
BigQuery Streaming Insert Benchmark
heejong@google.com

12/11/2018

Background

This document describes a quick benchmark for 4 different streaming insert implementations for
BigQuery in Apache Beam. The benchmark is a part of research for finding a method to reduce
overheads on BigQuery backend because of uncontrolled API requests regarding BEAM-5514.

Implementations

Current Status BigQueryIO.write() uses streaming insert API to write data bundles to BigQuery
table. There can be hundreds of concurrent tasks running for streaming insert and it causes multiple
problems such as excessive rate limit exceeded error logs or unnecessary overheads on BigQuery
API backend. BigQueryIO.write() first splits a PCollection into 50 shards and creates dozens of
inserting futures for each processed bundle per shard. The number of generated futures depends on
the size of the bundle. If each bundle generates 20 futures, the maximum number of concurrency will
be 1000.

Dynamic Throttling RateLimiter class in Guava library offers uniformly distributed rate controlling. It
controls the rate by issuing the given number of tickets each second and workers are competing for
getting those tickets before doing their job. Dynamic throttling implementation utilizes RateLimiter
class in Guava and Meter class in Codehale. RateLimiter issues 2000 tickets each second (default
rows per second quota 100000 divided by the number of shards 50). On every minute, if there was
no rate limit exceeded error during the previous one minute, RateLimiter increases the number of
issuing tickets by 1 percent. Otherwise, the number of tickets decreases 5 percent.

Shared Backoff By simply moving backoff instance to the outer future scope, all futures can share
the same backoff. Since default backoff implementation is not thread-safe, it’s also required to make
nextBackoffMillis() synchronized. In this case, futures will receive significantly large backoff intervals
as compared to using multiple backoffs.

Any IOException Handler BigQuery API sends two different responses for the same rate limit
quota exceeded error. Rate limit exceeded error is properly handled with backoff but quota exceeded
error is not. When unhandled exception is thrown in any future, it crashes a whole bundle and delays
the process at least 10 seconds (in case of Dataflow Runner). By handling all types of IOException
in the same way as rate limit exception, we can remove the worker restarting delay and retrying the
failed job right away.

mailto:heejong@google.com
https://issues.apache.org/jira/browse/BEAM-5514

Configuration

The benchmark program is a simple streaming pipeline that generates 4 bytes random string of
integer numbers and inserts them into BigQuery table. The number of workers is set to 4 and
running time is 20 minutes on production DataflowRunner. At the time of benchmark, master branch
is pointing to 29a7917.

Benchmark Result

 Writer Wall Time Bytes Written

Master 11 hr 0 min 56 sec 1,281,740,388

Master + dynamic throttling 15 hr 50 min 35 sec 1,119,466,932

Master + shared backoff 8 hr 43 min 59 sec 536,049,960

Master + any IOException handler 13 hr 34 min 5 sec 1,374,636,336

Observations

●​ “Master + any IOException handler” shows better performance than raw master as expected
since there's no total failure of worker which delays a task for a whole bundle

●​ As expected, the best performance can be achieved by pushing the BigQuery backend to its
limit (with no rate controlling)

●​ Dynamic throttling underperforms no throttling by 20 percent but generates near-zero log
messages about exceeded rate limit error (which also implies minimal overheads to the
backend)

●​ If achieving the best possible performance is the goal, we should stick to the current
implementation. If reducing the backend overheads is considered beneficial, we can try
dynamic throttling by sacrificing some performance

UPDATED 1/15/2019

Additional benchmarks are performed for comparing single thread pool and unlimited thread
pool scenarios (BEAM-6443). Benchmark configurations are the same as the previous settings
except that running time has changed to 35 minutes (9 bytes per row) and 15 minutes (1MB per
row). Master branch is now pointing to f8ef83b, the version after any IOException handler fix.

https://github.com/apache/beam/commit/29a7917de868e447f188c107d958bfa77c7e953f
https://github.com/apache/beam/pull/7189
https://jira.apache.org/jira/browse/BEAM-6443
https://github.com/apache/beam/commit/f8ef83b

 Writer Wall Time Bytes Written

Unlimited thread pool 1 22 hr 0 min 26 sec 5,330,000,000

Single thread pool 1 1 day 3 hr 51 min 21 sec 5,331,000,000

Unlimited thread pool 2 22 hr 6 min 4 sec 5,317,000,000

Single thread pool 2 1 day 3 hr 40 min 27 sec 5,466,750,000

Benchmark result for very small size of data (9 bytes per row)

 # of quota exceeded error messages

Unlimited thread pool 106,099

Single thread pool 26,018

Number of quota exceeded error messages in worker log (9 bytes per row)

 Writer Wall Time Bytes Written

Unlimited thread pool 9 hr 2 min 2 sec 27,944,763,600

Single thread pool 8 hr 42 min 59 sec 28,490,027,280

Benchmark result for maximum size of data (1MB per row, same as streaming insert row size
limit)

The result shows that the change from unlimited thread pool to single thread pool execution
does not undermine the performance of streaming insert and reduces the number of error
messages to 1/4 of its original size.

UPDATED 2/4/2019
20 minutes / BoundedExecutorService / Semaphore(1)
2,779,680,000 bytes written / 19441 ‘retrying:’ messages / writer wall time 16:22:13

20 minutes / BoundedExecutorService / Semaphore(3)
2,779,920,000 bytes written / 65897 ‘retrying:’ messages / writer wall time 14:39:56

20 minutes / Unlimited Pool from GcsOption
2,777,280,000 bytes written / 103773 ‘retrying:’ messages / writer wall time 12:51:49

	BigQuery Streaming Insert Benchmark
	Background
	Implementations
	Configuration
	Benchmark Result
	Observations
	●​“Master + any IOException handler” shows better performance than raw master as expected since there's no total failure of worker which delays a task for a whole bundle
	UPDATED 1/15/2019
	UPDATED 2/4/2019

