Периодический закон

Свойства химических элементов, а также свойства образованных ими веществ, находятся в периодической зависимости от зарядов атомных ядер.

Причина периодического подобия химических свойств элементов в периодическом изменении числа электронов на внешнем энергетическом уровне атома. Для главных подгрупп число электронов на внешнем энергетическом уровне равно номеру группы.

Свойства атомов и веществ определяются совокупностью факторов:

- Зарядами ядер атомов.
- Атомными радиусами.
- Числом электронов на внешнем энергетическом уровне.

Периодическая система – графическое отображение Периодического закона

Группа - вертикальный столбец элементов, атомы которых имеют одинаковое число валентных электронов

Группы делятся на главную и побочную подгруппы. В первых трех периодах содержатся элементы только из главных подгрупп. Начиная с четвертого периода появляется побочная подгруппа. Главная подгруппа включает в себя s- или p-элементы. Обозначается буквой A, например, IA, IIA. Побочная подгруппа включает в себя d-элементы. Обозначается буквой B, например, IIIB, IVB.

В главных подгруппах сверху вниз:

- 1. Растет заряд ядер атомов.
- 2. Увеличивается число энергетических уровней.
- 3. Не изменяется количество электронов на внешнем энергетическом уровне.
- 4. Увеличивается радиус атома.
- 5. Уменьшается электроотрицательность.
- 6. Усиливаются металлические свойства. Ослабляются неметаллические свойства

Период Это горизонтальный ряд элементов, расположенных в порядке возрастания зарядов ядер атомов.

В периоде слева направо:

- 1. Растет заряд ядер атомов.
- 2. Не изменяется число энергетических уровней.
- 3. Увеличивается количество электронов на внешнем энергетическом уровне.
- 4. Растет сила притяжения электронов к ядру.
- 5. Уменьшается радиус атома.
- 6. Увеличивается электроотрицательность.
- 7. Усиливаются неметаллические свойства. Ослабляются металлические свойства.

Номер периода = Число энергетических уровней, заполненных электронами = Обозначение последнего энергетического уровня

Электроотрицательность (ЭО) - Способность атома смещать на себя электронную плотность (электронное облако, общую электронную пару) других атомов в соединении.

Окислительные свойства – способность атома принимать электроны. Чем выше электроотрицательность, тем выше окислительные свойства.

Восстановительные свойства – способность атома отдавать электроны. Чем ниже электроотрицательность, тем выше восстановительные свойства.

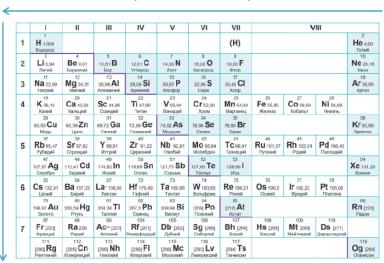
Дополнительные понятия

Энергия ионизации – это наименьшая энергия, которая потребуется для отрыва электрона от атома. Чем ниже энергия ионизации, тем выше восстановительная способность атома.

Сродство к электрону – это энергия, которая выделяется или поглощается при присоединении к атому электрона. Чем выше сродство к электрону, тем выше окислительная способность атома.

Металлы


Имеют на внешнем энергетическом уровне 1-3 электрона. Атомы металлов только отдают электроны, образуя катионы, заряженные положительно. К металлам относятся все s-элементы (кроме водорода и гелия), все d-элементы и некоторые p-элементы. Все металлы являются восстановителями.

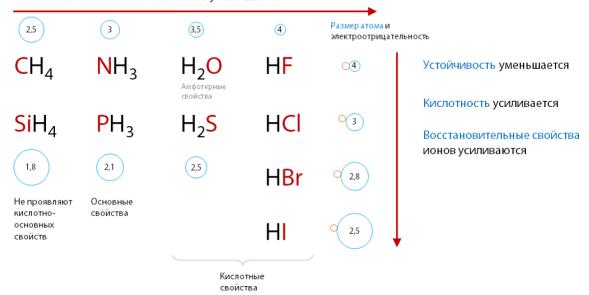

Металлические свойства – это способность атомов отдавать электроны.

Неметаллы

Имеют на внешнем энергетическом уровне 4 и более электронов (кроме бора – у него их три, водорода – один, гелия – два). Атомы неметаллов и отдают, и принимают электроны, образуя катионы или анионы. Чем больше у неметалла электронов на внешнем уровне, тем выше способность принимать электроны и ниже отдавать. Неметаллы могут быть как восстановителями, так и окислителями. Чем больше номер группы, тем выше окислительная способность неметалла.

Неметаллические свойства – это способность атомов принимать электроны.

Характеристики и свойства элементов 3 периода и образованных ими веществ


Группа	IA	IIA	IIIA	IVA	VA	VIA	VIIA
Элемент	Na	Mg	Al	Si	Р	S	Cl
Тип элемента	Металл	Металл	Металл	Неметалл	Неметалл	Неметалл	Неметалл
Число внешних электронов	1	2	3	4	5	6	7
Высшая степень ок-я	+1	+2	+3	+4	+5	+6	+7
Состав и свойства оксидов	Na₂О основный	MgO основный	AI_2O_3 амфотерный	SiO₂ кислотный	Р₂О₅ кислотный	SO₃ кислотный	СІ₂О ₇ кислотный
Состав и свойства гидроксидов	NaOH сильное основание	Mg(OH) ₂ основание средней силы	Al(OH)₃ амфотерный гидроксид	H_2SiO_3 очень слабая кислота	Н₃РО₄ кислота средней силы	H₂SO₄ сильная кислота	HCIO ₄ очень сильная кислота
	Усиление основных свойств оксидов и гидроксидов Усиление кислотных свойств оксидов и гидроксидов						

Изменение свойств водородных соединений неметаллов

Устойчивость увеличивается

Кислотные свойства усиливаются

Восстановительные свойства ионов уменьшаются

■ План характеристики химического элемента по его положению в периодической системе

- 1. Положение элемента в периодической системе (номер элемента, период, группа, подгруппа).
- 2. Схема строения атома. Электронная конфигурация валентного слоя.
- 3. Валентные возможности элемента.
- 4. Возможные и характерные степени окисления элемента.
- 5. Высший оксид элемента (его формула и характер).
- 6. Высший гидроксид элемента (его формула и характер).
- 7. Водородное соединение (его формула).
- 8. Летучее водородное соединение.