KENDRIYA VIDYALAYA SANGATHAN

CLASS- X SESSION- 2022- 23

SUBJECT- MATHEMATICS (STANDARD) 041 PRE BOARD- 1

MARKING SCHEME

Q.NO	SOLUTION	MKS
1	(c) 35	1
2	(b) x2 -(p+1)x +p=0	1
3	(b) 2/3	1
4	(d) 2	1
5	(c) (2,-1)	1
6	(d) $3^2 \times 5^2 \times 17$	1
7	(b) tan 30°	1
8	(b) 2	1
9	(c) $x = ay(a+b)$	1
10	(c) 8cm	1
11	(d) 3√3cm	1
12	(d) 9π cm2	1
13	(c) $n^2 + n$	1
14	(a) 55/3	1
15	(d) 7000	1
16	(a) 120	1
17	(d) no solution	1
18	(c) 30	1
19	(b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A)	1
20	(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A)	1
	SECTION B	
21	(i)PE/EQ ≠ PF/FR , not parallel (ii) PE/QE = PF/RF, parallel	1+1
22	For correct explanation.	1+1
23	For using correct section formula for x and y x = 1, y = 3 Required point(1,3)	1 .5 .5
24	Time =5min, θ =30°	1
	area swept $\frac{\theta}{360}\pi r^2$	1
	154/3cm ² OR	
	area of sector = $\frac{\theta}{360}\pi r^2$	_
	$= 1232/3 \text{ cm}^2$.5

	area of triangle = 333.2, area of six design =464.82cm ² Cost of making design = 464.82 x .35	.5		
	= 162.68rs	.5 .5		
25	PQ RS (Given) ∠ P = ∠ S (Alternate angles)	.5		
	$\angle Q = \angle R$.5		
	$\angle POQ = \angle SOR$ (Vertically opposite angles) $\Delta POQ \sim \Delta SOR$ (AAA similarity criterion) OR	1		
	OA . OB = OC . OD (Given) so, OA/OC = OD/OB	.5		
	\angle AOD = \angle COB (Vertically opposite angles) Therefore, from (1) and (2), \triangle AOD ~ \triangle COB (SAS similarity criterion) So, \angle A = \angle C and \angle D = \angle B (Corresponding angles of similar triangles	.5		
		1		
SECTION C				
26	Let us assume $5 + 2\sqrt{3}$ is rational, then it must be in the form of p/q where p and q are co-prime integers and $q \neq 0$ i.e $5 + 2\sqrt{3} = p/q$ So	1		
	$\sqrt{3} = (p-5q) 2q$ (i)	.5		
	Since p, q, 5 and 2 are integers and q \neq 0, HS of equation (i) is rational. But LHS of (i) is $\sqrt{3}$ which is irrational. This is not possible. This contradiction has arisen due to our wrong assumption that 5 + $2\sqrt{3}$ is rational. So,	1		
	5 + 2√3 is irrational.	.5		
27	a+2d=16 a= 4, d= 6 and 6,10,16,22	1 1 1		
28	$\frac{\frac{\cos A}{\sin A} - \cos A}{\frac{\cos A}{\sin A} + \cos A}$ Cos A(1/SinA -1)/Cos A(1/SinA + 1)	1		
	CosecA-1 CosecA+1 RHS OR	1		
	$\frac{(\sin^2 A - \sin^2 B) + (\cos^2 A - \cos^2 B)}{(\cos A + \cos B)(\sin A + \sin B)}$ $= 0$	1		
		1.5		
29	$\cos A = \sqrt{1 - \sin^2 A}$	1		
	$tanA = \frac{sinA}{\sqrt{1 - sin^2 A}}$	1		
	$secA = \frac{1}{\sqrt{1 - sin^2 A}}$	1		
30	For correct fig and its explanation	1		

	Tan 30° = AB/BC 1/ $\sqrt{3}$ = AB/30	1
	The height of the tower is $10\sqrt{3}$ m.	1
	OR	
	For correct fig and its explanation	1
	OD = a and DB = $\sqrt{3}$ a $\tan \theta = DB/AD$	1
	$\tan \theta = DB/(AO + OD)$	1
	$\tan \theta = \sqrt{3} a / (a + 2b)$	
31	Area of sector = 150.72 cm ²	1
	Area of equilateral triangle = $3\sqrt{3}$ = $3 \times 1.73 = 5.19$	1
	Area of required segment = $150.72 - 5.19$ = 145.53 cm^2	1
	SECTION D	
32 Let the time taken by larger pipe alone to fill the tank= x hours Therefore, the time		
	taken by the smaller pipe = x+10 hours	.5
	$\frac{x}{4} + \frac{x}{(x+10)}$ $\frac{x^2-16x-80=0}{}$	1 1
	(x + 4)(x-20) = 0	
	x=- 4, 20	1
	x cannot be negative. Thus, x=20 x+10= 30 Larger pipe would alone fill the tank in 20 hours and smaller pipe would fill the tank alone in 30 hours. OR	1.5
	For correct fig. AP = (x + 7) m. $AP^2 + PB^2 = AB^2 \text{ (By Pythagoras theorem)}$.5 1
	P	.5
	$(x + 7)^2 + x^2 = 13^2$	1
	$x^2 + 7x - 60 = 0$ x = 5 or -12 . x cannot be negative. Thus, the pole has to be erected on the boundary of the park at a distance of 5m from the gate B and 12m from the gate A.	1 .5
	the gate B and 12m nom the gate A.	.5
33	For correct fig, given, construction, to prove. For correct proof.	2 3
34	In Δ PAC, BQ II AP BQ/AP = CB/CA y/x = BC/AC(i)	1.5

		<u> </u>
	similarly, y/z = BC/AC(ii)	1.5
	Add (i) and (ii), $y/x + y/z = BC/AC + AB/AC$ y(1/x + 1/z) = (BC + AB)/AC y(1/x + 1/z) = AC/AC = 1 1/x + 1/z = 1/Y (a) For correct construction.	1 1
	For correct construction. For correct proof. (b) For correct fig and explanation BD = 1.2 m × 4 = 4.8 m. ∠ B = ∠ D (Each is of 90°) ∠ E = ∠ E	.5 1.5 .5
	Δ ABE \sim Δ CDE /CD /CD /DE = 1.6	1.5 1
35	(a)For correct figure, given, to prove, constuction	1
	For correct proof .	2
	(b) AP = AS(i) BP = BQ(ii) CR = CQ(iii) DR = DS(iv)	1
	Adding (i), (ii), (iii), (iv) AB + CD = AD + BC	1
36	1. a) (2,25) 2. c) (8,20) 3. c) √61	1 1 2
37	1. c)100m 2. d)60m 3. b)40m	1 1 2
38	1. b) x + 10y =75, x + 15y = 110 2. c) Rs.355 3. b) Rs.289	1 1 2