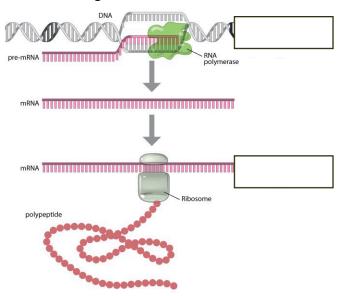

15 - Genes and Proteins Google Slides Gene Theory → Genes specify a proteins

→ How can a change in one gene lead to disease?

→ Cystic Fibrosis

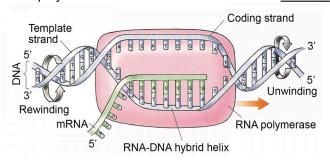

What do you remember about cystic fibrosis?

Three Important Points to Remember

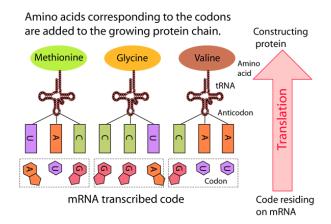
- 1) Chromosomes are made of _____
- 2) Segments of DNA code for a _____
- 3) Protein codes for a _____

The Central Dogma $DNA \rightarrow mRNA \rightarrow Protein$

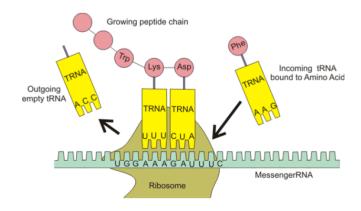
RNA = ribonucleic acid


|--|

Three forms


Transcription - mRNA is made from DNA

- Follows base-pair rule but has uracil instead of _____
- RNA polymerase is used to build the strand of



DNA: A A T C C A T T G G A G RNA:

Translation - protein is built from MRNA

- occurs on the _____
- mRNA threaded through large and small subunit
 - delivers amino acids, forming a chain
- 3 bases on mRNA (codon) specify 1 amino acid
- translation begins with AUG _____
- ends at the stop codon
- proteins can contain any number of amino acids

Codon charts are used to determine the amino acid sequence

Second letter

		U	С	А	G		
	U	UUU } Phe UUC } Leu UUG }	UCU UCC UCA UCG	UAU Tyr UAC Stop UAG Stop	UGU Cys UGC Stop UGG Trp	UCAG	
letter	С	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU His CAC GIN CAG GIN	CGU CGC CGA CGG	UCAG	Third lottor
First letter	A	AUU AUC AUA Met	ACU ACC ACA ACG	AAU Asn AAC Lys AAG Lys	AGU Ser AGC AGA Arg	UCAG	Third
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU Asp GAC GAA GAG Glu	GGU GGC GGA GGG	UCAG	

DNA: TACAATCGGGGGATT

RNA:

A.A.

Regions of DNA

 _ = coding regions of DNA
 = non-coding regions

Spliceosomes = coding areas, introns removed

SNP = single nucleotide polymorphism (curly vs straight coat in dogs)

Mutations - changes in DNA

Mutations in LMNA gene cause _____

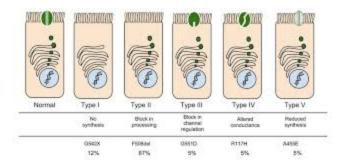
Gene Mutations

Point Mutations - single	change
Missense - changes the	

Hemoglobin - protein found in blood

Fragment of Beta Chain of Wild-type (normal) Adult Hemoglobin (HbA)					
DNA 3'to 5'	GAC	TGA	GGA	СТТ	СТС
RNA					
Amino Acid					
Fragment of Beta Chain of Sickle Cell (mutant) Hemoglobin (HbS)					
DNA	GAC	TGA	GGA	CAT	СТС
RNA					
Amino Acid					

Nonsense mutation - results in a _____ codon - this shortens the resulting protein, Ex. DMD


Gene Therapy and Exon Skipping - skips over the stop codon, (repairs gene)

Frameshift Mutation - base is added or deleted - alters reading frame - changes protein

Diseases and nonfunctional proteins:

- Hemophilia- Sickle Cell- Huntington's- Cystic Fibrosis

Case Study: Cystic Fibrosis (Part 2)

