

Data Structures​ ​ CSE 2341
Fall 2017​ Programming Assignment 02​ Page 1 of 5

AutoIndexer
Due: Sept 25, 2017 submitted to GitHub.

Introduction
Professor Jackson was just assigned to be the editor of a riveting textbook titled Advanced
Data Structure Implementation and Analysis. She is super excited about the possibility of
delving into the material and checking it for technical correctness. However, one of the
more mundane tasks she must perform is creating an index for the book. Everyone has used
the index at the back of a book before. An index organizes important words or phrases in
alphabetical order together with a list of pages on which they can be found. But, who or
what creates these indexes? Do humans create them? Do computers create them? As a comp
sci prof, Jackson decides she wants to automate the process as much as possible because she
knows that an automated indexer is faster and more accurate, and because it can be reused
later when she finishes writing her own book. So as she is editing the book, she keeps a list
of words on each page that should be included in the index. However, time is short, and she
needs to get the book edited AND indexed quickly. She’s enlisted your help to write an
AutoIndexer.

Your Task
You will implement a piece of software that can read in Professor Jackson’s keyword file
(raw ASCII text with page indications), process the keyword data from the book, and output
the complete index to a separate file. All of this must be done within specific
implementation constraints described in the forthcoming sections.

Implementation Details
You’ll read from the ASCII text file generated by Prof Jackson. We’ll call this the input text
file. Once you read in all of the data and process it, you’ll write the index to an output file.
We’ll call this the output text file.

The Input Text File
The input text file will contain a list of keywords and phrases from the book separated into
groups based on the page each word or phrase appears on. The end of the list of keywords
will be indicated by <-1> at the end of the file. If a phrase is to be indexed, the words that
comprise the phrase will be surrounded by square brackets (ex: [binary search tree]). No
index word or phrase will exceed 40 characters in length (not including square brackets for
phrases).

Data Structures​ ​ CSE 2341
Fall 2017​ Programming Assignment 02​ Page 2 of 5

Here are a few things you should know about Prof. Jackson’s messy style for keeping track
of the keywords. She didn’t pay attention to letter case, so you’ll need to account for that in
your program. This means that ‘tree’ and ‘Tree’ should be considered as the same word.
Page numbers will appear in angle brackets (ex: <8>) and will always be on their own
individual line. Page number will not necessarily be in order. Because of the editing
process, Jackson may accidentally repeat page numbers due to re-reading the same section
multiple times. This may mean she accidentally lists a word twice on the same page. In this
case, there’s no need to list the word or phrase twice in the index. A (very very) simple
input text file can be found in Listing 1.

Listing 1: Sample Input Text File.​

Listing 2: Sample Output Text File.

The Output Text File
The output text file will be organized in ascending order with numeric index categories

Data Structures​ ​ CSE 2341
Fall 2017​ Programming Assignment 02​ Page 3 of 5

appearing before alphabetic categories. Each category header will appear in square brackets
followed by index entries that start with that letter in ascending alphabetic or numeric order.
An index entry will consist of the indexed word, a colon, then a list of page numbers where
that word was found in ascending order. No output line should be longer than 50
characters. The line should wrap before 50 characters and subsequent lines for that particular
index entry should be indented 4 spaces. An example output text file can be found in
Listing 2.

Prof. Jackson’s Peculiarities with C++ Dev
Professor Jackson is a purist and doesn't trust many of the container classes and algorithms
from the C++ standard library. Therefore, she has instructed you to not use any of them. This
includes her aversion to string objects. However, through much pressuring from her students
and colleagues, she has come to accept and trust the streaming libraries that are part of the
STL (iostream, fstream, stringstream.). Jackson trusts your skills though, so she encourages
you to implement your own container class(es). Prof Jackson is also a stickler for efficiency
of memory usage. So, she requires some very strict limits/constraints on memory
management. See the section on Data Structure Implementation for more info.

Data Structure Implementation
You don't have any idea how many individual words, index entries, etc. will be present in
the input data file. And since Jackson doesn't like the container classes from the c++ standard
library, you can’t use the vector class that automatically grows as you insert elements into it.
You'll need to implement some “data structure” that is capable of “growing” as needed. This
sounds like a good place to use a vector. You’ll need to implement a vector class that should
minimally include the following features/functionality:

●​ a vector shall be able to hold any data type (template your class)
●​ a vector shall be a contiguously allocated, homogeneously typed sequential container
●​ a vector shall grow as needed

○​ in other words, don’t start with an array of 500,000 elements or something
like that

●​ a vector shall minimally contain the following functionality:
○​ add a new item to the container
○​ access elements using the [] operator
○​ remove an element from the container

There’s a great deal of other functionality that SHOULD be included, but this is the
minimum amount needed. You should make sure your vector class is adequately tested
using CATCH.

Remember: You need to use your string class from programming assignment 1; no STL
string objects.

Data Structures​ ​ CSE 2341
Fall 2017​ Programming Assignment 02​ Page 4 of 5

Assumptions
You may make the following simplifying assumptions in your project:

●​ The input file will be properly formatted according to the rules above
●​ You need to remove punctuation from the input file words. ‘Data!!!’ and ‘data’

should be considered the same word
●​ No line of text in the input file will contain more than 80 characters
●​ No word or phrase will be longer than 40 characters
●​ Different forms of the same word should be considered as individual entries in the

index (e.g. run, runs, and running would each be considered individual words)

Execution
The executable for this project will be run from the command line with two arguments:

●​ the name of the input text file,
●​ the name of the output file to write the index to.

Example:
prompt$./indexer input.txt index.output

What to Submit
You should submit:

●​ well formatted and documented source code
●​ any design documents you created up front in order to help you get started on the

project
o​ Keep anything you jot down while thinking about how to structure the

project. Scan it, take a picture of it, or otherwise reproduce it as part of your
submission.

o​ You can put these on github.
●​ any sample data files you used to test your program.

Strategies for Success
Just some friendly words of wisdom from your professor and TAs:

●​ The first 10% of a project is always the hardest. Don't sit down in front of an empty
.cpp file hoping/waiting for inspiration. This is likely to turn into exasperation,
desperation, exhaustion, etc. very quickly

●​ THINK BEFORE YOU CODE.
o​ Design before you start. Draw class diagrams; connect the classes with lines.

Brainstorm about what classes/functionality you'd need to make this happen.
Think about the major steps of processing that you'll have to go through. Do
this step with a friend/buddy/pal/BFF that's in the class. That is completely
acceptable. Challenge each other's design. Critique. Question. Explore.

Data Structures​ ​ CSE 2341
Fall 2017​ Programming Assignment 02​ Page 5 of 5

o​ Consider the analogue of writing a paper by starting with an outline. After
reading this handout in detail, what are the big “roman numeral” things that
have to get done. Try to keep the list to 5 or less big tasks. Write them down
(or type them into a Word doc). Break each of them into smaller tasks.

o​ When coding, THINK BEFORE YOU TYPE. You don't want a carpenter
to start randomly putting nails in walls or drilling holes in your ceiling before
they measure, re-measure, think about it, etc. Don't just mindlessly write
code. Be intentional about every line you write.

Your TA's will also give you their guidance in each of the respective labs. Please don't
dismiss our suggestions; they come from experience of making many mistakes. This is a
completely do-able project in the time frame you've been given as long as you use your
time wisely.

Grading
 Points Possible Points Awarded
Vector class and Tests 20
Dynamic Memory Management 10
Proper Templating Implementation 10
Basic Indexing functionality 30
Phrase Query Indexing Functionality 10
Proper class infrastructure (constructors,
destructors, accessors, mutators, etc.) and design

10

Class documentation, formatting, comments,
design documents

10

	AutoIndexer
	Introduction
	Your Task
	Implementation Details
	The Input Text File
	The Output Text File
	Prof. Jackson’s Peculiarities with C++ Dev
	Data Structure Implementation

	Assumptions
	Execution
	What to Submit
	Strategies for Success
	Grading

