo_3x3.json

Video: https://youtu.be/upKejh4ZgUc

3 If you do not use some buttons, the machine does not have any information about them, and has no way
to infer their colors.

https://openvault.jgrizou.com/#/ui/demo_3x3.json
https://youtu.be/upKejh4ZgUc

It is an interesting feeling, isn't it? We are not used to having this level of choice
when using the machines around us. To understand how this works, we shall look at
the problem from a new angle.

In section 1, we defined the following components: intent, meaning and action. We
understood that an action conveys a meaning that can be used to infer an intent.
And we have seen that this logical path requires a context that allows to deduce
meanings from actions and intents from meanings. ​
​
This context is the list of assumptions embedded within the interactive process
it-self. We assume that users want to type one of ten possible digits. We assume
that they indicate the color of the digit they have in mind. And we assume that they
press buttons to send their feedback. All these assumptions remain, but one can be
added which was hiding in plain sight.

We assumed all along that a button can have one and only meaning - yellow or grey
(never none and never both). This assumption was hard to formulate before because
colors were visibly assigned to each button, it was too obvious to be noticed. The
assumption that one button equals one meaning is so ingrained in our interaction

https://openvault.jgrizou.com/#/ui/demo_3x3.json

with machines that we sometimes forget it is part of the convention. ​
​
Why can this help us? Because it is something we can observe. By measuring
breaches of the "yellow or grey" assumption, we can solve the self-calibration
problem.

How can we measure such breaches? By making hypotheses. Because we know the
user is trying to type one of the ten possible digits, we can imagine ten different
worlds, each with the user trying to type one specific digit. One hypothetical world
for each of the ten digits. In each of these worlds, because we hypothetically enforce
the digit the user is trying to type, we can easily infer the colors of the buttons using
the same reasoning as the CALIB algorithm: "If the user is trying to type a 1 (intent),
then each time the user presses a button (action), we can assign the current color
(meaning) of the digit 1 to that button".

In essence, we are performing ten CALIB procedures in parallel, one for each digit. In
other words, we are building ten different action-to-meaning mappings, one for each
digit.

But because the user is entering only one of the ten possible digits, only one of the
button-to-color maps will be valid. Only one will conform with the "yellow or grey"
assumptions. For all other hypotheses, at some point during the interaction, it will
look as if the user was trying to press some buttons to mean both yellow and grey -
signaling a breach of our "yellow or grey" assumption, and enough to discard the
associated digit.

In other words, when, from the point of view of a given digit, the same button has
been used to mean both yellow and grey, then that digit can not be the one the user
has in mind because it is incompatible with our assumption that one button has one
and only meaning.

We name this process SELF-CAL. To visualize it while you enter a code, we added a
side dashboard acting similarly as the one in section 1. There are ten panels, one for
each digit (Figure X). In each panel, the buttons are shown and will be populated
with dots after each click of the user. Each dot will be colored differently for each panel
using the color that was assigned to the associated digit when the user pressed the
button.

But this time, because the buttons have no color, instead of comparing the dot color
with the button color, we compare the dots on each button between themselves. If all
dots on the same button are of the same color, the hypothesis is still valid. However, a
button that is populated with dots that are both yellow and grey signifies a breach of the
“yellow or grey” assumption and the hypothesis can be discarded. ​
​
Figure X shows the result of this process for digits 0, 1, 2, and 3 after a few clicks of the
user in a particular run. The user was trying to type a 1, only used two out of the nine
buttons and had done a total of three clicks so far.

There are two things to notice on Figure X. First, the digit 0 and 3 have already been
discarded. This is because, if the user was trying to type a 0 or a 3, then they used the
top button to mean first yellow, then grey (as indicated by the yellow and grey dot in that
button for both hypotheses). But one button can only be used for one color, so the user
is not trying to type a 0 nor a 3. Second, the digit 1 and 2 are both still valid despite
having differently colored dots in each button. If the user was trying to type the digit 1,
then they used the top button to mean grey and the bottom one the mean yellow.
Reversely, if the user was trying to type the digit 2, then they used the top button to
mean yellow and the bottom one to mean grey. Both options are viable. The machine
cannot decide yet which one is valid. Two versions of reality are still possible and more
information is needed to pull them apart.

After a few more iterations, only one hypothesis will remain valid and free from “yellow
and grey” conflicts. At this point, the interface can be confident that the associated digit
is the one the user wants to type. Importantly, knowing the digit, we immediately also
know the button-to-color mapping the user had in mind. We are finding both what the
user is trying to do and how they are trying to do it, we are self-calibrating.

You can interactively visualize this process directly on the explanatory interface
below.

Link: https://openvault.jgrizou.com/#/ui/tuto_3x3.json

Video: https://youtu.be/OMlQRy_ZKFs

After playing with the interface for a bit, you should have gained an important insight
about the self-calibration problem. To solve it, we no longer try to understand what
the user means when pressing buttons, we simply gauge for which digits the actions
of the user remain consistent in time.

It obviously takes more time to identify the first digit when we do not know the color
of each button than when we know them. And it is interesting to observe how
alternative interpretations of the same user's actions remain valid quite far into the

https://openvault.jgrizou.com/#/ui/tuto_3x3.json
https://youtu.be/OMlQRy_ZKFs
https://openvault.jgrizou.com/#/ui/tuto_3x3.json

identification process. As an exercise, you can try to find a click strategy that makes
sure the interface can never identify the digit you want to type. For example, focus
on only two digits and try to keep their associated panel always valid by carefully
choosing the button you press depending on the current color of the two digits.
Succeeding would show you truly understand what is going on.

Before ending this section, we need to focus on what happens once a first digit is
identified. Once the machine identifies the first digit, we are essentially in the CALIB
case. We know what the user was trying to do, so we can infer the color of each
button the user pressed. The interface is thus capable of displaying the right colors,
yellow or grey, to all the buttons you used.

Notice how the button’s colors are also shown in each panel of the side dashboard.
It becomes a common prior information about the button-to-color mapping that can
be used to identify more easily the next digit. Next time you press one of these
buttons, the interface already knows what you mean and can directly reuse the ELIM
reasoning form section 1. For all other buttons, we keep using the SELF-CAL
approach, looking for breach of the “yellow or grey” assumption.

In a strange twist, this implies that the reasoning behind ELIM is equivalent to the
reasoning behind SELF-CAL when all hypotheses agree on the button's colors. ELIM
is only a particular case of SELF-CAL in cases where prior information is available.

We can reframe the ELIM inference process as follows: "If the user is trying to type a
1, and if the color of the button the user is pressing is different from the color
applied on digit 1, then the same button is being used to express two different
colors. Thus the user is not trying to enter the digit 1. Else they might be typing a 1".
Convoluted but strictly equivalent and a powerful way to reframe human-machine
interaction scenarios that enabled us to exploit a hidden "yellow or grey" assumption
to solve the self-calibration challenge.

The remainder of this article considers how to scale this “yellow or grey” logic to
continuous user's actions. In the next section, you will discover a version of our
interface with no buttons. Instead you will place points on a 2D map and you will get
to decide which areas are associated with which color.

Can this approach scale to continuous signals?

Up to now, we considered discrete button presses and our logic was based on
identifying if the user was using the same button (action) for different colors
(meaning). This notion of “same” was easily measurable with discrete button
events. But when the user's actions are more complex, such as drawings, sounds,
gestures, brain signals, or nerve impulses, an action will never be represented twice
in exactly the same way. We call these continuous signals.

When dealing with continuous signals, we can no longer define a notion of “same”
ahead of time. It has to be learned from the user data.

To explain this problem, we designed an interface with no button. Instead of
pressing buttons, you will place points on a map. The points can be placed in a
yellow area to mean "My digit is yellow", or in a grey area to mean "My digit is grey".
See Figure X.​
​
Because we are concerned in the self-calibrating scenario, the color map is not
defined in advance nor displayed on the interface. It is to be defined by you and
resides in your mind. You decide which areas of the maps are yellow or grey and the
machine has to figure out both the map you use and your PIN.

We think it is best to try this new interface before explaining how it works. You can
try it on Interaction 3 below. Start simple, for example typing the code 1234 by
assuming the left part of the map is yellow and the right part is grey. The end result
should look like Figure X below.

​

Be patient, this is a hard problem, it might take 10 to 20 clicks for the machine to
identify the first digit. We recommend watching the associated video if unsure about
what to do.

Link: https://openvault.jgrizou.com/#/ui/demo_touch.json

Video: https://youtu.be/b4NjrMB6VLs

https://openvault.jgrizou.com/#/ui/demo_touch.json
https://youtu.be/b4NjrMB6VLs

Points placed on the map are an example of continuous signals. You never clicked
twice exactly in the same place. This means we cannot tell if two points represent
the same color just by looking at them, even more so in the beginning when no
structure has emerged from the data. Ask a friend to guess what you are doing and
they will be clueless. So how are we solving that problem?

To ground our explanation, we first need to squeeze the concepts covered so far into
one word: consistency. This will help our brains navigate this chapter.

So far, in section 1 and 2, both methods we employed can be seen as measuring the
consistency of the user while using our interface. In both scenarios, we have been
detecting breaches of consistency:

●​ In section 1, we defined consistency as: clicking on a button of the same color
as the digit we want to type. And a breach of consistency was looking for
digits that were not of the same color as the button clicked by the user.​

●​ In section 2, we defined consistency as: using a button to only mean one color -
the "yellow or grey" assumption. And a breach of consistency was looking for

https://openvault.jgrizou.com/#/ui/demo_touch.json

digits which, if a user was entering them, that user would have been pressing
the same button to mean both yellow and grey.

Continuing on this idea, to scale our approach to continuous signals, we need to
define a consistency metric for continuous signals. Previously we defined
consistency with statements like "a button of the same color" and "only mean one
color - yellow or grey". But the notion of "same" and "or" are no more applicable as all
signals are different now. We need a more looser measure of similarity between
signals.

While we cannot be in the mind of every person using this interface, we can
nonetheless come up with broad principles of how most people should behave when
deciding how to allocate colors and place points on the 2D map.

For example, we can assume that users will define yellow and grey areas that are
easy to differentiate, so they could remember where to place a yellow or a grey point
when required. Another common assumption is that the user will place points of the
same color "close" to each other, where closeness could be measured by the
euclidean distance between two points.

Summarizing these assumptions, we can define consistency for continuous signals
as: using a simple color map. Where simple is defined by the ability to easily
differentiate between the yellow and grey points. Figure X shows examples of simple
and complex color maps.

How can we measure “simple”?

This notion of a “simple color map” is very loose. We need to be able to put a
number onto it for our algorithm to function. ​
​
Luckily, machine learning experts invented classifiers. Given a set of colored points
(a training set), a classifier can extrapolate and generate a color map that "best
explains" the training set. A number of assumptions are made by machine learning
experts to define this "best explains" criteria.

https://en.wikipedia.org/wiki/Statistical_classification

A common assumption is that the simpler the map the better . This assumption is 4

often included as a regularization term in the classifier’s cost function that penalizes
solutions that lead to complicated maps. Complicated maps are usually defined as
non-smooth maps with many sharp changes at their frontiers or that form a lot of
isolated islands. Creating such complicated maps usually requires large
weights/parameters value in the classifier decision function, which the
regularization terms penalizes.

How elegant. Machine learning experts found a way to embed notions of “simplicity”
and “best explain” in quantitative terms. Exactly what we need to measure
consistency in our scenario. Because these assumptions are baked into classifiers,
they are the perfect tools to measure the consistency of our user when dealing with
continuous signals. More precisely, the prediction accuracy of a classifier trained on
data generated by our users is a direct measure of their consistency. If we can train
a good classifier, then the underlying mapping is “simple”, and the user is consistent.
If we cannot train a good classifier, then the underlying map is judged too complex.
Regularization terms prevented the algorithm from fitting a convoluted decision
function which indicates that the user is inconsistent.​
​
Thinking twice, it is no surprise that classifiers are perfectly matching with our
problem. The assumptions used when designing machine learning algorithms are
made by and for humans trying to make sense of the world. They are meant to
reflect the way we, humans, generate and classify things in the world. Hence, similar
assumptions emerge when we think of how a user will generate and use a color map
for our PIN interface. These assumptions are not always true, but they are the best
we can do without more explicit prior information.

How can we leverage classifiers to solve the self-calibration
problem?

Classifiers suit our needs in theory but using them in practice to solve our
self-calibration problem requires some inventivity. Indeed, a classifier needs to be
trained on labelled data but, because we are in a self-calibration scenario, we do not
have access to such labels. In other words, we need to know the colors (meanings)
of the points (actions) generated by a user to be able to measure the user

4 See Occam's razor principle and the bias–variance tradeoff in machine learning.

https://en.wikipedia.org/wiki/Regularization_(mathematics)
https://en.wikipedia.org/wiki/Occam%27s_razor
https://en.wikipedia.org/wiki/Bias%E2%80%93variance_tradeoff

consistency, but we do not have access to the point-to-color (action-to-meaning)
mapping.

To get around this problem, we can use the SELF-CAL tricks explained in section 2.
Because we know the user is entering one of ten digits, we can generate ten
different datasets, each with the same data points but with different labels/colors
according to each hypothesized digit.

To identify the intended digit, we then compare the consistency of each hypothetical
labelling of the data. A good proxy for consistency, and the one we use in this work,
is the cross-validation classification accuracy of a given classifier. We use the
process of training a classifier as our consistency filter. If we can train a good
classifier on the data, it means that the basic assumptions used in classification
algorithms are respected. Hence the map used by the user can be considered as
simple, and therefore the user is consistent. However, if we cannot train a good
classifier, then some regularization terms stand on our way and the map would need
to be too complex to account for all observations. Hence the map used by the user
is considered too complex and therefore the user is inconsistent. See Figure X for an
example. We use a SVM classifier with a RBF kernel for this work, but other
classifiers and/or metrics can be imagined within the broad spectrum of machine
learning tools.

Finally, we need to decide if and when a labelling system (i.e. a digit) is significantly
more consistent than all others. Because we deal with continuous signals, we can
never be 100% sure that we have the right answer. But we can nonetheless run
statistical tests and agree on a threshold for which we are happy to claim that one
hypothesis is statistically more consistent than all the others. In the beginning, when
only a few data points are observed, all hypotheses will remain valid as it will be
easy to train a good classifier for each hypothesis. But as more data is collected,
one hypothesis will stand out as significantly more consistent than all others. The
digit associated with this dataset should be the digit the user is trying to enter.

The all process is easy to understand visually from the side panel of explanatory
interface 3 below. Try it and notice how each hypothesis assigns different labels to
your actions. As a result, each hypothesis builds a different classifier, resulting in a
different color map, to explain your actions. After enough clicks, it becomes obvious
which digit you are typing because all others hypotheses lead to more complex
maps - indicating a breach in our definition of consistency for continuous signals:
using a simple color map.

Link: https://openvault.jgrizou.com/#/ui/tuto_touch.json

Video: https://youtu.be/ZUI7zbScUTk

https://openvault.jgrizou.com/#/ui/tuto_touch.json
https://youtu.be/ZUI7zbScUTk
https://openvault.jgrizou.com/#/ui/tuto_touch.json

I personally find this demo the most compelling in this article. Trying to challenge it
with complex color maps, or trying to force false prediction, is a good exercise to
verify that you understand the algorithm.

Important implications
There are important implications that machine-learning connoisseurs should
understand at this point:

1.​ We transform an unsupervised learning problem into a supervised learning
problem, which allows handling unstructured and deceptive datasets.

2.​ We do not seek to classify users' actions into their meanings, thus we allow
our model of the user’s action-to-meaning mapping to change during the
interaction. As more data is received from the user, our method converges to
the performance of a fully-calibrated system.

3.​ Our stopping criteria is both data and task dependent. At first understanding
the data is the bottleneck, but once enough data is received from the user,
solving the task becomes the bottleneck. SELF-CAL embeds both constraints
into one stopping criteria and allows a smooth transition between the two
limit cases - from having no prior to having an ‘infinite weight’ prior.

We address these points and their implications in detail below.

THE FOLLOWING SUBSECTIONS SHOULD PROBABLY BE IN AN EXPANDABLE ITEM.
IT IS A LOT OF DETAILS, VERY IMPORTANT FOR EXPERTS, BUT MAYBE NOT FOR A
FIRST TIME READER.

1.​ We transform an unsupervised learning problem into a supervised
learning problem

Unsupervised clustering algorithms are designed to identify groups of points that
are similar to each other when no labels are availables.

The notion of group and of similarity are based on assumptions about the process
generating the data. For example, in our PIN-entering interface, we could assume
that the user will generate points of the same color close to each other and that
yellow and grey points will form two well separated clusters. In other words that

https://en.wikipedia.org/wiki/Cluster_analysis

data are generated from two “non-overlapping” Gaussian distributions, one for
yellow points, one for grey points.​
​
Starting from such assumptions, an instinctive approach to solve the self-calibration
problem would be to first find those clusters in the data. Then assign colors to each
cluster, for example using a rule of thumb based on the task (e.g. label proportion - if
some colors are known to be used more frequently) or by considering all possible
combinations. And finally, replay the history of interactions knowing the colors for
each point to identify the intended digit.

Figure X compares this unsupervised approach (UNSUP) with the self-calibration
method (SELF-CAL) on data organized in two well separated clusters.​

This unsupervised approach (left) is sound and easy to explain because it separates
the problem in two logical steps. First identifying an action-to-meaning mapping and
then inferring the user intent given a mapping. ​
​
Another argument in favor of this approach is that entire fields of research are
dedicated to finding expressive embeddings for all sorts of signals. The goal of such
research is to find the feature spaces that will best split signals by similarity, such
that it becomes easy to locate and differentiate between clusters. Why not then rely

entirely on these representations and assume the users’ signals will naturally be split
into well separated clusters?

Because, despite best efforts, it remains impossible to guarantee that data
generated by users will naturally split into clusters, whatever the feature space.
Especially in a self-calibration scenario, where we cannot know in advance the
distribution of the signals the user will choose to use. It is thus impossible to
engineer in advance a feature space that will ensure that the data will form well
separated clusters.

The advantage of the SELF-CAL method is that it does not need to assume the data
are organized in well separated clusters. It only assumes that the user will preferably
use simpler mapping than complex ones. Two characteristic cases will fail under the
UNSUP methodology, see FIgure X below:

1.​ Unstructured data - When there is no apparent structure in the data, when
there are no visible clusters.

2.​ Deceptive data - When there is a clear structure in the data but this structure
is deceptive and does not map with the underlying class distribution.

Note that, in both cases, if we had access to the underlying labels, we would be able
to train a classifier capable of differentiating between classes with perfect accuracy.

Figure X illustrates how both UNSUP and SELF-CAL would perform on unstructured
data. The user data is generated from a single cluster in the middle of the feature
space. But the color mapping is split diagonally, with the upper-right area associated
with grey and the bottom-left area with yellow.

Using UNSUP (Figure X - left), one would be hard pushed to identify two clusters
from the unlabelled data generated by that user. Running an unsupervised clustering
algorithm on these data would most likely lead to a wrong clustering. And waiting for
more data would not help either because the data are generated from a single
Gaussian distribution, not two.

Using SELF-CAL (Figure X - right), the problem can be solved because we leverage
constraints coming from the task. We know that the user is typing one out of ten
digits. Thus, for the same data, we can generate 10 hypothetical labellings, one for
each digit. We then simply find the labelling system that is significantly more
consistent with the data, as described earlier in this section.​

The deceptive case is illustrated in Figure X. The user data is generated from two
horizontally separated clusters, one on the right and one on the left of the feature
space. But the color mapping is split vertically, with the upper area associated with
yellow and the bottom area with grey.

Using the UNSUP approach, two clusters can easily be identified. However replaying
the history of a user's action assuming one cluster is grey and the other is yellow is
likely to lead to false prediction or, at best, confusion and the inability to decide.
Waiting for more data would not help either because the data simply are generated
using a pattern that does not match with the clustering assumption.

Using SELF-CAL, this problem can be solved because we have access to a limited
set of hypothetical labels. In Figure X (right), the top/bottom split associated with
digit 5 is a more consistent mapping than any of the other labeling systems. Note
that none of the alternative labellings is considering a strict left/right split, the
closest is for digit 9 but one point on each side is of the opposite color which, in that
specific case, was enough to discard digit 9 compared to digit 5.

​

SELF-CAL works in unstructured and deceptive cases above because it does not
assume data should form clusters or have “visible” structure in the feature space.
We only assume that, if we had access to the ground truth label, it would be possible
to train a classifier differentiating each class.

This is an important difference and it is what fundamentally separates the field of
unsupervised and supervised learning. In unsupervised learning, we ask: Can we find
clusters in the data? In supervised learning, we ask: can we separate the yellow and
the grey points?

At a first glance, self-calibration problems seem to belong to the unsupervised
learning category because there is no direct way to assign ground-truth labels.

Indeed, if we do not know the meaning of an individual user’s action, we cannot
assign a yellow or grey color to each point.

But, because of constraints coming from the PIN entering task, we can have access
to hypothetical labels. It allows us to transform the problem into a comparative
study between a finite number of supervised learning problems. We only need to
pick the labelling system that is more consistent with the data we collected, and do
not have to rely on clustering analysis to do so.​
​
We are using very loose terms here due to the nature of this article. More precise
definition, notation, test cases, theoretical and experimental evidence are needed to
decipher this point better within an actionable theoretical framework. Attempts have
been made and we link to the corresponding literature in section 5. For practitioners
interested in this direction of research, a lot of work remains to be done with plenty
of room for innovation.

In the meantime, we strongly encourage you to challenge the interface by yourself. It
is the best way to forge an intuitive understanding of what we described in this
section. In particular, try generating data whose spatial configuration does not
straightforwardly match with the underlying color mapping you arbitrarily choose.

2.​ We do not seek to classify user’s actions into their meanings
​
A action-to-meaning classifier is a byproduct of our approach, not its goal.

Compared to a traditional human-machine interaction pipeline, we never classify
individual user’s actions into their meanings. We rather take a global approach by
looking for the most consistent hypothetical labelling system.

Instead of asking: What does a user mean when they perform such or such action?
And then inferring the user intent from those meanings. We rather ask: Which set of
hypothetical labels fit best the data we received from the user? And we directly
identify the user intent that way. Which in turn can inform us of the meanings of

each user action. This is a significant shift in approach from the traditional
human-machine interaction paradigm.

Why does this framing matter? Because it explicits that, using SELF-CAL, we never
commit to a definite action-to-meaning mapping. SELF-CAL allows our model of the
user to change in time.

To explain this, we need to differentiate two stages in the learning process:
-​ Stage 1 - before we identify the first digit
-​ Stage 2 - after we identify a digit.

In stage 1, the difference with a calibration first approach is obvious. With the CALIB
approach, we need a classifier to be able to interpret the user’s actions. To train this
classifier, a calibration step is performed first, where labeled data are collected using
a known protocol and a classifier is trained on these data. Then, the classifier is
"frozen" and used to translate actions from users into their meanings.

This classifier is thus unique, pre-trained, and frozen in time. It is supposed to be an
accurate action-to-meaning mapping of the user. However, the user might still
generate signals out of the range of the data observed in the training set, potentially
leading to false prediction. More alarming, because there's no way to know about
this mistake, the classifier will never be updated with this new data and the problem
will reoccur in the future.

With SELF-CAL, we start without any information, no classifier, no data. We compare
the consistency of hypothetical classifiers trained only on the data we received and
make a decision only when we are confident about the user intent.

This can happen at any time and we might not have acquired enough data to cover
all possible user signals, we collected just enough evidence to be confident of the
intended digit. This means that the color map we have is unlikely to be accurate and
would inevitably lead to wrong prediction if we were to use it as a calibrated
classifier.

Take the example in Figure X. We simulate a user that defined three areas on the
color map - Left/Middle/Right and is typing the code 2020. For the first digit, a 2, the
user places points in the left area for yellow, and the middle for grey, but never uses
the right area.

Once the machine identifies the first digit, a 2, we could be tempted to train a
classifier on the associated labels. And because the user never used the right area,
the best guess from the classifier would be to consider it as a grey area. Simply
because it is on the side of the grey points.

Enters stage 2. Under the SELF-CAL method, once a digit is identified, we do not
freeze the associated classifier to use for the next digits. Rather, we propagate the
labels associated with the "winning" hypothesis to all other hypotheses. Indeed, we
are now confident that the labels associated with the user intended digit are the
ground truth for the signals received so far.

However, we do not want to rely on the associated classifier because it might be
terribly wrong on edge cases. We rather consider previous data as a prior, which is a
very valuable source of information but it is not to be 100% trusted. Thus, instead of
relying on a classifier, we simply continue the hypothetical labelling procedure and
assign subsequent user's actions with different labels according to each hypothesis.

This process will drive away the hypothesis classifiers again and a new decision will
be made when one of the classifiers is significantly more consistent and more likely
to explain the user behavior. Because we continue assigning labels according to the
hypothetical intents, rather than referring to a frozen classifier, the action-to-meaning
mapping is continuously updated. This is particularly advantageous in locations of
the feature space where no data was collected before.

To illustrate this point, we continue our example of Figure X. Once the first digit is
found, the user decides to enter its second digit, a 0, by continuing using the middle
area for grey, but by now using the right area for yellow, and never using again the
left area.

If we had frozen the best classifier learned for the first digit, all clicks in the right
area would be predicted to be grey. But with the label propagation trick, the machine
is not lead ashtray, does not over generalize, identifies the correct digit and correctly
learns that the right area is used to mean yellow by the user.

​
The same process of label propagation is then repeated for subsequent digits.
Interestingly, as more digits are identified, the identification of the next digit
becomes faster because the amount of prior information shared between each
hypothesis increases each time.​
​
In our exemple, after the third digit is identified, 28 points share the same labels for
all hypotheses (Figure X). For the last digit, if the user clicks in the center of the 2D
map, five hypotheses will assign the color yellow to this new point and the remaining
five will assign the color grey. But because this point is surrounded by grey points for
all hypotheses, half of the hypothesis (the one assigning it the color yellow) will
immediately be discarded.​

SELF-CAL is thus a gradual process that starts from knowing nothing about the
action-to-meaning mapping of the user to having a very good model of it. We could
say that stage 1 starts with no prior information about the user data . While in stage 5

2, concrete prior information is available in the form of the ground-truth labels of
some data. The more digits we identify, the stronger the prior. A larger and larger
proportion of signal-label pairs are shared between all hypotheses, making it easier
to detect inconsistencies. One yellow point landing in the middle of a pool of 20 grey
points shared by each hypothesis becomes a strong sign of a breach in consistency.

Following this logic to infinity, the SELF-CAL procedure is progressively converging
to the CALIB methodology. Once all hypotheses share hundreds of points with the
same labels, a new point, whatever its label, is unlikely to lead to significant changes
between the hypothetical classifiers. At this point, the all system acts like there is
one unique classifier, exactly like the CALIB method. But we reached that stage
without ever explicitly predicting meanings from actions, we rather compared
alternative classifiers. This transition from pure self-calibration to fully calibrated is
nicely embedded within the SELF-CAL framework. It illustrates that, seen from a new
angle, the reasoning behind the CALIB problem is a limit case on the SELF-CAL
spectrum where all hypotheses share the same infinite prior and agree on the color
map used by the user.

I hope that I have convinced you that SELF-CAL does not seek to train an
action-to-meaning classifier at all. By not trying, we are actually more flexible and
more robust to edge cases or novel signals arising from the user. Naturally, if one
really wants to train a unique action-to-meaning classifier, it can be done. SELF-CAL
gives access to the ground-truth labels after each digit is identified, thus we can train
a classifier using this shared prior. But this is only a side effect of the method.​

5 Although it is good to remember that a lot of assumptions are made all along, such as the user following
the protocol, the data that can be classified with the classification algorithm selected (here SVM with RBF
kernel which embeds its own assumptions about the structure of the data), and the assumption of
consistency stating that the user prefers simple maps to complex ones.

3.​ Our stopping criteria is both data and task dependant
​
We call the task the problem to be solved in interaction with the user, here entering
digits of a PIN. We call the data the collection of actions sent by the user to the
interface, for example the history of buttons clicked or the points placed on the 2D
maps.

Two conditions needs to be met to decide which digit the user intends to type:

1.​ We need enough information to solve the task. We cannot make a decision
until all digits have pairwise been of a different color at least once. For
example, if the user is typing a 0, but the digits 0 and 1 are always of the same
color, it will be impossible to decide whether the user is typing a 0 or a 1
because the actions of the user will always be consistent with both 0 and 1.
The method we use to select the color of the digit (see section 5) is designed
to make sure this does not happen but it is important to remember it is a
component of the problem. Therefore if we increase the number of intents, for
example typing letters instead of digits, more clicks will be required to identify
the user intent. Going further, tasks could be multi-step processes, such as
playing a video game or navigating a maze. In such cases, the agent needs to
reach very specific states to be able to eliminate some hypothesis, which
might require long sequences of action. In interactive learning scenarios like
the one we present here, there is always a lower bound in the number of
interactions required to solve the task.​

2.​ We need enough information to understand the data. All hypothetic
classifiers remain equally valid until we have collected enough clicks to
identify some structure in the data. A good way to understand this is to refer
to the interface with buttons from section 2. Knowing the color of the buttons,
it takes 3 or 4 clicks to identify a digit. But, if we do not know the color of the
buttons, we need at least 2 clicks on one button to start finding breaches in
consistency and eliminate some hypotheses. If a user clicks only once on
each button, we would collect 9 clicks in total yet no digits could be
eliminated. All hypotheses would remain valid, each having a different but
consistent model of the user action-to-meaning mapping. There is always a

lower bound in the quantity of data required to identify some structure in the
data.

The SELF-CAL algorithm is solving the task at the same time as it is understanding
the data. If the task is hard to solve or the data is hard to understand, SELF-CAL will
automatically account for it and not make any decision before a confidence
threshold is reached. Thus, because both task and data constraints are embedded
into the same algorithms, SELF-CAL offers a smooth transition to a problem that is
first limited by the understanding of the data (stage 1), and then, once enough prior
information on the data is available, limited by the task (stage 2).

Data constraints dominating in stage 1 are best explained using the interface with
buttons. With calculated strategies, it is possible to never let the machine know what
our digit is. To do so, you need to focus on a few digits and carefully click on buttons
such that the action-to-meaning mappings associated with all these digits remain
consistent over time. Let’s try.

Focus on two digits and four buttons. For example digit 0 and 1 and the four most
top-left buttons. Associate a unique button to each possible color combination of
the digit pair. There are only four possible combinations, as exemplified in Figure X.
Using the interface that way ensures that, whatever the color of the digit 0 and 1, you
allaws press the same buttons and remain consistent.

Try using the interface while following this logic. Figure X shows the button-to-color
maps associated to digit 0, 1, 2, 3 after more than 36 clicks following this process. It
is also demonstrated in this video https://youtu.be/5HpDeInQc_w. It is impossible
for the algorithm to make a decision between the digit 0 and 1, both usage of the
button are equally plausible. However, it is easy to see that digits 2 and 3 are not the
one the user is trying to enter due to irregularities in the meaning associated to each
button.

This result is somewhat surprising, you can click as long as you want and the
machine will never be able to identify what digit you want to type. Do you even know
what digit you are trying to type? Maybe not as you are purposefully trying to trick
the machine. Nonetheless, it is theoretically possible that a user might try to type a 0
by using the same four buttons in the same way as you did. However, it is very
unlikely for this to happen without a conscious effort to trick the interface.

The same logic applies on the touch version of the interface. Instead of selecting
four buttons, you can split the screen in four areas and associate one area for each
digit state.

https://youtu.be/5HpDeInQc_w

Figure X shows the classifiers associated to digit 0, 1, 2, 3 after more than 50 clicks
following this pattern. It is also demonstrated in this video
https://youtu.be/Gf48wNd1W4k. It is impossible for the algorithm to make a
decision between the digit 0 and 1, both maps are equally consistent. However, it is
easy to see that digits 2 and 3 are not the digit the user is trying to enter.

The above demonstration emphasizes how stage 1 is limited by the understanding
of the data. In stage 2, once one or more digits are identified, the process becomes
mostly limited by the task. Indeed, even if we had access to a perfect

https://youtu.be/Gf48wNd1W4k

action-to-meaning mapping, the algorithm would still need 3 or 4 clicks to pull apart
each hypothesis.

The SELF-CAL procedure nicely adapts throughout stage 1 and stage 2 of the
interaction as the weight of the prior information progressively increases. Unlike the
CALIB methodology, our method does not need to rely on an explicit calibration
phase to first understand the data and, only once the data are understood, focus on
the task assuming the action-to-meaning mapping is correct.

Indeed, a problem with the CALIB approach is to know when to stop the calibration
procedure. How can we be sure that the trained classifier represents the future user
behavior well? Maybe we should ask the user to repeat the task a couple more times
to get a bit more data. Maybe we already have too much data and wasted
everybody's time. SELF-CAL removes this problem because it merges both the task
and the data problems into one.

SELF-CAL will stop when it has just enough information to be confident of the user
intent. No more, no less. Hence, contrary to a CALIB procedure, we do not even need
to have a good estimation of the action-to-meaning mapping used by a user to
identify their intent. We only need to have enough information to pull hypotheses
apart. In our PIN demo, the first digit is often identified before enough data is
available to build a thorough color map. As we saw in subsection X above, the map
can actually be wrong and corrected later thanks to the hypothetical labelling
procedure.

The pandora box is now open. If we can solve the self-calibration problem with
continuous user signals, it should work with a wide range of modalities.

In the next section, we demonstrate the use of drawings and spoken commands to
enter a PIN in our interface. Once again, you will get to decide which drawing or
spoken word is associated with yellow or grey. You will invent a simplified sign and
spoken language, which the machine will learn without prior knowledge, training set
or calibration phase.

Draw and speak
The goal of this section is to demonstrate the use of drawings and spoken
commands to enter a PIN in our interface following the self-calibration paradigm.

As you can intuit, drawings and spoken commands are harder to work with than
points on a 2D map. A drawing could be represented as the list of all the pixels your
pointer goes through. A word could be represented as the list of all the amplitudes
recorded by your microphone in time sampled at a few kHz.

Instead of working with two dimensional vectors encoding a [x, y] position on a map,
we now have to deal with vectors of N dimensions with N likely to be very large. It is
not practical and will make it harder to find patterns in the data. Luckily, the scientific
community spends a lot of time trying to come up with compact representations for
various types of signals.

Feature extraction is the process of describing a phenomenon of interest using a
limited number of characteristic features while conserving relevant information. This
compressed representation is helpful to visualize and interpret the data. For
example, in medicine, the height and weight of an individual can be used to predict
risk of cardiovascular diseases, see the body mass index for example. Summarizing
a human being by its height and weight is a case of feature extraction.

In machine learning, feature extractions facilitates learning and generalizing. Instead
of working with data in large dimensional spaces, we extract a few key features from
the data and use these features for our analysis. The challenge is to extract the right
features that conserve key information about the original data such that the desired
task can be solved to satisfaction.

A complementary method is dimensionality reduction whose goal is to project data
from a N-dimensional into a smaller space of dimension D while conserving the
relevant information and relationship between the data. Well known dimensionality
reduction algorithms include PCA, t-sne and UMAP.

https://en.wikipedia.org/wiki/Feature_extraction
https://en.wikipedia.org/wiki/Body_mass_index
https://en.wikipedia.org/wiki/Dimensionality_reduction
https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding
https://en.wikipedia.org/wiki/Uniform_Manifold_Approximation_and_Projection

To scale our approach to drawings and spoken words while conserving our intuitive
visualization, we decided to represent drawing and sounds as points on a 2D map.

While feature extraction can be done on a per sample basis, dimensionality
reduction requires a dataset with at least a few samples. Thus we chain both
methods and first extract relevant features from each sample and then project the
dataset of signals received for the user in a two dimensional space. This level of
compression is not usually recommended as a lot of information might be lost in the
process. But we can afford that risk in this setup for a few reasons:

-​ 2D points and color maps are easy to visualize and we want you to be able to
follow the process using our interactive dashboard as before.

-​ We start from scratch and have only two classes so we do not have to learn a
representation that can cluster all possible drawings or speech but just the
one generated by users.

-​ We do not rely directly on a classifier trained on the projection but use the
SELF-CAL procedure which will be robust to most cases of bad projections.

-​ Users do not have infinite patience and we need to identify a digit quickly. The
higher the dimensionality, the more data is required for SELF-CAL to identify
your digit.

-​ Making a mistake has no bad consequences. The worst that can happen is a
false digit showing up on the screen.

We will provide an overview of the pipeline used to project drawing and speech in a
2D space but we will not go into details to maintain the focus on the self-calibrating
concepts and its implications. The goal here is for you to experience the interface
using sketches and sounds.

Drawings
We represent a drawing using simple features such as the starting [x,y] coordinate,
the end coordinate, the distance between start and end, the length of the drawing
path, etc - forming a 17D feature vector per drawing. To be robust to scale and
location, a normalizing step is applied before features are extracted . 6

6 Our representation is robust to differences in scale and position, but not in rotation. For example, using
squares of any orientation for yellow and triangles of any orientation for grey might not work. It could be a
good experiment to challenge the system though.

All sketches received from a user are then collated in one dataset and the UMAP
algorithm is used to project the data from the 17D feature space to a 2D space.

As we are in a self-calibration scenario, you decide which drawings to associate to
yellow and to grey. It is arbitrary and up to you. For example, a triangle could mean
yellow and a circle mean grey. The drawing of a house could mean yellow and a
carrot mean grey. You decide. A safe place to start is to draw the letter ‘Y’ for yellow
and the letter ‘G’ for grey, it is easy to remember. Also don’t panic, your drawings do
not have to be accurate or pretty, rough sketches are perfectly fine.

A drawing is limited to one stroke of a pen. To start drawing, press the left button of
your mouse down on the drawing area. This will drop the pen and you can start
drawing. Drawing will stop when you release the button of your mouse. The sketch
will be automatically sent to the machine as the action associated with the digit
state shown on screen.

Try it: https://openvault.jgrizou.com/#/ui/demo_draw.json

Add tutorial video here

Two new buttons are available at the bottom of the screen. The bottom-right button
will show you the history of drawings. This history will be colored in yellow or grey
once the machine will have understood what they mean, that is only once a digit has
been identified. The bottom-left button will show the projection of your drawing on a
2D space. The sketches will also be colored once their meaning is known. Note that
the UMAP projection is recomputed at each iteration with the new data and will
therefore change. This allows us to refine the projection as more data is available. It
does not hurt performances because SELF-CAL estimates the likelihood of each
hypothesis from scratch at each iteration.

To visualize the process, you can use the interface with the dashboard as before.
The side panel will show you the 2D representation of your label according to each
hypothesis. It looks exactly the same as in section 3.

https://openvault.jgrizou.com/#/ui/tuto_draw.json

https://openvault.jgrizou.com/#/ui/demo_draw.json
https://openvault.jgrizou.com/#/ui/tuto_draw.json

Spoken words
We applied the same logic to spoken words. Sounds are represented by their
embeddings pre-trained for classification tasks on the AudioSet
(https://ieeexplore.ieee.org/abstract/document/7952261) dataset covering
common everyday environmental sounds. We decided to use non-speech specific
features (https://arxiv.org/abs/1609.09430) because we are in a self-calibration
scenario. Users do not have to use common spoken words but can invent their own
language or use sounds generated by objects around them.

This embedding encodes 1 seconds of sounds into a 128 dimensional vector.
Because of the high dimensionality of the embedding, we use data augmentation to
help UMAP find structure and clusters with a small number of data. More
specifically, each sound is split into overlapping windows to artificially create
manifolds in the embedding space. We then project the entire dataset into a 2D
space and average the augmented projections to form the final 2D representation of
a sound.

To create manifolds we try to create trajectories in the embedding space by cutting
the sounds in overlapping chunks. The user can record a sound of at most 3
seconds. The sound is trimmed and repeated to reach a length exactly 3 seconds. It
is then split into 21 windows of 1 second starting every 100ms. Each 1 seconds
sequence is projected into its embedding of 128 dimensions.

https://research.google.com/audioset/
https://ieeexplore.ieee.org/abstract/document/7952261

Thus, for N words, we end up with an unlabelled dataset of N*21. And we know that
a subset of these points are linked together as part of a sound trajectory. We use the
UMAP algorithm to project the data from the 128D into a 2D space. We then average
each trajectory projection to come back to a unique projection for each sound which
can be used for our SELF-CAL procedure.

This representation is clearly a hack that was needed for a digit to be identified in
only a few iterations. The use of the embedding allows the use of a wide range of
sound not predictable before run time. It works well for our case but we do not
recommend relying on similar tricks for problems with real word consequences
before thoroughly testing this method. I am sure experts in sound processing could
find many ways to improve on this.

As before, you decide what sounds to associate to yellow and to grey. It is arbitrary
and up to you. For example, the word “banana” could mean yellow and “chocolate”
mean grey. It will also work with non-words sounds, clapping your hands could mean
yellow and snapping your finger could mean grey. You decide. A safe place to start is
to say “yellow” for yellow and the “grey” for grey, it is easy to remember.

Finally, sounds are limited to 3 seconds in total. To start drawing, click on the green
button. The recording immediately starts and will stop after 3 seconds. The sound
will be automatically sent to the machine as the action associated with the digit
state shown on screen. It will take a few seconds to process.

https://openvault.jgrizou.com/#/ui/demo_audio.json

As a bonus, the two buttons at the bottom of the screen allow you to see the
projection of each sound. You can replay each sound by clicking on the play button.

To visualize the process, you can use the interface with the dashboard as before.
The side panel will show you the 2D representation of your label according to each
hypothesis. It looks exactly the same as in section 3.

https://openvault.jgrizou.com/#/ui/tuto_audio.json

The sketch and sounds demonstrations illustrate the potential of the SELF-CAL
method to scale to various real world modalities.

In the next section, we review domains where self-calibration problems have been
encountered and discuss how other researchers approached this problem. We then
list some open research questions and discuss potential applications along with
ethical considerations.

https://openvault.jgrizou.com/#/ui/demo_audio.json
https://openvault.jgrizou.com/#/ui/tuto_audio.json

Discussion

Related Work
HCI - pointing without pointer - motion matching

https://dl.acm.org/doi/abs/10.1145/985921.986076

https://dl.acm.org/doi/10.1145/3064937

https://dl.acm.org/doi/abs/10.1145/3294109.3295628

Spiking neurons interpretation - Mutual Information

BCI:

-​ Difference with previous approaches
-​ No label imbalance

Smart Captcha/Group labelling to get ground truth

HRI - My work + Thomas Cederborg

Zero-knowledge proof?

https://dl.acm.org/doi/abs/10.1145/985921.986076
https://dl.acm.org/doi/10.1145/3064937

Open Questions And Extension

Mathematical framework. Another way to look at this is that the user does not follow
the model we are building of his action.

-​ Planning
-​ With errors and noisy overlapping data
-​ Regression (correlation as measure of consistency)
-​ Measures of consistency (entropy, class overlap, compactness)
-​ Human acceptance
-​ Co-adaptation & shift through time
-​ Scaling:

-​ Unlimited hypotheses
-​ Unknown protocol/context
-​ Impact of task properties (symmetries, size)
-​ Number of classes / meanings

-​ Planning taking into account user patience to failure. Wait to be too sure and
the user will grow frustrated.

Applications

-​ Education. Teaching with the challenge + vault installation at CRI.​

-​ Security. Hiding colors and code. How can we design computer interfaces
that provide no informative feedback to an observer?

https://openvault.jgrizou.com/#/ui/demo_keyboard.json

SpyLock

-​ Smart Captcha like google pick a vehicle in the image -> labelling data by
consensus as people are consistent in their identification of things. Find the
name of this field of research. Rely on both internal and crowd/societal
consistency. We could use a game with an open ended goal instead of an

https://openvault.jgrizou.com/#/ui/demo_keyboard.json

explicit classification task.​

-​ Personalised marketing to infer intent from actions, without assumptions.​

-​ Neuroscience -- How can we identify which set of neurons are responsive to
specific stimulus, free from any assumptions about which features of the
spike train are most important ? ​

-​ Brain-Computer Interaction -- AI - Interactive Learning -- How can we design
human-machine interfaces that can adapt on the fly to the preferences of
each user?​

-​ Psychology -- How can we read the mind of a person, that is infer its intents by
only observing its actions?​

-​ Art (Exhibition)

Another angle
THIS SECTION IS NOT READY FOR PROOF-READING

The most fruitful applications of this interaction paradigm will probably be counter
intuitive. For example, if applied to tasks for which we believe we already know how
to decode actions into meanings, we might find out that we are wrong. That our
theory behind various interpretations of human actions is flawed. The consequences
could be destabilising, ranging from false conclusions in scientific experiments, to
false interpretation of psychological tests or consumer behaviors.

Every artefact around us has been designed to be used in one specific way. It is our
responsibility to learn to adapt to them. We do not even see anymore that we had to
learn such interaction protocols. Like fashion we do not even question whether
things could be designed differently. Think of the smartphone in your pocket and all
the interactive conventions that come with using a touch screen. It was invented by
designers, with insight from user studies, but we had to adapt to them. Green
buttons, red buttons. Slide left, right, up, down. Long press, short press, etc.

It is the same for entire societies. Conventions are developed and applied by groups
of humans and we stopped seeing they even exist. Green light, red light. How to eat.
How to say hello. What to be offended about. It is part of our culture.

But sometimes a few people do not get the memo, or decide not to conform, not to
use the mainstream way to communicate or behave in society. Not because of
malice, but because they prefer otherwise, they decide not to use pre-established
conventions. Their actions are often misinterpreted and their intention can be seen
as odd at best, as opposite, dangerous, or deficient at worst.

Ask one of your friends to choose how to use the interface in section 3, placing
points on the map. Nobody has ever used such an interface to type a PIN, so your
friend will not be influenced by convention about how to use the interface. If you do
not demo one map to them, chances are they probably won’t use the same map as
you would. It is just how it is, we are different, and it is ok.

The link between behavior and intention is brittle, context dependent, perception
dependent. A lot of our social models assume a tremendous amount of shared
convention. Psychological assessments for example are based on answers to tests
providing some context about the patient goals, way of reacting to clues and
information, ways of answering, etc. But those assumptions might be wrong.

It is all about the assumption we make, they bias our interpretation. We observe
actions, transform them into meaning and use it to infer an intent. If our pre-trained
action-to-meaning classifier is wrong, we will predict the wrong intent. With all the
consequences that can follow.

Could self-calibrating algorithms counter this and enable us to see what we can no
longer see due to normative conventions?

Our work shows that we can infer an intent directly from the actions if some context
is available (it-self subject to some interpretation of course). While remaining
flexible to the particular expressivity of the user, its action-to-meaning mapping.​
​
I have no idea where to start but I feel this direction is where this technology would
be best applied.

Look for the intent in each person, not on their behavior. The basic assumption we
can rely on is that people try to do their best and do good work. But we all have

different action-to-meaning models and using yours to understand someone else's
one often leads to miscommunication, misunderstanding and sad stories.

Resources
Website, previous work, videos, challenge

https://jgrizou.com/projects/thesis/#publications

https://jgrizou.com/projects/vault/

https://jgrizou.com/projects/thesis/#publications
https://jgrizou.com/projects/vault/

	Overview
	Analysis of the PIN-entering interface
	Self-calibrating PIN-entering interface
	Can this approach scale to continuous signals?
	How can we measure “simple”?
	How can we leverage classifiers to solve the self-calibration problem?
	Important implications
	1.​We transform an unsupervised learning problem into a supervised learning problem
	2.​We do not seek to classify user’s actions into their meanings
	3.​Our stopping criteria is both data and task dependant

	Draw and speak
	Drawings
	Spoken words

	Discussion
	Related Work
	Open Questions And Extension
	Applications
	Another angle

	Resources

