
 

Interfaces are all around us. A keyboard, the code-pad of an ATM, the touch screen of a 
vending machine, the remote control of a TV are all interfaces. They sit between you 
and the machine you want to control. Their function is to translate your button presses  
into information a machine can understand and act upon. 

Letters or symbols are printed on these buttons to tell you what they do. When you 
press the letter printed ‘A’ on your keyboard, the machine assumes that you want to type 
the letter A and acts accordingly. 

In this article we question the need to print explanatory symbols on buttons. Could we 
use buttons the way we want, instead of having to learn which ones to use? Could a 
machine understand what we want to achieve, without knowing how to interpret our 
actions? 



We will show that this is possible under specific, but not uncommon, conditions. To 
demonstrate this, we designed a PIN-entering interface that you will use to type a 4-digit 
PIN of your choice.  

We will progress through 5 different versions of this interface. The first version will use 
standard buttons whose color will indicate what they do. The second version will not 
have any pre-assigned color on each button. You will assign colors to buttons in your 
mind, without disclosing it to the machine, and the interface will nonetheless 
understand you. The subsequent versions will go further and remove buttons altogether, 
replacing them by points on a 2D map, hand drawn symbols and, finally, simple vocal 
commands in a language you will invent. 

To start, you should understand how to use our PIN-entering interface.  It is a bit 
different from a typical code-pad. Instead of pressing directly on digits, the digits are 
color-coded. To type a digit, you will press colored buttons to inform the machine of the 
color associated with your digit. 

Our interface can be broken down into three parts (Figure 1). The top part is where your 
4-digit PIN will be displayed. The middle part shows all digits from 0 to 9 colored in 
either yellow or grey. The bottom part is for user interaction, for now it contains two 
buttons, one yellow and one grey.  

 

Figure 1: Breakdown of the pin entering interface  

 



Think of the machine as asking you: "What color is your digit?". Looking at the digit you 
want to enter, you answer: "My digit is yellow" or "My digit is grey" by clicking on the 
corresponding button. 

For example, if your PIN is 1234. You would start by typing the first digit of our PIN , 1

which is a 1. Because the digit 1 is currently colored in yellow, you would click on the 
yellow button. The machine could then immediately discard all the grey digits, and infer 
that the first digit of your PIN is either 1, 3, 4, 5, or 6. 

 

 

 

 

The digit's colors will then change and by repeating the process a few times the 
machine will identify your first digit with certainty (Figure 2).  

1 As indicated by the dark frame around the leftmost digit in the top of Figure 1 



 

Figure 2: Digit identification process. Left: Color-coded digits as visible to the user. Middle: Action taken 
by the user.  Right: Digit elimination process inside the machine. 

 

Once the first digit is identified, we can repeat the same process for the second digit, 
then the third and the fourth. We will refer to this process as ELIM in this article referring 
to this straightforward process of elimination. 

Entering a code is the best way to familiarise yourself with this interface. Try entering 
1234 or any PIN of your choice below in Interaction 1. 

Link: https://openvault.jgrizou.com/#/ui/demo_1x2.json 

Video: https://youtu.be/DsqyD3eKX3E 

 

https://openvault.jgrizou.com/#/ui/demo_1x2.json
https://youtu.be/DsqyD3eKX3E


 

 

Congratulations! You now understand how to use this interface. We describe next what 
you can expect to learn from this article in more detail. 

 

Overview 
In Interaction 1, you conveyed your intent to the machine via two big brightly colored 
buttons. The colors are meant to indicate what the buttons mean. It allows the machine 
to confidently translate button presses into their meanings, which seems to be a 
necessary condition for any interface to work. ​
​
In what follows, we question this assumption and ask: Could a machine respond to 
user’s commands without knowing exactly what those commands mean? Concretely, 
could our interface identify your PIN without knowing the colors of the buttons? 

We call such an interface a self-calibrating interface because it does not need to be 
explicitly calibrated to each user's preferences. It rather learns those preferences on the 
fly. We will showcase and decipher such an interface using different versions of our 
PIN-entering machine.  

https://openvault.jgrizou.com/#/ui/demo_1x2.json


The plan is as follow: 

1.​ In section 1, we analyse the interface as presented in Interaction 1 and identify 
the various components at play.​
 
2.​ In section 2, we present the self-calibrating version of our interface. The buttons 
lose their pre-assigned colors. You get to decide the buttons' colors in your mind and 
use them as such. The machine will nonetheless figure out your PIN, as well as the color 
of each button. We will decipher how it works and refine our mental model to include 
what we learned.​
 
3.​ In section 3, we scale our approach to continuous user's actions. A challenging 
task because it requires to train a classifier without access to known labels. To 
showcase this, our interface will no longer have buttons. You will place points on a 2D 
map and decide which areas are associated with which colors.​
 
4.​ In section 4, we demonstrate the use of richer interaction modalities. You will 
enter your PIN by drawing small sketches and using spoken commands. Once again, 
you will get to decide what sketches or sounds you want to use, and the machine will 
identify both your PIN and a classifier mapping your actions to their meanings.​
 
5.​ In section 5, we present previous academic work on the subject, position this 
work into the human-computer interface and machine-learning landscape, highlight 
some remaining challenges, and ask ourselves how this work can be useful with 
concrete examples from brain-computer interfaces to the study of language formation. 

You do not need to have a theoretical background to understand most of the content in 
this article. There is purposefully no math or equation but interested readers will find 
relevant scientific literature referenced in section 5. In some sections, we use 
machine-learning specific terms to highlight important details. These terms will be 
explained but you can also safely skip these sections if not directly relevant to you. 

 

Analysis of the PIN-entering interface 
Successfully entering a PIN using Interaction 1 means that you understand the principle 
of interaction between you and our interface. If you have a background in computer 



science, you probably even know how to implement this at home. Nonetheless, it is 
important that we break down and name the various elements at play. 

First, we should name three components driving the user behavior: 

●​ The user's intent is what the user wants the machine to do. Here entering a 
specific PIN, one digit at a time.​
 
●​ The user's meaning is what the user wants to say to the machine. Here it is 
either: "My digit is yellow" or "My digit is grey".​
 
●​ The user's action is what the user does in order to express their meaning. In 
Interaction 1, the user's actions are to press either the left or the right button. 

 

 

In short, an action conveys a meaning that is used to infer an intent. But inferring an 
intent from a meaning requires a bit of context. With our interface, the context is a user 
wanting to type a PIN via our interface. In other words, we assume that: 

●​ The user aims to type a PIN one digit at a time. Thus their current intent is to type 
one of ten possible digits.​
 
●​ The user follows the established convention of indicating the color of the digit 
they want to type. Thus, the possible meanings are yellow or grey.​
 
●​ The user can perform one of two actions, pressing either the left or the right 
button. This is constrained by the design of our interface​
 



●​ The mapping between the user's actions and their meanings is known. Pressing 
the left button conveys the meaning yellow and the right button conveys the meaning 
grey. 

The latter is the most important element of our story, it explicits that there is a 
pre-existing shared understanding between the user and the machine about the 
meaning conveyed by the pressing of each button. This information is made salient by 
the colors displayed on each button, the left button is yellow and the right button is grey. 

 

Knowing this mapping, the machine can reason as follows: "If a user presses the left 
button (action), then it indicates that their digit is currently yellow (meaning), thus their 
digit is among the yellow colored digits and all the grey digits can be discarded (intent)." 
This is the ELIM algorithm, see Figure X below and notice that the direction of inference 
is from left to right. 



 

By iteratively changing the color applied to each digit, we can narrow the possible digits 
down to the one the user has in mind (Figure 2). To visualize this process while using 
the interface, we added a side dashboard that displays the history of your clicks with 
respect to each digit. Because there are 10 possible digits, we are showing 10 individual 
panels, one for each digit. See figure X.  



 

After each click of the user, a dot is placed on the button that was pressed (left or right) 
to signify a click was made on that button. But this dot is colored differently for each 
panel. It is colored with the color that was assigned to the associated digit when the 
user pressed the button. 

Figure X shows this process for two digits, 0 and 1. The digit 0 is yellow, the digit 1 is 
grey, and the user clicks on the left, yellow, button. A dot is placed on the left, yellow, 
button on both the panels associated with both digit 0 and 1. But this dot is colored in 
yellow for the digit 0 and in grey for the digit 1. The digit 1 can be discarded because a 
grey dot is placed on the yellow, left, button. Indeed, if the user wanted to type a 1, they 
would have used the grey, right, button instead, because the digit 1 was grey. The digit 0 
is however valid.  

 



 

The valid/invalid status of each digit is shown visually by the color and size of each 
panel. When a digit is still valid, its panel is green and large. When a digit is discarded, 
the panel is red and smaller. 

Try typing a PIN on the explanatory interface below while monitoring the elements on 
the dashboard. Make sure to understand how to interpret this side dashboard, we will 
use it all along this article. A video is also available for an interactive walkthrough. 

Link: https://openvault.jgrizou.com/#/ui/tuto_1x2.json 

Video: https://youtu.be/xP3qJ1V28Ws 

https://openvault.jgrizou.com/#/ui/tuto_1x2.json
https://youtu.be/xP3qJ1V28Ws


 

You should now have a clear understanding of how our PIN-entering interface works 
and have acquired some element of language such as action, meaning, intent, 
context, and action-to-meaning mapping. 

In the next section, we introduce the self-calibrating version of this interface in which 
buttons have no predefined colors. You will get to decide the colors of each button in 
your mind and never explicitly tell the machine about it. The machine will 
nonetheless be able to identify your PIN and the colors of the buttons. 

 

 

Self-calibrating PIN-entering interface 
 

What if the buttons had no colors? In other words, what if the action-to-meaning 
mapping - between the position of the buttons (left/right) and their meaning 
(yellow/grey) - was not pre-defined? 

 

https://openvault.jgrizou.com/#/ui/tuto_1x2.json


If we look back at Figure X, the chain of inference is now broken. Without a known 
action-to-meaning mapping, we cannot infer what the user means, thus we cannot 
infer the user intent.  

To solve this problem, the usual approach (which we don’t want to use in this article) 
is to first learn the action-to-meaning mapping that our user would like to use. The 
aim is to calibrate the interface to the user preference before they start using it. To 
do so, the user is asked to follow a calibration protocol, which can be direct or 
indirect. 

When direct, we simply ask the user for elements of the action-to-meaning mapping 
using another, already calibrated, interface. For example, we give each user a digital 
paint brush that can take two colors (yellow or grey), and ask them to color each 
button in the way they would like to use them. 

 

When indirect, the calibration procedure makes use of the interface as normal but 
the user is asked to achieve a specific, known, goal. For example, we ask the user to 
type the digit 1. Knowing the digit, we can reverse the inference pipeline and follow 
this reasoning: “Knowing that the user is typing a 1, if the digit 1 is yellow and the 
user is pressing the left button, then the left button means yellow.” (respectively for 
all buttons and colors. Figure X illustrates this reasoning. 



 

We will refer to this process as CALIB, because it is the most common method to 
calibrate an interface to user preferences.​
​
But CALIB is exactly what we do not want to resort to here. We want to investigate if 
and how our interface could self-calibrate. We want to know if and how one can 
identify the user intent without knowing the action-to-meaning mapping. Why? For 
intellectual curiosity more than practicality. We will review potential applications in 
section 5 but for now let’s not ask ourselves why and focus on the how.​
​
Let’s thus imagine that a user is arbitrarily assigning colors to each button in its 
mind and uses the interface that way - without telling the machine about its color 
choice, nor its intended PIN. 

The machine is in trouble, it does not know what digit the user wants to enter and it 
does not know what the user means when pressing buttons. The ELIM reasoning 
used in section 1 collapses and we can not follow the logical path: "If the user 
presses the left button, then they mean that their digit is currently yellow". 

If anything, this line of reasoning turns into: "If the user presses the left button, then 
their digit is either yellow or grey with equal probability, thus I cannot make any 
decision." That sounds like a dead end. So before explaining how we solve this 



problem, we think you should see it in action and experience how it feels to be able 
to arbitrarily choose buttons' colors. 

Interaction 2 works the same way as in Interaction 1 but no colors are displayed on 
the buttons. You choose the colors in your mind. And to make it more interesting, we 
increased the number of buttons from 2 to 9. That way, instead of having 2 possible 
ways to assign colors to the buttons, you now have 510 ways . 2

 

The colors are in your mind and you can assign them as you please. For example, in 
figure X, we show how three users decided to assign colors on the buttons. 
Providing that there is at least one button for each color and that you stick with the 
same color pattern during the interaction, the machine will infer both your PIN and 
the colors of the buttons. 

2We need at least one button for each color. If all buttons are yellow and your digit is grey, you would not 
be able to express the meaning grey. The number of combinations is 2^N - 2, with N the number of 
buttons. And -2 because there are 2 invalid combinations, all yellow or all grey. 



 

 

Try the interface multiple times, entering different PINs and using different color 
patterns. You do not have to use all buttons every time. Only the button you used will 
be identified and colored in by the interface. The others will remain black until you 
use them . ​3

​
Link: https://openvault.jgrizou.com/#/ui/demo_3x3.json 

Video: https://youtu.be/upKejh4ZgUc 

 

3 If you do not use some buttons, the machine does not have any information about them, and has no way 
to infer their colors. 
 

https://openvault.jgrizou.com/#/ui/demo_3x3.json
https://youtu.be/upKejh4ZgUc


 

 

It is an interesting feeling, isn't it? We are not used to having this level of choice 
when using the machines around us. To understand how this works, we shall look at 
the problem from a new angle. 

In section 1, we defined the following components: intent, meaning and action. We 
understood that an action conveys a meaning that can be used to infer an intent. 
And we have seen that this logical path requires a context that allows to deduce 
meanings from actions and intents from meanings. ​
​
This context is the list of assumptions embedded within the interactive process 
it-self. We assume that users want to type one of ten possible digits. We assume 
that they indicate the color of the digit they have in mind. And we assume that they 
press buttons to send their feedback. All these assumptions remain, but one can be 
added which was hiding in plain sight. 

We assumed all along that a button can have one and only meaning - yellow or grey 
(never none and never both). This assumption was hard to formulate before because 
colors were visibly assigned to each button, it was too obvious to be noticed. The 
assumption that one button equals one meaning is so ingrained in our interaction 

https://openvault.jgrizou.com/#/ui/demo_3x3.json


with machines that we sometimes forget it is part of the convention. ​
​
Why can this help us? Because it is something we can observe. By measuring 
breaches of the "yellow or grey" assumption, we can solve the self-calibration 
problem. 

How can we measure such breaches? By making hypotheses. Because we know the 
user is trying to type one of the ten possible digits, we can imagine ten different 
worlds, each with the user trying to type one specific digit. One hypothetical world 
for each of the ten digits. In each of these worlds, because we hypothetically enforce 
the digit the user is trying to type, we can easily infer the colors of the buttons using 
the same reasoning as the CALIB algorithm: "If the user is trying to type a 1 (intent), 
then each time the user presses a button (action), we can assign the current color 
(meaning) of the digit 1 to that button".  

 



In essence, we are performing ten CALIB procedures in parallel, one for each digit. In 
other words, we are building ten different action-to-meaning mappings, one for each 
digit.  

But because the user is entering only one of the ten possible digits, only one of the 
button-to-color maps will be valid. Only one will conform with the "yellow or grey" 
assumptions. For all other hypotheses, at some point during the interaction, it will 
look as if the user was trying to press some buttons to mean both yellow and grey - 
signaling a breach of our "yellow or grey" assumption, and enough to discard the 
associated digit. 

In other words, when, from the point of view of a given digit, the same button has 
been used to mean both yellow and grey, then that digit can not be the one the user 
has in mind because it is incompatible with our assumption that one button has one 
and only meaning.  

We name this process SELF-CAL. To visualize it while you enter a code, we added a 
side dashboard acting similarly as the one in section 1. There are ten panels, one for 
each digit (Figure X). In each panel, the buttons are shown and will be populated 
with dots after each click of the user. Each dot will be colored differently for each panel 
using the color that was assigned to the associated digit when the user pressed the 
button. 

 



 

But this time, because the buttons have no color, instead of comparing the dot color 
with the button color, we compare the dots on each button between themselves. If all 
dots on the same button are of the same color, the hypothesis is still valid. However, a 
button that is populated with dots that are both yellow and grey signifies a breach of the 
“yellow or grey” assumption and the hypothesis can be discarded. ​
​
Figure X shows the result of this process for digits 0, 1, 2, and 3 after a few clicks of the 
user in a particular run. The user was trying to type a 1, only used two out of the nine 
buttons and had done a total of three clicks so far. 

 

 

 

There are two things to notice on Figure X. First, the digit 0 and 3 have already been 
discarded. This is because, if the user was trying to type a 0 or a 3, then they used the 
top button to mean first yellow, then grey (as indicated by the yellow and grey dot in that 
button for both hypotheses). But one button can only be used for one color, so the user 
is not trying to type a 0 nor a 3. Second, the digit 1 and 2 are both still valid despite 
having differently colored dots in each button. If the user was trying to type the digit 1, 
then they used the top button to mean grey and the bottom one the mean yellow. 
Reversely, if the user was trying to type the digit 2, then they used the top button to 
mean yellow and the bottom one to mean grey. Both options are viable. The machine 
cannot decide yet which one is valid. Two versions of reality are still possible and more 
information is needed to pull them apart. 



 

After a few more iterations, only one hypothesis will remain valid and free from “yellow 
and grey” conflicts. At this point, the interface can be confident that the associated digit 
is the one the user wants to type. Importantly, knowing the digit, we immediately also 
know the button-to-color mapping the user had in mind. We are finding both what the 
user is trying to do and how they are trying to do it, we are self-calibrating.  

You can interactively visualize this process directly on the explanatory interface 
below. 

Link: https://openvault.jgrizou.com/#/ui/tuto_3x3.json 

Video: https://youtu.be/OMlQRy_ZKFs 

 

After playing with the interface for a bit, you should have gained an important insight 
about the self-calibration problem. To solve it, we no longer try to understand what 
the user means when pressing buttons, we simply gauge for which digits the actions 
of the user remain consistent in time. 

It obviously takes more time to identify the first digit when we do not know the color 
of each button than when we know them. And it is interesting to observe how 
alternative interpretations of the same user's actions remain valid quite far into the 

https://openvault.jgrizou.com/#/ui/tuto_3x3.json
https://youtu.be/OMlQRy_ZKFs
https://openvault.jgrizou.com/#/ui/tuto_3x3.json


identification process. As an exercise, you can try to find a click strategy that makes 
sure the interface can never identify the digit you want to type. For example, focus 
on only two digits and try to keep their associated panel always valid by carefully 
choosing the button you press depending on the current color of the two digits. 
Succeeding would show you truly understand what is going on. 

Before ending this section, we need to focus on what happens once a first digit is 
identified. Once the machine identifies the first digit, we are essentially in the CALIB 
case. We know what the user was trying to do, so we can infer the color of each 
button the user pressed. The interface is thus capable of displaying the right colors, 
yellow or grey, to all the buttons you used. 

Notice how the button’s colors are also shown in each panel of the side dashboard. 
It becomes a common prior information about the button-to-color mapping that can 
be used to identify more easily the next digit. Next time you press one of these 
buttons, the interface already knows what you mean and can directly reuse the ELIM 
reasoning form section 1. For all other buttons, we keep using the SELF-CAL 
approach, looking for breach of the “yellow or grey” assumption. 

In a strange twist, this implies that the reasoning behind ELIM is equivalent to the 
reasoning behind SELF-CAL when all hypotheses agree on the button's colors. ELIM 
is only a particular case of SELF-CAL in cases where prior information is available.  

We can reframe the ELIM inference process as follows: "If the user is trying to type a 
1, and if the color of the button the user is pressing is different from the color 
applied on digit 1, then the same button is being used to express two different 
colors. Thus the user is not trying to enter the digit 1. Else they might be typing a 1". 
Convoluted but strictly equivalent and a powerful way to reframe human-machine 
interaction scenarios that enabled us to exploit a hidden "yellow or grey" assumption 
to solve the self-calibration challenge. 

The remainder of this article considers how to scale this “yellow or grey” logic to 
continuous user's actions. In the next section, you will discover a version of our 
interface with no buttons. Instead you will place points on a 2D map and you will get 
to decide which areas are associated with which color. 

 



 

Can this approach scale to continuous signals? 
 

Up to now, we considered discrete button presses and our logic was based on 
identifying if the user was using the same button (action) for different colors 
(meaning). This notion of “same” was easily measurable with discrete button 
events. But when the user's actions are more complex, such as drawings, sounds, 
gestures, brain signals, or nerve impulses, an action will never be represented twice 
in exactly the same way. We call these continuous signals. 

When dealing with continuous signals, we can no longer define a notion of “same” 
ahead of time. It has to be learned from the user data. 

To explain this problem, we designed an interface with no button. Instead of 
pressing buttons, you will place points on a map. The points can be placed in a 
yellow area to mean "My digit is yellow", or in a grey area to mean "My digit is grey". 
See Figure X.​
​
Because we are concerned in the self-calibrating scenario, the color map is not 
defined in advance nor displayed on the interface. It is to be defined by you and 
resides in your mind. You decide which areas of the maps are yellow or grey and the 
machine has to figure out both the map you use and your PIN. 



 

 

We think it is best to try this new interface before explaining how it works. You can 
try it on Interaction 3 below. Start simple, for example typing the code 1234 by 
assuming the left part of the map is yellow and the right part is grey. The end result 
should look like Figure X below. 



​
 

Be patient, this is a hard problem, it might take 10 to 20 clicks for the machine to 
identify the first digit. We recommend watching the associated video if unsure about 
what to do. 

Link: https://openvault.jgrizou.com/#/ui/demo_touch.json 

Video: https://youtu.be/b4NjrMB6VLs 

https://openvault.jgrizou.com/#/ui/demo_touch.json
https://youtu.be/b4NjrMB6VLs


 

 

Points placed on the map are an example of continuous signals. You never clicked 
twice exactly in the same place. This means we cannot tell if two points represent 
the same color just by looking at them, even more so in the beginning when no 
structure has emerged from the data. Ask a friend to guess what you are doing and 
they will be clueless. So how are we solving that problem? 

To ground our explanation, we first need to squeeze the concepts covered so far into 
one word: consistency. This will help our brains navigate this chapter.  

So far, in section 1 and 2, both methods we employed can be seen as measuring the 
consistency of the user while using our interface. In both scenarios, we have been 
detecting breaches of consistency: 

●​ In section 1, we defined consistency as: clicking on a button of the same color 
as the digit we want to type. And a breach of consistency was looking for 
digits that were not of the same color as the button clicked by the user.​
 

●​ In section 2, we defined consistency as: using a button to only mean one color - 
the "yellow or grey" assumption. And a breach of consistency was looking for 

https://openvault.jgrizou.com/#/ui/demo_touch.json


digits which, if a user was entering them, that user would have been pressing 
the same button to mean both yellow and grey. 

Continuing on this idea, to scale our approach to continuous signals, we need to 
define a consistency metric for continuous signals. Previously we defined 
consistency with statements like "a button of the same color" and "only mean one 
color - yellow or grey". But the notion of "same" and "or" are no more applicable as all 
signals are different now. We need a more looser measure of similarity between 
signals. 

While we cannot be in the mind of every person using this interface, we can 
nonetheless come up with broad principles of how most people should behave when 
deciding how to allocate colors and place points on the 2D map.  

For example, we can assume that users will define yellow and grey areas that are 
easy to differentiate, so they could remember where to place a yellow or a grey point 
when required. Another common assumption is that the user will place points of the 
same color "close" to each other, where closeness could be measured by the 
euclidean distance between two points. 

Summarizing these assumptions, we can define consistency for continuous signals 
as: using a simple color map. Where simple is defined by the ability to easily 
differentiate between the yellow and grey points. Figure X shows examples of simple 
and complex color maps. 



 

How can we measure “simple”? 

This notion of a “simple color map” is very loose. We need to be able to put a 
number onto it for our algorithm to function. ​
​
Luckily, machine learning experts invented classifiers. Given a set of colored points 
(a training set), a classifier can extrapolate and generate a color map that "best 
explains" the training set. A number of assumptions are made by machine learning 
experts to define this "best explains" criteria. 

https://en.wikipedia.org/wiki/Statistical_classification


A common assumption is that the simpler the map the better  . This assumption is 4

often included as a regularization term in the classifier’s cost function that penalizes 
solutions that lead to complicated maps. Complicated maps are usually defined as 
non-smooth maps with many sharp changes at their frontiers or that form a lot of 
isolated islands. Creating such complicated maps usually requires large 
weights/parameters value in the classifier decision function, which the 
regularization terms penalizes. 

How elegant. Machine learning experts found a way to embed notions of “simplicity” 
and “best explain” in quantitative terms. Exactly what we need to measure 
consistency in our scenario. Because these assumptions are baked into classifiers, 
they are the perfect tools to measure the consistency of our user when dealing with 
continuous signals. More precisely, the prediction accuracy of a classifier trained on 
data generated by our users is a direct measure of their consistency. If we can train 
a good classifier, then the underlying mapping is “simple”, and the user is consistent. 
If we cannot train a good classifier, then the underlying map is judged too complex. 
Regularization terms prevented the algorithm from fitting a convoluted decision 
function which indicates that the user is inconsistent.​
​
Thinking twice, it is no surprise that classifiers are perfectly matching with our 
problem. The assumptions used when designing machine learning algorithms are 
made by and for humans trying to make sense of the world. They are meant to 
reflect the way we, humans, generate and classify things in the world. Hence, similar 
assumptions emerge when we think of how a user will generate and use a color map 
for our PIN interface. These assumptions are not always true, but they are the best 
we can do without more explicit prior information. 

How can we leverage classifiers to solve the self-calibration 
problem? 

Classifiers suit our needs in theory but using them in practice to solve our 
self-calibration problem requires some inventivity. Indeed, a classifier needs to be 
trained on labelled data but, because we are in a self-calibration scenario, we do not 
have access to such labels. In other words, we need to know the colors (meanings) 
of the points (actions) generated by a user to be able to measure the user 

4 See Occam's razor principle and the bias–variance tradeoff in machine learning. 

https://en.wikipedia.org/wiki/Regularization_(mathematics)
https://en.wikipedia.org/wiki/Occam%27s_razor
https://en.wikipedia.org/wiki/Bias%E2%80%93variance_tradeoff


consistency, but we do not have access to the point-to-color (action-to-meaning) 
mapping. 

To get around this problem, we can use the SELF-CAL tricks explained in section 2. 
Because we know the user is entering one of ten digits, we can generate ten 
different datasets, each with the same data points but with different labels/colors 
according to each hypothesized digit.  

To identify the intended digit, we then compare the consistency of each hypothetical 
labelling of the data. A good proxy for consistency, and the one we use in this work, 
is the cross-validation classification accuracy of a given classifier. We use the 
process of training a classifier as our consistency filter. If we can train a good 
classifier on the data, it means that the basic assumptions used in classification 
algorithms are respected. Hence the map used by the user can be considered as 
simple, and therefore the user is consistent. However, if we cannot train a good 
classifier, then some regularization terms stand on our way and the map would need 
to be too complex to account for all observations. Hence the map used by the user 
is considered too complex and therefore the user is inconsistent. See Figure X for an 
example. We use a SVM classifier with a RBF kernel for this work, but other 
classifiers and/or metrics can be imagined within the broad spectrum of machine 
learning tools. 

Finally, we need to decide if and when a labelling system (i.e. a digit) is significantly 
more consistent than all others. Because we deal with continuous signals, we can 
never be 100% sure that we have the right answer. But we can nonetheless run 
statistical tests and agree on a threshold for which we are happy to claim that one 
hypothesis is statistically more consistent than all the others. In the beginning, when 
only a few data points are observed, all hypotheses will remain valid as it will be 
easy to train a good classifier for each hypothesis. But as more data is collected, 
one hypothesis will stand out as significantly more consistent than all others. The 
digit associated with this dataset should be the digit the user is trying to enter. 



 

The all process is easy to understand visually from the side panel of explanatory 
interface 3 below. Try it and notice how each hypothesis assigns different labels to 
your actions. As a result, each hypothesis builds a different classifier, resulting in a 
different color map, to explain your actions. After enough clicks, it becomes obvious 
which digit you are typing because all others hypotheses lead to more complex 
maps - indicating a breach in our definition of consistency for continuous signals: 
using a simple color map. 

Link: https://openvault.jgrizou.com/#/ui/tuto_touch.json 

Video: https://youtu.be/ZUI7zbScUTk 

 

https://openvault.jgrizou.com/#/ui/tuto_touch.json
https://youtu.be/ZUI7zbScUTk
https://openvault.jgrizou.com/#/ui/tuto_touch.json


 

I personally find this demo the most compelling in this article. Trying to challenge it 
with complex color maps, or trying to force false prediction, is a good exercise to 
verify that you understand the algorithm. 

Important implications 
There are important implications that machine-learning connoisseurs should 
understand at this point:  

1.​ We transform an unsupervised learning problem into a supervised learning  
problem, which allows handling unstructured and deceptive datasets. 

2.​ We do not seek to classify users' actions into their meanings, thus we allow 
our model of the user’s action-to-meaning mapping to change during the 
interaction. As more data is received from the user, our method converges to 
the performance of a fully-calibrated system. 

3.​ Our stopping criteria is both data and task dependent. At first understanding 
the data is the bottleneck, but once enough data is received from the user, 
solving the task becomes the bottleneck. SELF-CAL embeds both constraints 
into one stopping criteria and allows a smooth transition between the two 
limit cases - from having no prior to having an ‘infinite weight’ prior. 

We address these points and their implications in detail below. 

THE FOLLOWING SUBSECTIONS SHOULD PROBABLY BE IN AN EXPANDABLE ITEM. 
IT IS A LOT OF DETAILS, VERY IMPORTANT FOR EXPERTS, BUT MAYBE NOT FOR A 
FIRST TIME READER. 

1.​ We transform an unsupervised learning problem into a supervised 
learning  problem 

Unsupervised clustering algorithms are designed to identify groups of points that 
are similar to each other when no labels are availables.  

The notion of group and of similarity are based on assumptions about the process 
generating the data. For example, in our PIN-entering interface, we could assume 
that the user will generate points of the same color close to each other and that 
yellow and grey points will form two well separated clusters. In other words that 

https://en.wikipedia.org/wiki/Cluster_analysis


data are generated from two “non-overlapping” Gaussian distributions, one for 
yellow points, one for grey points.​
​
Starting from such assumptions, an instinctive approach to solve the self-calibration 
problem would be to first find those clusters in the data. Then assign colors to each 
cluster, for example using a rule of thumb based on the task (e.g. label proportion - if 
some colors are known to be used more frequently) or by considering all possible 
combinations. And finally, replay the history of interactions knowing the colors for 
each point to identify the intended digit. 

Figure X compares this unsupervised approach (UNSUP) with the self-calibration 
method (SELF-CAL) on data organized in two well separated clusters.​
 



 

This unsupervised approach (left) is sound and easy to explain because it separates 
the problem in two logical steps. First identifying an action-to-meaning mapping and 
then inferring the user intent given a mapping. ​
​
Another argument in favor of this approach is that entire fields of research are 
dedicated to finding expressive embeddings for all sorts of signals. The goal of such 
research is to find the feature spaces that will best split signals by similarity, such 
that it becomes easy to locate and differentiate between clusters. Why not then rely 



entirely on these representations and assume the users’ signals will naturally be split 
into well separated clusters? 

Because, despite best efforts, it remains impossible to guarantee that data 
generated by users will naturally split into clusters, whatever the feature space. 
Especially in a self-calibration scenario, where we cannot know in advance the 
distribution of the signals the user will choose to use. It is thus impossible to 
engineer in advance a feature space that will ensure that the data will form well 
separated clusters. 

The advantage of the SELF-CAL method is that it does not need to assume the data 
are organized in well separated clusters. It only assumes that the user will preferably 
use simpler mapping than complex ones. Two characteristic cases will fail under the 
UNSUP methodology, see FIgure X below: 

1.​ Unstructured data - When there is no apparent structure in the data, when 
there are no visible clusters. 

2.​ Deceptive data - When there is a clear structure in the data but this structure 
is deceptive and does not map with the underlying class distribution. 



 

 

Note that, in both cases, if we had access to the underlying labels, we would be able 
to train a classifier capable of differentiating between classes with perfect accuracy. 

Figure X illustrates how both UNSUP and SELF-CAL would perform on unstructured 
data. The user data is generated from a single cluster in the middle of the feature 
space. But the color mapping is split diagonally, with the upper-right area associated 
with grey and the bottom-left area with yellow.  

Using UNSUP (Figure X - left), one would be hard pushed to identify two clusters 
from the unlabelled data generated by that user. Running an unsupervised clustering 
algorithm on these data would most likely lead to a wrong clustering. And waiting for 
more data would not help either because the data are generated from a single 
Gaussian distribution, not two. 



Using SELF-CAL (Figure X - right), the problem can be solved because we leverage 
constraints coming from the task. We know that the user is typing one out of ten 
digits. Thus, for the same data, we can generate 10 hypothetical labellings, one for 
each digit. We then simply find the labelling system that is significantly more 
consistent with the data, as described earlier in this section.​
 

 

 



The deceptive case is illustrated in Figure X. The user data is generated from two 
horizontally separated clusters, one on the right and one on the left of the feature 
space. But the color mapping is split vertically, with the upper area associated with 
yellow and the bottom area with grey.  

Using the UNSUP approach, two clusters can easily be identified. However replaying 
the history of a user's action assuming one cluster is grey and the other is yellow is 
likely to lead to false prediction or, at best, confusion and the inability to decide. 
Waiting for more data would not help either because the data simply are generated 
using a pattern that does not match with the clustering assumption.  

Using SELF-CAL, this problem can be solved because we have access to a limited 
set of hypothetical labels. In Figure X (right), the top/bottom split associated with 
digit 5 is a more consistent mapping than any of the other labeling systems. Note 
that none of the alternative labellings is considering a strict left/right split, the 
closest is for digit 9 but one point on each side is of the opposite color which, in that 
specific case, was enough to discard digit 9 compared to digit 5. 

​
 



 

 

SELF-CAL works in unstructured and deceptive cases above because it does not 
assume data should form clusters or have “visible” structure in the feature space. 
We only assume that, if we had access to the ground truth label, it would be possible 
to train a classifier differentiating each class.  

This is an important difference and it is what fundamentally separates the field of 
unsupervised and supervised learning. In unsupervised learning, we ask: Can we find 
clusters in the data? In supervised learning, we ask: can we separate the yellow and 
the grey points?  

At a first glance, self-calibration problems seem to belong to the unsupervised 
learning category because there is no direct way to assign ground-truth labels. 



Indeed, if we do not know the meaning of an individual user’s action, we cannot 
assign a yellow or grey color to each point. 

But, because of constraints coming from the PIN entering task, we can have access 
to hypothetical labels. It allows us to transform the problem into a comparative 
study between a finite number of supervised learning problems. We only need to 
pick the labelling system that is more consistent with the data we collected, and do 
not have to rely on clustering analysis to do so.​
​
We are using very loose terms here due to the nature of this article.  More precise 
definition, notation, test cases, theoretical and experimental evidence are needed to 
decipher this point better within an actionable theoretical framework. Attempts have 
been made and we link to the corresponding literature in section 5. For practitioners 
interested in this direction of research, a lot of work remains to be done with plenty 
of room for innovation. 

In the meantime, we strongly encourage you to challenge the interface by yourself. It 
is the best way to forge an intuitive understanding of what we described in this 
section. In particular, try generating data whose spatial configuration does not 
straightforwardly match with the underlying color mapping you arbitrarily choose. 

 

2.​ We do not seek to classify user’s actions into their meanings 
​
A action-to-meaning classifier is a byproduct of our approach, not its goal. 

Compared to a traditional human-machine interaction pipeline, we never classify 
individual user’s actions into their meanings. We rather take a global approach by 
looking for the most consistent hypothetical labelling system.  

Instead of asking: What does a user mean when they perform such or such action? 
And then inferring the user intent from those meanings. We rather ask: Which set of 
hypothetical labels fit best the data we received from the user? And we directly 
identify the user intent that way. Which in turn can inform us of the meanings of 



each user action. This is a significant shift in approach from the traditional 
human-machine interaction paradigm.  

Why does this framing matter? Because it explicits that, using SELF-CAL, we never 
commit to a definite action-to-meaning mapping. SELF-CAL allows our model of the 
user to change in time. 

To explain this, we need to differentiate two stages in the learning process:  
-​ Stage 1 - before we identify the first digit 
-​ Stage 2 -  after we identify a digit. 

In stage 1, the difference with a calibration first approach is obvious. With the CALIB 
approach, we need a classifier to be able to interpret the user’s actions. To train this 
classifier, a calibration step is performed first, where labeled data are collected using 
a known protocol and a classifier is trained on these data. Then, the classifier is 
"frozen" and used to translate actions from users into their meanings. 

This classifier is thus unique, pre-trained, and frozen in time. It is supposed to be an 
accurate action-to-meaning mapping of the user. However, the user might still 
generate signals out of the range of the data observed in the training set, potentially 
leading to false prediction. More alarming, because there's no way to know about 
this mistake, the classifier will never be updated with this new data and the problem 
will reoccur in the future. 

With SELF-CAL, we start without any information, no classifier, no data. We compare 
the consistency of hypothetical classifiers trained only on the data we received and 
make a decision only when we are confident about the user intent.  

This can happen at any time and we might not have acquired enough data to cover 
all possible user signals, we collected just enough evidence to be confident of the 
intended digit. This means that the color map we have is unlikely to be accurate and 
would inevitably lead to wrong prediction if we were to use it as a calibrated 
classifier. 



Take the example in Figure X. We simulate a user that defined three areas on the 
color map - Left/Middle/Right and is typing the code 2020. For the first digit, a 2, the 
user places points in the left area for yellow, and the middle for grey, but never uses 
the right area.  

Once the machine identifies the first digit, a 2, we could be tempted to train a 
classifier on the associated labels. And because the user never used the right area, 
the best guess from the classifier would be to consider it as a grey area. Simply 
because it is on the side of the grey points. 

 



Enters stage 2. Under the SELF-CAL method, once a digit is identified, we do not 
freeze the associated classifier to use for the next digits. Rather, we propagate the 
labels associated with the "winning" hypothesis to all other hypotheses. Indeed, we 
are now confident that the labels associated with the user intended digit are the 
ground truth for the signals received so far. 

 

However, we do not want to rely on the associated classifier because it might be 
terribly wrong on edge cases. We rather consider previous data as a prior, which is a 
very valuable source of information but it is not to be 100% trusted. Thus, instead of 
relying on a classifier, we simply continue the hypothetical labelling procedure and 
assign subsequent user's actions with different labels according to each hypothesis.  

This process will drive away the hypothesis classifiers again and a new decision will 
be made when one of the classifiers is significantly more consistent and more likely 
to explain the user behavior. Because we continue assigning labels according to the 
hypothetical intents, rather than referring to a frozen classifier, the action-to-meaning 
mapping is continuously updated. This is particularly advantageous in locations of 
the feature space where no data was collected before. 



 

To illustrate this point, we continue our example of Figure X. Once the first digit is 
found, the user decides to enter its second digit, a 0, by continuing using the middle 
area for grey, but by now using the right area for yellow, and never using again the 
left area.  

If we had frozen the best classifier learned for the first digit, all clicks in the right 
area would be predicted to be grey. But with the label propagation trick, the machine 
is not lead ashtray, does not over generalize, identifies the correct digit and correctly 
learns that the right area is used to mean yellow by the user. 

 



​
The same process of label propagation is then repeated for subsequent digits. 
Interestingly, as more digits are identified, the identification of the next digit 
becomes faster because the amount of prior information shared between each 
hypothesis increases each time.​
​
In our exemple, after the third digit is identified, 28 points share the same labels for 
all hypotheses (Figure X). For the last digit, if the user clicks in the center of the 2D 
map, five hypotheses will assign the color yellow to this new point and the remaining 
five will assign the color grey. But because this point is surrounded by grey points for 
all hypotheses, half of the hypothesis (the one assigning it the color yellow) will 
immediately be discarded.​
 

 



SELF-CAL is thus a gradual process that starts from knowing nothing about the 
action-to-meaning mapping of the user to having a very good model of it. We could 
say that stage 1 starts with no prior information about the user data . While in stage 5

2, concrete prior information is available in the form of the ground-truth labels of 
some data. The more digits we identify, the stronger the prior. A larger and larger 
proportion of signal-label pairs are shared between all hypotheses, making it easier 
to detect inconsistencies. One yellow point landing in the middle of a pool of 20 grey 
points shared by each hypothesis becomes a strong sign of a breach in consistency. 

Following this logic to infinity, the SELF-CAL procedure is progressively converging 
to the CALIB methodology. Once all hypotheses share hundreds of points with the 
same labels, a new point, whatever its label, is unlikely to lead to significant changes 
between the hypothetical classifiers. At this point, the all system acts like there is 
one unique classifier, exactly like the CALIB method. But we reached that stage 
without ever explicitly predicting meanings from actions, we rather compared 
alternative classifiers. This transition from pure self-calibration to fully calibrated is 
nicely embedded within the SELF-CAL framework. It illustrates that, seen from a new 
angle, the reasoning behind the CALIB problem is a limit case on the SELF-CAL 
spectrum where all hypotheses share the same infinite prior and agree on the color 
map used by the user. 

I hope that I have convinced you that SELF-CAL does not seek to train an 
action-to-meaning classifier at all. By not trying, we are actually more flexible and 
more robust to edge cases or novel signals arising from the user. Naturally, if one 
really wants to train a unique action-to-meaning classifier, it can be done. SELF-CAL 
gives access to the ground-truth labels after each digit is identified, thus we can train 
a classifier using this shared prior. But this is only a side effect of the method.​
 

 

5 Although it is good to remember that a lot of assumptions are made all along, such as the user following 
the protocol, the data that can be classified with the classification algorithm selected (here SVM with RBF 
kernel which embeds its own assumptions about the structure of the data), and the assumption of 
consistency stating that the user prefers simple maps to complex ones. 



3.​ Our stopping criteria is both data and task dependant 
​
We call the task the problem to be solved in interaction with the user, here entering 
digits of a PIN. We call the data the collection of actions sent by the user to the 
interface, for example the history of buttons clicked or the points placed on the 2D 
maps. 

Two conditions needs to be met to decide which digit the user intends to type: 

1.​ We need enough information to solve the task. We cannot make a decision 
until all digits have pairwise been of a different color at least once. For 
example, if the user is typing a 0, but the digits 0 and 1 are always of the same 
color, it will be impossible to decide whether the user is typing a 0 or a 1 
because the actions of the user will always be consistent with both 0 and 1. 
The method we use to select the color of the digit (see section 5) is designed 
to make sure this does not happen but it is important to remember it is a 
component of the problem. Therefore if we increase the number of intents, for 
example typing letters instead of digits, more clicks will be required to identify 
the user intent. Going further, tasks could be multi-step processes, such as 
playing a video game or navigating a maze. In such cases, the agent needs to 
reach very specific states to be able to eliminate some hypothesis, which 
might require long sequences of action. In interactive learning scenarios like 
the one we present here, there is always a lower bound in the number of 
interactions required to solve the task.​
 

2.​ We need enough information to understand the data. All hypothetic 
classifiers remain equally valid until we have collected enough clicks to 
identify some structure in the data. A good way to understand this is to refer 
to the interface with buttons from section 2. Knowing the color of the buttons, 
it takes 3 or 4 clicks to identify a digit. But, if we do not know the color of the 
buttons, we need at least 2 clicks on one button to start finding breaches in 
consistency and eliminate some hypotheses. If a user clicks only once on 
each button, we would collect 9 clicks in total yet no digits could be 
eliminated. All hypotheses would remain valid, each having a different but 
consistent model of the user action-to-meaning mapping. There is always a 



lower bound in the quantity of data required to identify some structure in the 
data. 

The SELF-CAL algorithm is solving the task at the same time as it is understanding 
the data. If the task is hard to solve or the data is hard to understand, SELF-CAL will 
automatically account for it and not make any decision before a confidence 
threshold is reached. Thus, because both task and data constraints are embedded 
into the same algorithms, SELF-CAL offers a smooth transition to a problem that is 
first limited by the understanding of the data (stage 1), and then, once enough prior 
information on the data is available, limited by the task (stage 2). 

Data constraints dominating in stage 1 are best explained using the interface with 
buttons. With calculated strategies, it is possible to never let the machine know what 
our digit is. To do so, you need to focus on a few digits and carefully click on buttons 
such that the action-to-meaning mappings associated with all these digits remain 
consistent over time. Let’s try. 

Focus on two digits and four buttons. For example digit 0 and 1 and the four most 
top-left  buttons. Associate a unique button to each possible color combination of 
the digit pair. There are only four possible combinations, as exemplified in Figure X. 
Using the interface that way ensures that, whatever the color of the digit 0 and 1, you 
allaws press the same buttons and remain consistent. 

 



Try using the interface while following this logic. Figure X shows the button-to-color 
maps associated to digit 0, 1, 2, 3 after more than 36 clicks following this process. It 
is also demonstrated in this video https://youtu.be/5HpDeInQc_w. It is impossible 
for the algorithm to make a decision between the digit 0 and 1, both usage of the 
button are equally plausible. However, it is easy to see that digits 2 and 3 are not the 
one the user is trying to enter due to irregularities in the meaning associated to each 
button. 

 

This result is somewhat surprising, you can click as long as you want and the 
machine will never be able to identify what digit you want to type. Do you even know 
what digit you are trying to type? Maybe not as you are purposefully trying to trick 
the machine. Nonetheless, it is theoretically possible that a user might try to type a 0 
by using the same four buttons in the same way as you did. However, it is very 
unlikely for this to happen without a conscious effort to trick the interface. 

The same logic applies on the touch version of the interface. Instead of selecting 
four buttons, you can split the screen in four areas and associate one area for each 
digit state. 

https://youtu.be/5HpDeInQc_w


 

Figure X shows the classifiers associated to digit 0, 1, 2, 3 after more than 50 clicks 
following this pattern. It is also demonstrated in this video 
https://youtu.be/Gf48wNd1W4k. It is impossible for the algorithm to make a 
decision between the digit 0 and 1, both maps are equally consistent. However, it is 
easy to see that digits 2 and 3 are not the digit the user is trying to enter. 

 

The above demonstration emphasizes how stage 1 is limited by the understanding 
of the data. In stage 2, once one or more digits are identified, the process becomes 
mostly limited by the task. Indeed, even if we had access to a perfect 

https://youtu.be/Gf48wNd1W4k


action-to-meaning mapping, the algorithm would still need 3 or 4 clicks to pull apart 
each hypothesis. 

The SELF-CAL procedure nicely adapts throughout stage 1 and stage 2 of the 
interaction as the weight of the prior information progressively increases. Unlike the 
CALIB methodology, our method does not need to rely on an explicit calibration 
phase to first understand the data and, only once the data are understood, focus on 
the task assuming the action-to-meaning mapping is correct. 

Indeed, a problem with the CALIB approach is to know when to stop the calibration 
procedure. How can we be sure that the trained classifier represents the future user 
behavior well? Maybe we should ask the user to repeat the task a couple more times 
to get a bit more data. Maybe we already have too much data and wasted 
everybody's time. SELF-CAL removes this problem because it merges both the task 
and the data problems into one. 

SELF-CAL will stop when it has just enough information to be confident of the user 
intent. No more, no less. Hence, contrary to a CALIB procedure, we do not even need 
to have a good estimation of the action-to-meaning mapping used by a user to 
identify their intent. We only need to have enough information to pull hypotheses 
apart. In our PIN demo, the first digit is often identified before enough data is 
available to build a thorough color map. As we saw in subsection X above, the map 
can actually be wrong and corrected later thanks to the hypothetical labelling 
procedure. 

 

The pandora box is now open. If we can solve the self-calibration problem with 
continuous user signals, it should work with a wide range of modalities.  

In the next section, we demonstrate the use of drawings and spoken commands to 
enter a PIN in our interface. Once again, you will get to decide which drawing or 
spoken word is associated with yellow or grey. You will invent a simplified sign and 
spoken language, which the machine will learn without prior knowledge, training set 
or calibration phase.  



 

Draw and speak 
The goal of this section is to demonstrate the use of drawings and spoken 
commands to enter a PIN in our interface following the self-calibration paradigm.  

As you can intuit, drawings and spoken commands are harder to work with than 
points on a 2D map. A drawing could be represented as the list of all the pixels your 
pointer goes through. A word could be represented as the list of all the amplitudes 
recorded by your microphone in time sampled at a few kHz.  

Instead of working with two dimensional vectors encoding a [x, y] position on a map, 
we now have to deal with vectors of N dimensions with N likely to be very large. It is 
not practical and will make it harder to find patterns in the data. Luckily, the scientific 
community spends a lot of time trying to come up with compact representations for 
various types of signals. 

Feature extraction is the process of describing a phenomenon of interest using a 
limited number of characteristic features while conserving relevant information. This 
compressed representation is helpful to visualize and interpret the data. For 
example, in medicine, the height and weight of an individual can be used to predict 
risk of cardiovascular diseases, see the body mass index for example. Summarizing 
a human being by its height and weight is a case of feature extraction. 

In machine learning, feature extractions facilitates learning and generalizing. Instead 
of working with data in large dimensional spaces, we extract a few key features from 
the data and use these features for our analysis. The challenge is to extract the right 
features that conserve key information about the original data such that the desired 
task can be solved to satisfaction. 

A complementary method is dimensionality reduction whose goal is to project data 
from a N-dimensional into a smaller space of dimension D while conserving the 
relevant information and relationship between the data. Well known dimensionality 
reduction algorithms include PCA, t-sne and UMAP. 

 

https://en.wikipedia.org/wiki/Feature_extraction
https://en.wikipedia.org/wiki/Body_mass_index
https://en.wikipedia.org/wiki/Dimensionality_reduction
https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding
https://en.wikipedia.org/wiki/Uniform_Manifold_Approximation_and_Projection


To scale our approach to drawings and spoken words while conserving our intuitive 
visualization, we decided to represent drawing and sounds as points on a 2D map.  

While feature extraction can be done on a per sample basis, dimensionality 
reduction requires a dataset with at least a few samples. Thus we chain both 
methods and first extract relevant features from each sample and then project the 
dataset of signals received for the user in a two dimensional space. This level of 
compression is not usually recommended as a lot of information might be lost in the 
process. But we can afford that risk in this setup for a few reasons: 

-​ 2D points and color maps are easy to visualize and we want you to be able to 
follow the process using our interactive dashboard as before.  

-​ We start from scratch and have only two classes so we do not have to learn a 
representation that can cluster all possible drawings or speech but just the 
one generated by users. 

-​ We do not rely directly on a classifier trained on the projection but use the 
SELF-CAL procedure which will be robust to most cases of bad projections. 

-​ Users do not have infinite patience and we need to identify a digit quickly. The 
higher the dimensionality, the more data is required for SELF-CAL to identify 
your digit. 

-​ Making a mistake has no bad consequences. The worst that can happen is a 
false digit showing up on the screen. 

We will provide an overview of the pipeline used to project drawing and speech in a 
2D space but we will not go into details to maintain the focus on the self-calibrating 
concepts and its implications. The goal here is for you to experience the interface 
using sketches and sounds. 

Drawings 
We represent a drawing using simple features such as the starting [x,y] coordinate, 
the end coordinate, the distance between start and end, the length of the drawing 
path, etc - forming a 17D feature vector per drawing. To be robust to scale and 
location, a normalizing step is applied before features are extracted . 6

6 Our representation is robust to differences in scale and position, but not in rotation. For example, using 
squares of any orientation for yellow and triangles of any orientation for grey might not work. It could be a 
good experiment to challenge the system though. 



 

 

All sketches received from a user are then collated in one dataset and the UMAP 
algorithm is used to project the data from the 17D feature space to a 2D space. 

 

 

 



As we are in a self-calibration scenario, you decide which drawings to associate to 
yellow and to grey. It is arbitrary and up to you. For example, a triangle could mean 
yellow and a circle mean grey. The drawing of a house could mean yellow and a 
carrot mean grey. You decide. A safe place to start is to draw the letter ‘Y’ for yellow 
and the letter ‘G’ for grey, it is easy to remember. Also don’t panic, your drawings do 
not have to be accurate or pretty, rough sketches are perfectly fine. 

A drawing is limited to one stroke of a pen. To start drawing, press the left button of 
your mouse down on the drawing area. This will drop the pen and you can start 
drawing. Drawing will stop when you release the button of your mouse. The sketch 
will be automatically sent to the machine as the action associated with the digit 
state shown on screen. 

Try it: https://openvault.jgrizou.com/#/ui/demo_draw.json 

Add tutorial video here 

Two new buttons are available at the bottom of the screen. The bottom-right button 
will show you the history of drawings. This history will be colored in yellow or grey 
once the machine will have understood what they mean, that is only once a digit has 
been identified. The bottom-left button will show the projection of your drawing on a 
2D space. The sketches will also be colored once their meaning is known. Note that 
the UMAP projection is recomputed at each iteration with the new data and will 
therefore change. This allows us to refine the projection as more data is available. It 
does not hurt performances because SELF-CAL estimates the likelihood of each 
hypothesis from scratch at each iteration. 

To visualize the process, you can use the interface with the dashboard as before. 
The side panel will show you the 2D representation of your label according to each 
hypothesis. It looks exactly the same as in section 3. 

https://openvault.jgrizou.com/#/ui/tuto_draw.json 

 

 

 

https://openvault.jgrizou.com/#/ui/demo_draw.json
https://openvault.jgrizou.com/#/ui/tuto_draw.json


Spoken words 
We applied the same logic to spoken words. Sounds are represented by their 
embeddings pre-trained for classification tasks on the AudioSet 
(https://ieeexplore.ieee.org/abstract/document/7952261) dataset covering 
common everyday environmental sounds. We decided to use non-speech specific 
features (https://arxiv.org/abs/1609.09430) because we are in a self-calibration 
scenario. Users do not have to use common spoken words but can invent their own 
language or use sounds generated by objects around them. 

This embedding encodes 1 seconds of sounds into a 128 dimensional vector. 
Because of the high dimensionality of the embedding, we use data augmentation to 
help UMAP find structure and clusters with a small number of data. More 
specifically, each sound is split into overlapping windows to artificially create 
manifolds in the embedding space. We then project the entire dataset into a 2D 
space and average the augmented projections to form the final 2D representation of 
a sound. 

To create manifolds we try to create trajectories in the embedding space by cutting 
the sounds in overlapping chunks. The user can record a sound of at most 3 
seconds. The sound is trimmed and repeated to reach a length exactly 3 seconds. It 
is then split into 21 windows of 1 second starting every 100ms. Each 1 seconds 
sequence is projected into its embedding of 128 dimensions. 

 

https://research.google.com/audioset/
https://ieeexplore.ieee.org/abstract/document/7952261


 

Thus, for N words, we end up with an unlabelled dataset of N*21. And we know that 
a subset of these points are linked together as part of a sound trajectory. We use the 
UMAP algorithm to project the data from the 128D into a 2D space. We then average 
each trajectory projection to come back to a unique projection for each sound which 
can be used for our SELF-CAL procedure. 



 

 

This representation is clearly a hack that was needed for a digit to be identified in 
only a few iterations. The use of the embedding allows the use of a wide range of 
sound not predictable before run time. It works well for our case but we do not 
recommend relying on similar tricks for problems with real word consequences 
before thoroughly testing this method. I am sure experts in sound processing could 
find many ways to improve on this.  

As before, you decide what sounds to associate to yellow and to grey. It is arbitrary 
and up to you. For example, the word “banana” could mean yellow and “chocolate” 
mean grey. It will also work with non-words sounds, clapping your hands could mean 
yellow and snapping your finger could mean grey. You decide. A safe place to start is 
to say “yellow” for yellow and the “grey” for grey, it is easy to remember.  

Finally, sounds are limited to 3 seconds in total. To start drawing, click on the green 
button. The recording immediately starts and will stop after 3 seconds. The sound 
will be automatically sent to the machine as the action associated with the digit 
state shown on screen. It will take a few seconds to process. 



 

 

https://openvault.jgrizou.com/#/ui/demo_audio.json 

As a bonus, the two buttons at the bottom of the screen allow you to see the 
projection of each sound. You can replay each sound by clicking on the play button. 

To visualize the process, you can use the interface with the dashboard as before. 
The side panel will show you the 2D representation of your label according to each 
hypothesis. It looks exactly the same as in section 3. 

https://openvault.jgrizou.com/#/ui/tuto_audio.json 

The sketch and sounds demonstrations illustrate the potential of the SELF-CAL 
method to scale to various real world modalities. 

 

In the next section, we review domains where self-calibration problems have been 
encountered and discuss how other researchers approached this problem. We then 
list some open research questions and discuss potential applications along with 
ethical considerations. 

https://openvault.jgrizou.com/#/ui/demo_audio.json
https://openvault.jgrizou.com/#/ui/tuto_audio.json


Discussion 

Related Work 
HCI - pointing without pointer - motion matching 

https://dl.acm.org/doi/abs/10.1145/985921.986076 

https://dl.acm.org/doi/10.1145/3064937 

https://dl.acm.org/doi/abs/10.1145/3294109.3295628 

 

 

Spiking neurons interpretation - Mutual Information 

 

BCI: 

-​ Difference with previous approaches 
-​ No label imbalance 

 

Smart Captcha/Group labelling to get ground truth 

 

HRI - My work + Thomas Cederborg 

 

Zero-knowledge proof? 

 

https://dl.acm.org/doi/abs/10.1145/985921.986076
https://dl.acm.org/doi/10.1145/3064937


Open Questions And Extension 
 

Mathematical framework. Another way to look at this is that the user does not follow 
the model we are building of his action. 

-​ Planning 
-​ With errors and noisy overlapping data 
-​ Regression (correlation as measure of consistency) 
-​ Measures of consistency (entropy, class overlap, compactness) 
-​ Human acceptance 
-​ Co-adaptation & shift through  time 
-​ Scaling: 

-​ Unlimited hypotheses 
-​ Unknown protocol/context 
-​ Impact of task properties (symmetries, size) 
-​ Number of classes / meanings 

-​ Planning taking into account user patience to failure. Wait to be too sure and 
the user will grow frustrated. 

Applications 
 

-​ Education. Teaching with the challenge + vault installation at CRI.​
 

-​ Security. Hiding colors and code. How can we design computer interfaces 
that provide no informative feedback to an observer? 

https://openvault.jgrizou.com/#/ui/demo_keyboard.json 

SpyLock 

-​ Smart Captcha like google pick a vehicle in the image -> labelling data by 
consensus as people are consistent in their identification of things. Find the 
name of this field of research. Rely on both internal and crowd/societal 
consistency. We could use a game with an open ended goal instead of an 

https://openvault.jgrizou.com/#/ui/demo_keyboard.json


explicit classification task.​
 

-​ Personalised marketing to infer intent from actions, without assumptions.​
 

-​ Neuroscience -- How can we identify which set of neurons are responsive to 
specific stimulus, free from any assumptions about which features of the 
spike train are most important ? ​
 

-​ Brain-Computer Interaction -- AI - Interactive Learning -- How can we design 
human-machine interfaces that can adapt on the fly to the preferences of 
each user?​
 

-​ Psychology -- How can we read the mind of a person, that is infer its intents by 
only observing its actions?​
 

-​ Art (Exhibition) 

Another angle 
THIS SECTION IS NOT READY FOR PROOF-READING 

The most fruitful applications of this interaction paradigm will probably be counter 
intuitive. For example, if applied to tasks for which we believe we already know how 
to decode actions into meanings, we might find out that we are wrong. That our 
theory behind various interpretations of human actions is flawed. The consequences 
could be destabilising, ranging from false conclusions in scientific experiments, to 
false interpretation of psychological tests or consumer behaviors. 

Every artefact around us has been designed to be used in one specific way. It is our 
responsibility to learn to adapt to them. We do not even see anymore that we had to 
learn such interaction protocols. Like fashion we do not even question whether 
things could be designed differently. Think of the smartphone in your pocket and all 
the interactive conventions that come with using a touch screen. It was invented by 
designers, with insight from user studies, but we had to adapt to them. Green 
buttons, red buttons. Slide left, right, up, down. Long press, short press, etc. 



It is the same for entire societies. Conventions are developed and applied by groups 
of humans and we stopped seeing they even exist. Green light, red light. How to eat. 
How to say hello. What to be offended about. It is part of our culture. 

But sometimes a few people do not get the memo, or decide not to conform, not to 
use the mainstream way to communicate or behave in society. Not because of 
malice, but because they prefer otherwise, they decide not to use pre-established 
conventions. Their actions are often misinterpreted and their intention can be seen 
as odd at best, as opposite, dangerous, or deficient at worst. 

Ask one of your friends to choose how to use the interface in section 3, placing 
points on the map. Nobody has ever used such an interface to type a PIN, so your 
friend will not be influenced by convention about how to use the interface. If you do 
not demo one map to them, chances are they probably won’t use the same map as 
you would. It is just how it is, we are different, and it is ok. 

The link between behavior and intention is brittle, context dependent, perception 
dependent. A lot of our social models assume a tremendous amount of shared 
convention. Psychological assessments for example are based on answers to tests 
providing some context about the patient goals, way of reacting to clues and 
information, ways of answering, etc. But those assumptions might be wrong.  

It is all about the assumption we make, they bias our interpretation. We observe 
actions, transform them into meaning and use it to infer an intent. If our pre-trained 
action-to-meaning classifier is wrong, we will predict the wrong intent. With all the 
consequences that can follow. 

Could self-calibrating algorithms counter this and enable us to see what we can no 
longer see due to normative conventions? 

Our work shows that we can infer an intent directly from the actions if some context 
is available (it-self subject to some interpretation of course).  While remaining 
flexible to the particular expressivity of the user, its action-to-meaning mapping.​
​
I have no idea where to start but I feel this direction is where this technology would 
be best applied. 

Look for the intent in each person, not on their behavior. The basic assumption we 
can rely on is that people try to do their best and do good work. But we all have 



different action-to-meaning models and using yours to understand someone else's 
one often leads to miscommunication, misunderstanding and sad stories. 

 

Resources 
Website, previous work, videos, challenge 

https://jgrizou.com/projects/thesis/#publications 

https://jgrizou.com/projects/vault/ 

https://jgrizou.com/projects/thesis/#publications
https://jgrizou.com/projects/vault/
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