
on Performance Metrics in Apache Mesos

Backing SLA and QoS in Mesos - Version 0.0.1

Introduction

In the context of oversubscription, but useful as a general feature; allowing frameworks to report
their Service Level Indicators (SLIs) and Service Level Objectives (SLOs) (to which degree, if
violated, etc) in a homogeneous way allows for better monitoring, scheduling, auto-scaling and
more aggressive oversubscription strategies.

User stories

1.​ As a Mesos framework author, I want a way to describe how to obtain performance
metrics for the tasks that my scheduler launches. As a Mesos framework author, I want
mesos to provide an interface for declaring SLOs and allow SLIs to be provided for
oversubscription consideration.​

2.​ As an operator, I want a unified way to determine the performance of my cluster
workloads.​

3.​ As an operator, I want my performance metrics to represent local and global
performance.​

4.​ As an oversubscription module developer, I want to know if I am hurting my production
workloads by making bad resource estimates or failing to correct them.​

5.​ As an operator, I want metrics to be machine parsable i.e. not too free-form to have to
maintain translations,​

6.​ As a developer with an existing application that is reporting application metrics (such as
statsd or collectd) to be able to report SLIs.

Terminology

Short Term Description Example

APM Application
Metric

SLI and SLO

SLI Service Level
Indicator

A measurement of
workload
performance.

95% tail request
latency.

SLO Service Level
Objective

A threshold, based
on an SLI.

200 milliseconds
maximum for 95% tail
request latency.

SLA Service Level
Agreement

 “The thing that
describes what
happens when your
SLI doesn’t meet
your SLO” ~ John
Wilkes

QoS Quality of Service

Requirements

●​ SLI + SLO are available from slave endpoint. For example:
○​ /monitor/sli
○​ /monitor/slo

●​ SLI + SLO are made available for estimator + QoS Controller
●​ SLI + SLO are modeled with protobuf in set per metric
●​ SLOs originate from the Scheduler

Design exploration

●​ Option 1: Mesos predefines APM structure (in form of protobuf message and

corresponding JSON) and TaskInfo encodes URL to get it
○​ Pros:

■​ First class in Mesos (encourages framework writers to supply this info.)
■​ No need for more process control in the Mesos slave.

○​ Cons:
■​ Templating APM URLs with framework, executor, and task IDs could be

complicated (for example, http://<ip and port of agent>/stats/<task id>).
■​ Burdens user with process control (need to start another service or modify

their task to listen on a new endpoint.)
■​ In extreme cases of resource contention, metrics may be unavailable.
■​ The Mesos slave would need to manage client connections to APM

endpoints.
●​ Option 2: Mesos predefines APM structure and TaskInfo encodes a command to

fetch it.
○​ Pros:

■​ First class in Mesos (encourages framework writers to supply this info.)
●​ Follows precedent of existing slave components (executors, health

check programs, ...)

■​ Potentially lighter-weight than hosting a local HTTP service.
■​ Potentially easier to provide metrics for unmodified third-party

applications.
■​ Requires fewer changes to executor and/or task code.

○​ Cons:
■​ Requires more process control in the Mesos slave.
■​ Depends on tools available on the slave or in the container (configuration

dependent).
●​ Option 3: Out-of-band. Oversubscription modules define APM structure and listen for

metric samples, e.g. on an HTTP endpoint.
○​ Pros:

■​ Virtually no changes to Mesos
○​ Cons:

■​ Not standardized across oversubscription implementations
■​ Harder to interpret application specific metrics, which is one of the main

drivers of this effort.
●​ Option 4: Mesos predefines APM structure and introduces a new executor callback,

performance().
○​ Pros:

■​
○​ Cons:

■​ No HTTP endpoint access and harder to feed into monitoring systems
●​ Option 5: Combine options (1) and (4) as follows. Mesos predefines APM structure.

The TaskInfo message gains a new optional field to describe a way to retrieve task
performance (e.g. an HTTP endpoint). Introduce a new executor callback,
performance(). The default Mesos command executor implements this new callback
by fetching APM from the optionally supplied URL.

○​ Pros:
■​ First class in Mesos (encourages framework writers to supply this info.)
■​ Provides a way for framework authors to augment current task

descriptions to fetch APM without having to implement a custom executor.
■​ Provides a unified way to access performance data for internal and

external consumers.
○​ Cons:

■​ More work than other approaches, although this could be implemented in
phases.

Decision: Preference is currently Option 5.

Prior art

Architecture

The proposed sequence is as follows:

1.​ A scheduler writer can choose to set a metrics_endpoint which indicates where to
get

2.​
3.​ The executor can be wired up to provide metrics for it’s tasks. By default, the command

executor will defer to the metrics_endpoint.
4.​ The agent now provides an /apms endpoint (which can be queried for all or subsets of

executor/task performance metrics).
5.​

/**
* Describes a collection of task performance metrics.
*/
message TaskPerformance {

 // p50, p90, p95, p99
 // stdev, avg, mean, min, max

 message Sample {
 required string name = 1;
 required double value = 2;

 optional double limit_upper = 3;
 optional double limit_lower = 4;
 // TODO(CD): Should this include a weight?
 // TODO(CD): Should this include severity?
 }
 required TaskID task = 1;
 repeated Sample samples = 2;
 // TODO(CD): Should this include labels?
}

Sidelight: Structured Metrics for Histogram Data

my-latency-metric: {
 count: 896270,
 max: 1847,
 mean: 437.42315175097275,
 min: 171,
 p50: 376,
 p75: 505,
 p95: 883,
 p98: 1847,
 p99: 1847,
 p999: 1847,
 stddev: 320.1211475413669
}

Example: JSON version of output from the codahale metrics library.

class Executor
{
public:
 virtual void registered(
 ExecutorDriver* driver,
 const ExecutorInfo& executorInfo,
 const FrameworkInfo& frameworkInfo,
 const SlaveInfo& slaveInfo) = 0;

 virtual void reregistered(
 ExecutorDriver* driver,
 const SlaveInfo& slaveInfo) = 0;

http://metrics.dropwizard.io/3.1.0/

 virtual void disconnected(ExecutorDriver* driver) = 0;

 virtual void launchTask(
 ExecutorDriver* driver,
 const TaskInfo& task) = 0;

 virtual void killTask(
 ExecutorDriver* driver,
 const TaskID& taskId) = 0;

 virtual void frameworkMessage(
 ExecutorDriver* driver,
 const std::string& data) = 0;

 virtual void shutdown(ExecutorDriver* driver) = 0;

 virtual void error(
 ExecutorDriver* driver,
 const std::string& message) = 0;

 virtual Result<TaskPerformance> performance(
 Option<list<std::TaskID>> taskId = None()) = 0;
};

Recommended metrics

Metric
category

Name Description Example Notes

Throughput TODO:
establish
naming
conventions for
these
categories.

Describes how
much work the task
completed within a
given duration.

Queries per
duration d.

Requests per
duration d.

These metrics
should not
generally have
upper or lower
limits, except for
rare cases
where the
request volume
is constant.

Latency Describes how
quickly the task was
able to respond to

95% tail request
latency.

These metrics
are the best kind
of indicator

input. because they
are largely
independent of
request volume,
and they are a
direct
representation of
typical SLO
contracts.

Availability Dropped
requests over
duration d.

Errors Timeouts per
duration d.

Dropped
connections per
duration d.​
​
Application
exceptions per
duration d.

These are
heuristics that
could be caused
by interference.
It’s up to QoS
policy whether
these cause
corrections to be
issued.

TODO: Include concrete example for well-known workloads.

●​ Memcached
●​ Cassandra
●​ MySQL
●​ Apache Web Server

TODO: Design and implement a proof-of-concept QoS controller that uses APM data.

Open Questions

	on Performance Metrics in Apache Mesos
	Introduction
	User stories
	Terminology
	Requirements
	Design exploration
	Prior art
	Architecture
	Sidelight: Structured Metrics for Histogram Data
	Recommended metrics

