
11.3 Spectroscopic Determination of Organic Compounds

Past Exam Questions (Paper 2)

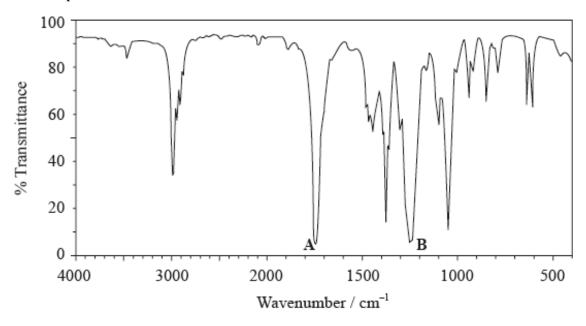
1a. [2 marks]

The mass spectrum of an unknown compound, \boldsymbol{X} , of empirical formula C_2H_4O is shown below.

[Source: Cleapss Guides: L202 Spectra (Cleapss School Science Service), Sept 2000.]

Determine the relative molecular mass of **X** from the mass spectrum and deduce the

formula of the molecular ion.	
1b. [1 mark]	
Identify a fragment which gives r	rise to the peak at $m/z = 29$.


1c. [1 mark]

Comment on the absence of a peak at m/z = 59.

.....

1d. [1 mark]

The IR spectrum of \mathbf{X} is shown below.

[Source: http://modbo1.ibase.go.jp/sdbs/cgi-bin/cre_index.cgi?lang=eng]

Use Table 17 of the Data Booklet to identify the bonds which correspond to the absorptions ${\bf A}$ and ${\bf B}$.

A:

B:

1e. [1 mark]
Deduce the name of the functional group present in X .
1f . [1 mark]
The 1HNMR spectrum of X shows three peaks. State the information that can be obtained from the number of peaks.

1g. [2 marks]

The 1HNMR spectrum of **X** includes peaks at 2.0 and 4.1 ppm. Use the Data Booklet to suggest the chemical shift of the third peak and state its relative peak area. Show your answers in the table below.

Peak	Chemical shift / ppm	Relative peak area
First	2.0	3
Second	4.1	2
Third		

1h. [1 mark]

Deduce a possible structure for **X** that is consistent with the mass, IR and ${}^{1}HNMR$ spectra.

2a. [3 marks]

Explain what occurs at a molecular level during the absorption of infrared (IR) radiation by the sulfur dioxide molecule, SO_2 .

2b. [5 marks]

Consider the IR spectra of the following three compounds.

$$A = CH_3(CH_2)_3 COOH B = CH_3 COOC(CH_3)_3 C = (CH_3CH_2)_3 COH$$

$$0 = CH_3(CH_2)_3 COOH B = CH_3 COOC(CH_3)_3 C = (CH_3CH_2)_3 COH$$

$$0 = CH_3(CH_2)_3 COOH B = CH_3 COOC(CH_3)_3 C = (CH_3CH_2)_3 COH$$

$$0 = CH_3(CH_2)_3 COOH B = CH_3 COOC(CH_3)_3 C = (CH_3CH_2)_3 COH$$

$$0 = CH_3(CH_2)_3 COOH B = CH_3 COOC(CH_3)_3 C = (CH_3CH_2)_3 COH$$

$$0 = CH_3(CH_2)_3 COOH B = CH_3 COOC(CH_3)_3 C = (CH_3CH_2)_3 COH$$

$$0 = CH_3(CH_2)_3 COOH B = CH_3 COOC(CH_3)_3 C = (CH_3CH_2)_3 COH$$

$$0 = CH_3(CH_2)_3 COOH B = CH_3 COOC(CH_3)_3 C = (CH_3CH_2)_3 COH$$

$$0 = CH_3(CH_2)_3 COOH B = CH_3 COOC(CH_3)_3 C = (CH_3CH_2)_3 COH$$

$$0 = CH_3(CH_2)_3 COOH B = CH_3 COOC(CH_3)_3 C = (CH_3CH_2)_3 COH$$

$$0 = CH_3(CH_2)_3 COOH B = CH_3 COOC(CH_3)_3 C = (CH_3CH_2)_3 COH$$

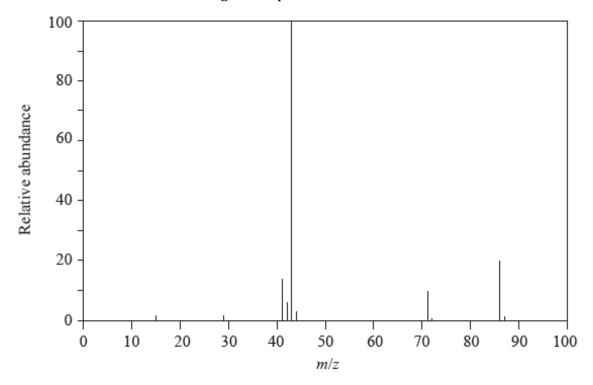
$$0 = CH_3(CH_2)_3 COOH B = CH_3 COOC(CH_3)_3 C = (CH_3CH_2)_3 COH$$

$$0 = CH_3(CH_2)_3 COOH B = CH_3 COOC(CH_3)_3 C = (CH_3CH_2)_3 COH$$

$$0 = CH_3(CH_2)_3 COOH B = CH_3 COOC(CH_3)_3 C = (CH_3CH_2)_3 COH$$

$$0 = CH_3(CH_2)_3 COH$$

$$0$$


Determine which IR spectrum corresponds to each compound A, B and C. Explain your reasoning. IR data can be found in Table 17 of the Data Booklet.

Compound	Spectrum	Reason
A		
В		
С		

3a. [1 mark]
Compound P contains a carbonyl group (C=O) and has the molecular formula C_3H_6O .
Draw the two possible structures of compound P .
21. [4
3b. [1 mark]
Explain why the infrared spectra of the structures in (a) are very similar.
3c. [2 marks]
Explain how the mass spectra of the structures in (a) can be used to distinguish between them.

3d. [3 marks]

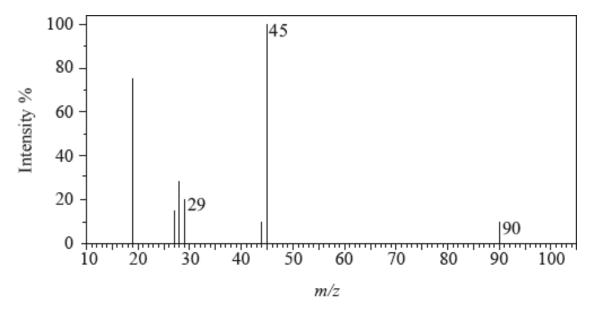
Pentan-2-one has the following mass spectrum.

Deduce the formulas of the species with the m/z values at 86, 71 and 43.

m/z = 86:

m/z = 71:

m/z = 43:


3e. [1 mark]

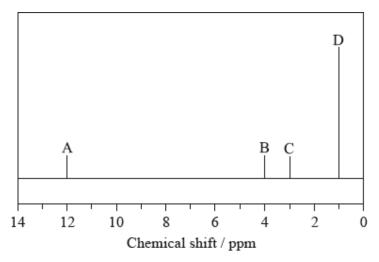
Suggest a reason for the peak at m/z = 43 having an exceptionally high relative abundance.

.....

4a. [2 marks]

The mass spectrum of an unknown acidic compound, ${\bf X}$, with empirical formula ${\it CH}_2{\it O}$, is shown below.

Determine the relative molecular mass, to the nearest integer, of the compound from the mass spectrum and deduce the formula of the molecular ion.


4b. [1 mark]		
	la of the fragment responsible f	For the peak at 45.
	la of the fragment responsible f	For the peak at 45.

4c.	Γ1	mark]	•

Deduce the form	mula of the fragment responsible for	r the peak at 29.

4d. [1 mark]

The low-resolution 1HNMR spectrum of **X** shows four peaks. A simplified representation is shown alongside a table with relative peak areas.

Peak	Relative peak area
A	1
В	1
С	1
D	3

Identify the	group	responsible	for the	neak at D.
racifully tife	Sioup	responsible	TOT CITE	peak at D.

	 		 		 		 				 		٠.		 	 		 		 	 		 			 		

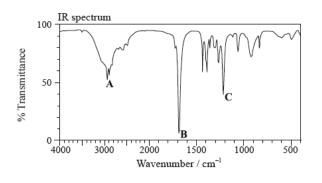
4e. [1 mark]

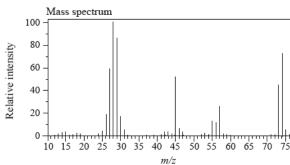
Suggest a possible structure for **X**.

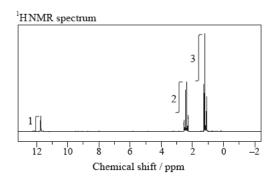
Mass spectrometry is a powerful analytical technique used in the identification of organic compounds. The mass spectrum of a compound with empirical formula $\mathcal{CH}_2\mathcal{O}$ displays
peaks at <i>m</i> / <i>z</i> 15, 45 and 60.
Determine the molecular formula of the compound.
5b. [2 marks]
Identify the fragments responsible for the peaks at
m/z = 15
m/z = 45
5c. [1 mark]
Identify a compound that could produce this spectrum.

5a. [1 mark]

6a. [3 marks]


Infrared (IR) spectroscopy is widely used as a technique in analytical chemistry.


Explain what happens at a molecular level during the absorption of IR radiation by carbon dioxide, CO_2 .


٠.		
٠.		
٠.		
٠.		
•		

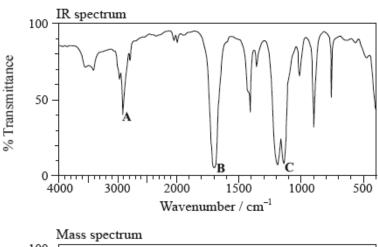
6b. [7 marks]

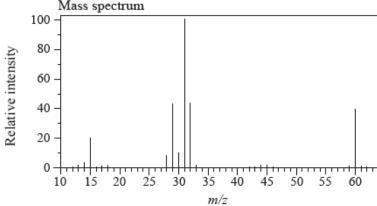
The IR spectrum, mass spectrum and 1HNMR spectrum of an unknown compound, **X**, of molecular formula $C_3H_6O_2$ are as follows.

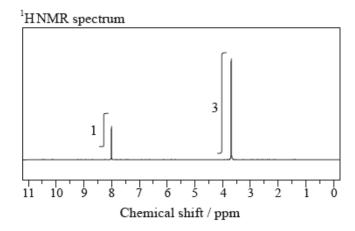
(i) Identify the bonds responsible for the peaks **A**, **B** and **C** in the IR spectrum of **X**.

A:

B:


C:


(ii) corre	In the mass spectrum of X , deduce which ions the m/z values at 74, 45 and 2 espond to.
m/z	= 74:
m/z :	= 45:
,	
m/z	= 29:
(iii)	Identify the peak at 11.73 ppm in the ${}^{1}HNMR$ spectrum.


7. [9 marks]

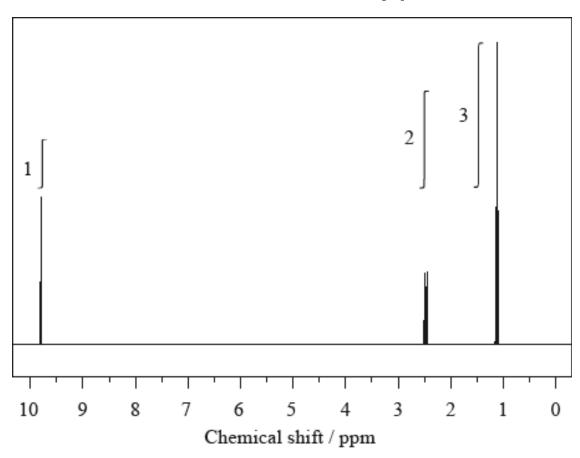
Infrared (IR) spectroscopy is widely used as a technique in analytical chemistry.

The IR spectrum, mass spectrum and 1HNMR spectrum of an unknown compound, **Y**, of molecular formula $C_2H_4O_2$ are as follows.

[Source: SDBSWeb: http://riodb01.ibase.aist.go.jp/sdbs/ (National Institute of Advanced Industrial Science and Technology)]

(i) Identify the bonds responsible for the peaks A, B and C in the IR spectrum of Y.

A:


B:

C:

(ii) to.	In the mass spectrum of \mathbf{Y} , deduce which ions the m/z values at 31 and 29 correspond
m/z	= 31:
m/z	= 29:
(iii)	Identify the peaks at 3.76 and 8.07 ppm in the ${}^{1}HNMR$ spectrum.
3.76	ppm:
8.07	ppm:
(iv) hydr	State what information can be obtained from the integration trace about the ogen atoms responsible for the peak at 3.76 ppm in the $^{1}HNMR$ spectrum.
(v)	Deduce the structure of Y .
(vi)	Explain why tetramethylsilane (TMS) is suitable as a reference standard.

8a. [2 marks]

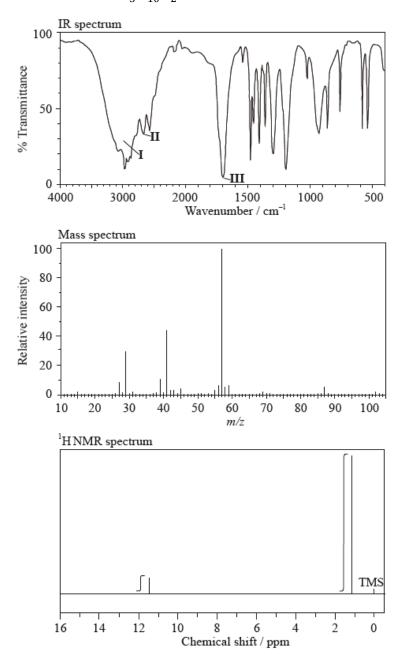
The $^{1}HNMR$ spectrum of ${\bf X}$ with molecular formula $C_{3}H_{6}O$ is shown below.

Deduce which of the following compounds is \boldsymbol{X} and explain your answer.

$$CH_3$$
 – CO – CH_3 — CH_3 – CH_2 – CHO — CH_2 – CH – CH_2OH

Compound:

Explanation:		


Spec	trum of one of the other isomers, giving your reasoning.
8c. [1 mark]
The	infrared and mass spectra for X were also recorded.
wave	enumbers, that would be present in the infrared spectrum.
8d. /	1 mark]
Apar wave	I mark] It from absorptions due to C–C and C–H bonds, suggest one absorption, in enumbers, absent in this infrared spectrum but present in one of the other compown in part (c).
Apar wave show	rt from absorptions due to C–C and C–H bonds, suggest one absorption, in enumbers, absent in this infrared spectrum but present in one of the other compo
Apar wave show	rt from absorptions due to C–C and C–H bonds, suggest one absorption, in enumbers, absent in this infrared spectrum but present in one of the other compown in part (c).

8e. [2 marks]
Suggest the formulas and $\mbox{m/z}$ values of \mbox{two} species that would be detected in the mass spectrum.
Species:
m/z:
Species:
m/z:

9a. [3 marks]

Infrared spectroscopy is commonly used as an analytical technique by inorganic, physical and organic chemists.

The IR spectrum, mass spectrum and 1HNMR spectrum of an unknown compound, **X**, of molecular formula $C_5H_{10}O_2$, are as follows.

[Source: SDBSWeb:http://riod01.ibase.aist.go.jp/sdbs/(National Institute of Advanced Industrial Science and Technology)]

In the IR spectrum, identify the bond responsible for each of the absorptions labelled **I**, **II** and **III**.

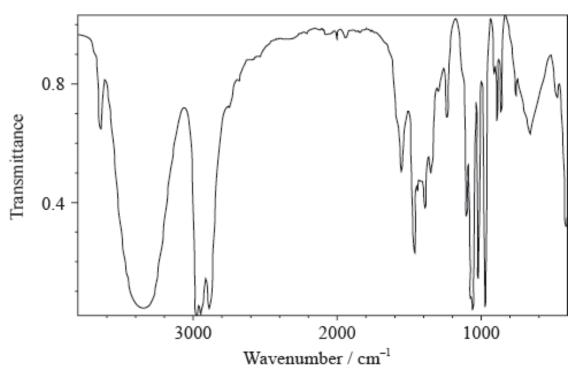
I:

II:

III:

In the mass spectrum, deduce which fragments the $\it m/z$ values at 102, 57 and 45 correspond to.
m/z = 102:
m/z = 57:
m/z = 45:
9c. [1 mark]
Identify the peak at 11.5 ppm in the ${}^{1}HNMR$ spectrum.
9d. [1 mark]
State what information can be obtained from the integration traces in the 1HNMR spectrum about the hydrogen atoms responsible for the peak at 1.2 ppm.
9e. [1 mark]

9b. [3 marks]


Deduce the structure of **X**.

9f. [2 marks]

$CH_3COOCH_2CH_2CH_3$ is an isomer of X . Deduce two differences between the spectrum of this isomer and that of X .	HNMR
spectrum of this isomer and that of A .	

10a. [1 mark]

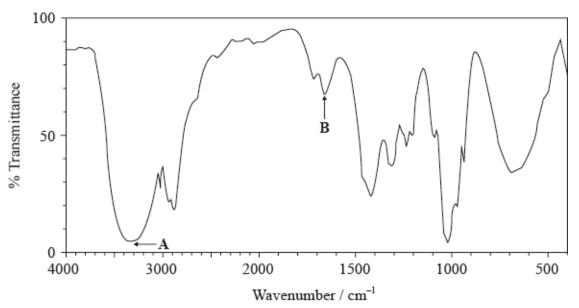
The IR spectrum below represents one of the three organic compounds: propan-1-ol (CH₃CH₂CH₂OH), propanal (CH₃CH₂CHO) or propanoic acid (CH₃CH₂COOH).

The mass spectrum of the same compound contains strong peaks of $(M_r-15)^+$ and $(M_r-17)^+$ ions. The first signal corresponds to the loss of a methyl group, \mathcal{CH}_3 , from the molecule. Deduce which fragment is lost to produce the second peak.

10b. [1 mark]
Using the information above, deduce the identity of the organic compound.

10c. [1 mark]	
Predict the number of peaks in the	¹ <i>H NMR</i> spectrum of this compound.

11a. [1 mark]


Analytical techniques are very useful in determining molecular structures. A compound, \mathbf{X} , has the empirical formula C_2H_4O .

Identify the analytical technique that would most readily provide the additional data required to calculate the molecular formula of \mathbf{X} .

.....

11b. [4 marks]

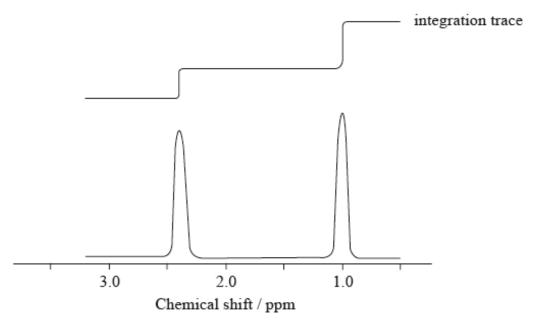
The molecular formula of ${\bf X}$ is $C_4H_8O_2$. The information in the IR spectrum below can be used to help determine the structure of ${\bf X}$.

(i)	Sta	ate	W	ha	t i	nfo	or	m	at	io	n	a	bo	οι	ıt	a	n	10	le	Cl	ul	e	ca	ın	b	e	0	b	ta	in	e	d i	fro	or	n	it	S	IF	₹ 5	sp	e	ct	rı	ın	n.

(ii) Deduce the information obtained from absorptions ${\bf A}$ and ${\bf B}$.

A:

B:


(iii)	Comment on the absence of any major absorption in the region $1700-1750 \ cm^{-1}$.
11c.	[4 marks]
The	¹ <i>H NMR</i> spectrum of X shows three peaks with relative areas of 2:1:1.
(i)	Deduce what information can be obtained from these data.
(ii)	Deduce the structure of X .

12a. [3 marks]

Deduce the number of peaks in the ¹ <i>H NMR</i> spectra of 1-bromobutane and 2-bromobutane. Explain how the integration trace can be used to distinguish between the two compounds.
12b. [2 marks]
Compare the ${}^{1}HNMR$ spectrum of 1-bromo-2-methylpropane with the two spectra considered in (a). Include the number of peaks and the integration trace.
13a. [1 mark]
$^1 H NMR$ and IR spectroscopy both involve the absorption of electromagnetic radiation.
Identify the region of the electromagnetic spectrum used in $^{1}HNMR$ spectroscopy.

13b. [1 mar	'k]				
Identify whi	ich of these t	wo technique	s involves hig	gher energy radiati	ion.
14. [4 mark	s]				
•	between the	-	ectra of 1-bro	omopropane and 2	-bromopropane

The low resolution ${}^{1}HNMR$ spectrum of compound **Q** is shown.

Identify what information from the spectrum allows the determination of the relative numbers of hydrogen atoms producing each peak.

		 ٠.			 									 	 		 				 ٠.						 	 	

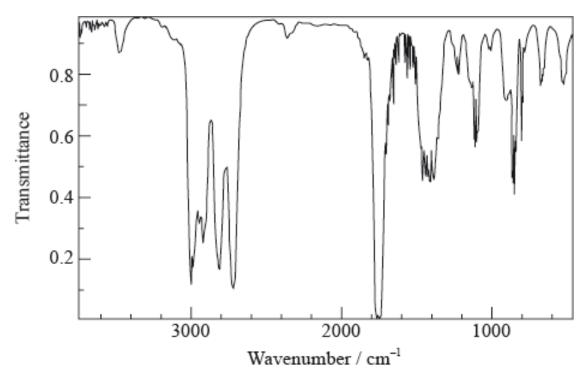
15b. [1 mark]

Deduce which of the following compounds is ${\bf Q}$.

$CH_3CH_2CH_3$	$CH_3CH_2COCH_2CH_3$	CH_3CH_2OH

15c. [1 mark]

Identify the wavenumbers of two peaks in the infrared spectrum of compound ${\bf Q}$, using the Data Booklet.


- 0 0 (0)	16a.	[3	marks]	
--------------------	------	----	--------	--

Nuclear magnetic resonance (NMR) and mass spectrometry are diagnostic techniques often
used in the identification of organic compounds.

Deduce two similarities and one difference in the ${}^{1}HNMR$ spectra of the two isomers $CH_{3}COOH$, a carboxylic acid, and $HCOOCH_{3}$, an ester. ${}^{1}HNMR$ data are given in the Data Booklet	
16b. [2 marks]	
The mass spectrum of one of the two isomers above has significant peaks at mass to charge ratios of 15, 45 and 60, while the other isomer has peaks at 15, 29, 31 and 60. Analyse these fragmentation patterns in the two mass spectra in order to distinguish between the two isomers.	

17a. [2 marks]

Infrared spectroscopy is an analytical technique that uses electromagnetic radiation. The infrared spectrum of a substance, X, with empirical formula C_3H_6O is given below.

[Source: NIST http://webbook.nist.gov/chemistry]

Explain why the structural formula of X **cannot** be:

17b. [2 marks]

The the r		-			of th	iree	peak	s. D€	educ	e the	str	uctu	ral f	ormu	la of X	and

Printed for ISF ACAD LIMITED

© International Baccalaureate Organization 2021

 $International \ Baccalaure ate \& -Baccalaur\'e at \ International \& -Bachiller ato \ Internacional \& -Bachiller ato \ Internacional$