DeepWIFF: A Hybrid Machine Learning Parameterization of Wave-Induced Sea-Ice Floe
Fracture
Meal Swipes for Late Days: Jacob DiChiacchio (jdichiac), Shreyas Rao (srao20), Tej Stead
(tstead2)

GitHub Link: https://github.com/tejstead/deepwiff

Introduction

Sea ice plays an important role in the world’s climate, covering ~12% of the ocean’s
surface. It is a major determinant of climate stability/instability, polar shipping routes, and it
affects heat currents under the ocean’s surface. In the past few decades, the rapidly changing
climate has caused ice in the Arctic to thin out and disappear. Ice has become more of a seasonal
occurrence in regions where it used to occur year round, and ice fractures have become far more
common (Horvat and Tziperman, 2015). This has necessitated the development of more precise
models to study sea ice-floe (ice sheets) fractures.

Unfortunately, the current sea-ice floe models are computationally expensive and can
take days to run. The ice fracture process is related to the two-dimensional ocean wave height
field, which is too computationally expensive to simulate in a climate model. Previously, a
super-parametrized one-dimensional model (SP-WIFF) was used, but it is expensive to run as
well (Horvat and Tziperman, 2015). Additionally, the SP-WIFF model has a stochastic
component, so its results are not easily reproducible. To provide a more deterministic output, as
well as reduce computation time, we use a classifier as well as a mixture density network to
replicate the output of the SP-WIFF climate model when run to convergence.

Data

The data received from SP-WIFF is saved in the files “X train.p”, "X test.p",
"y train.p", and "y test.p", where the X train and X test correspond to the inputs in the
SP-WIFF model, which are 26 dimensional vectors corresponding to input frequencies of forces
that could cause fractures in ice floes. y test and y train correspond to the outputs of the
SP-WIFF model. They are 49 dimensional vectors representing a discrete probability distribution
of fracture sizes (scaled logarithmically).

Not all of the data is usable, since not all input frequencies are strong enough to create ice
floe fractures. The SP-WIFF model automatically differentiates between usable and unusable
data, and this process is learned by a 2 layer feed-forward neural network provided by Horvat
with a 98% accuracy rate, deemed suitable enough for the model. Thus out of 1.8 million
original inputs, only ~400 thousand inputs are deemed acceptable for the use of DeepWIFF,
which are then saved in a 70%/30% test data/training data split to “X train.p” and "X test.p"
respectively. The respective outputs of the usable inputs are saved to "y train.p", and "y _test.p".
This data is summarized in the table below.

https://github.com/tejstead/deepwiff

Fig 1: DeepWIFF Input Data Summary

Total Inputs Usable Inputs Train Inputs Test Inputs (X _test)
(X_train)

1830900 404503 283152 121351

Model Architectures

A few different model architectures for DeepWIFF are tested, namely a feed-forward
neural network and a mixture density network (MDN). Because the output of SP-WIFF is
interpreted as a probability distribution, it is important for the models to produce valid discrete
probability distributions in the output of their call functions. The feed-forward network acts as a
control against which the results of the MDN are compared, and the specifics of each model are
listed below.

Feed-Forward (Control Network)

The simplest model tested, which is also used as a control, is a multilayer feed-forward
neural network (FFNN). Besides the inclusion of a LeakyReL U function between each of the 5
hidden layers, this control network is relatively simple and includes no surprise parts. A softmax
layer is included at the end to ensure that the output is a valid probability distribution. The
figures below represent the FFNN’s architecture and important hyperparameters for training and
testing.

Fig 2: Feed Forward Network Architecture

i

SoftMax

Fig 3: Feed Forward Network Parameters

Batch Size 256
Activation Function Q142 G100
Learning Rate .001
Hidden Layer Size 100
100

Mixture Density Network
The main test network is a Mixture Density Network (MDN), a type of network that

learns probability distributions. The justification for using this model is that SP-WIFF can
essentially be interpreted as a model that outputs conditional probability distributions. Any type
of deep neural network emulating this process is likely to benefit from also learning conditional
probability distributions (Bishop, 1994).

The MDN produced consists of hidden dense layers and a custom MixtureDensity layer.
After passing inputs through multiple dense layers with Leaky ReLLU activations, the final dense
layer output is passed through the MixtureDensity. Within the Mixture Density layer, DeepWIFF
learns to approximate a probability distribution to match the SP-WIFF output using a sum of
Gaussian (normal) distributions.

The sublayer within the MixtureDensity Layer that learns variances (sigma) for the
Gaussian mixture is passed through a softplus activation function, to ensure that produced
variances are always positive. The sublayer which learns the mixture parameters (alpha) is
passed through a softmax layer, to ensure that the mixture ratios are positive and all sum to one.
Because a sum of Gaussian distributions is a continuous distribution, a custom discretized
function based on integer rounding and the distribution’s cumulative distribution function (CDF)
is implemented to allow the MDN to give data comparable to SP-WIFF’s outputs. There is no
need to softmax at the end of the network, as the discretized data is still a valid probability
distribution. The two figures below document both the MDN’s architecture and its important
hyperparameters used in training and testing.

Fig 4: Mixture Density Network Architecture

1

Mixture Density

Fig 4: Mixture Density Network Parameters

Batch Size 256

Activation Function Leaky ReLU
Learning Rate 001

Mixture Type Gaussian (Normal)
Mixture Components [

Hidden Layer Size 100

Epochs 100

Loss

Because DeepWIFF is essentially a regression model, regression-type loss functions
provide a more robust metric for measuring the network’s performance. Following the idea that
simpler is better, all the models employ mean squared error (MSE) as a loss function to train on.
Although a few other loss functions, such as mean average error (MAE), log mean squared error
(LMSE), and Kullback-Leibler divergence (KLD) were initially considered, MSE outperformed
all other loss functions in testing. Based on these observations, and for the sake of
standardization, it was deemed most effective to train the models using MSE. The formula for
MSE is given below, where n represents the size of the output vector (distribution), Y, represents

the actual ith value, and y represents the predicted ith value.

1 mn h)
MSE = - zZ;(yz i)

Results

Because there are many different metrics for measuring the accuracy of each network’s
output, multiple different loss metrics are measured throughout the training. Three different loss
functions are used: Mean Squared Error (MSE), Mean Absolute Error (MAE), and
Kullback-Leibler Divergence (KLD). Each loss is listed on the graphs and tables below in their
abbreviated forms. The graphs below represent the validation loss (testing loss) measured at the
end of each epoch. The first two tables also represent the exact measured training and validation
losses on the final epoch of the model being run. To measure the number of outputs deemed
close enough in valuation in the output SP-WIFF, the final table documents the ratio of
validation data (testing data) within different percentages of the Squared Absolute Error (SAE).

Fig 4: MSE Validation Loss

Validation loss (MSE)

0.0014 1 B Feed-forward network
Mixture density network

0.0012
0.0010 1
0.0008
0.0006 A

0.0004 '\\A/\

0.0002 1

0 20 40 B0 80 100

Fig 5: MAE Validation Loss

Validation mean absolute error

I Feed-forward network

0.012
Mixture density network

0.010
0.008
0.006 -

0.004 \w\\—

0 20 0 60 80 100

Fig 6: KLD Validation Loss

Validation Kullback-Leibler divergence
08 1 \ B Feed-forward network

0.7 1 I Mixture density network
06
0.5 1
04
0.3 1
024
0.1 1

0 20 40 60 &0 100

Fig 7: Training Losses Final Epoch

- Feed Forward Network | Mixture Density Network

- 08596 09559
3.083x 1073 3.277x 103
2.372x 10 2.567x 10

Fig 8: Validation (Test) Losses Final Epoch

- Feed Forward Network | Mixture Density Network

- 08552 09477
3.092x 107 3.289x 107
2.265x 10 2.465x 10

Fig 9: Model Accuracy Based on SAE

| Feed Forward Network | Mixture Density Network _
86.68% 84.46%
71.03% 65.03%
40.86% 32.72%

Discussion of Results

As the data points out, the control feed forward neural network outperformed the mixture
density in every single metric, albeit just barely. Throughout training, both the feed forward
network and mixture density network experience large fluctuations in loss within the first 30
epochs before steadily decreasing to a plateau at epoch 60. Throughout training, with the
exception of a few spikes in the beginning of the training, the feed forward neural network
consistently outperforms the mixture density network. If <10% Squared Absolute Error is taken
the determinant for whether or not a prediction is deemed “acceptable” (i.e. close enough to the
real prediction), it is observed that the feed forward neural network has a ~70% accuracy rate and
that the mixture density network as a ~65% accuracy rate.

The results are rather surprising, as it was expected that the mixture density network
would outperform the feed forward neural network by a considerable margin. The justification
for this belief was that mixture density networks are specifically designed to learn dependent
probability distributions, whereas feed forward networks hold no such specialization. While the
data may point to the feed forward neural network as the model architecture for DeepWIFF, it
may be less desirable simply because its results are less interpretable. The mixture density
network has the added advantage of easily being interpreted as a mixture of gaussian
distributions being used to approximate an arbitrary probability distribution. It also should be

noted that an accuracy of 70% would not be considered acceptable enough to properly replace
SP-WIFF in climate models. An accuracy of >95% is necessary for this, which neither model
came close to achieving. That being said, both neural networks are very successful in terms of
training time, taking less than a minute to run data that would normally take 9+ hours on
SP-WIFF.

Challenges

Because this project is inherently exploratory in nature, the biggest obstacle for us was
that we had no point of reference to make sure our model was maximizing its effectiveness. As
such, it was quite difficult to settle on a model of choice that could effectively address the
problem at hand. After testing a few networks and playing around with a few potential ideas
(partially connected networks, seq2seq models, etc.), we found that the mixture density network

would be most suitable for our problem at hand. Many other network we tested models simply
failed to train properly or converge at a realistic speed

Within our mixture density model, our biggest challenge was figuring out how to
compare the continuous output of our network (a Gaussian mixture) to a discrete probability
distribution, which was the form our testing/training labels used. Searching online and reading
articles provided little help, as the articles describing mixture density networks always deemed
the continuous outputs of the MDNs as acceptable. The other problem we encountered with this
was making a differentiable "discretize" function to backpropagate on, as methods such as
randomly sampling from a continuous distribution don’t necessarily allow
differentiation/backpropagation. We finally overcame this issue by creating a custom discretize
function based on calculating differences in values from each Gaussian mixture’s cumulative
distribution function.

The other major point of difficulty in our models was hyperparameter tuning. We spent a
large portion of our time tweaking the hyperparameters of our models to minimize MSE
throughout training. Within our mixture density network, we often had to deal with numerical
overflow errors when calculating gradients. To sidestep this issue, we changed learning rates,
imposed regularity conditions, and started working with float64 rather than float32 values. While
overcoming these challenges was difficult, we learned a great deal about neural networks and
how to properly work with the nuances of different neural network architectures.

Reflection

Overall, we feel that our project was relatively successful. While we were disappointed to
see that the control feed-forward neural network outperformed our mixture density network
slightly, it provided important insight on what networks might be good for learning the data that
SP-WIFF outputs. We were also disappointed to see that the models were not completely
accurate, only correctly predicting outputs with a ~70% success rate. This would not be enough
to hold up in the real world. We feel that while we may not have reached our stretch goals, we
did realize our target goal to analyze the effectiveness of at least 2 different networks learning the
SP-WIFF model.

Surprisingly, our data was contradictory to our original assumptions. Given that mixture
density networks are specifically designed with the purpose of learning probability distributions,
we expected the feed forward network to underperform in comparison to our mixture density
network. This held true even after tuning our MDN’s hyperparameters. We were also quite
surprised to see that mean square error was the most effective loss function to train our model
against. Although we performed relatively few runs using Kullback-Leibler divergence for
training loss, our initial tests strongly suggest that it would be a weaker loss function, despite
being a more technically backed measure of distribution similarity.

Reflecting on our overall work process, we realized that our approach changed greatly
over time. Our initial strategy was to try complex architectures that failed, rather than sticking to
the basics and building up. As we progressed through the project, we learned that tuning network

hyperparameters could provide far more improvement than adding newer or fancy layers. Given
more time, we would approach our network designs more systematically, and we would explore
other network architectures with known success. We would also train our MDN with far more
mixture components (>25 rather than just 12), as we suspect this might also significantly
improve the accuracy of our MDN.

It seems that the biggest takeaway from our paper is that “simpler is better”. We found
that the simpler models and simpler loss functions were much more effective than complex
models. We suspect that with the addition of complexity to a model, unless utilized properly, the
complexity acts as a buffer which prevents a model from achieving maximal success. Since we
would like to continue working on this project, we will take this approach in the future and
hopefully create a robust deep learning model which accurately predicts the data given by
SP-WIFF. This work on our DeepWIFF model will hopefully be one of the first in a long line of
neural networks used to learn models in climate science.

Ethical Considerations

While the DeepWIFF model experienced relative success in emulating the outputs of the
SP-WIFF model, these results should not be taken at face value. As is the case with many other
deep learning models, DeepWIFF must contend with the Black Box problem, a set of problems
in which deep learning models lack interpretability (Rudin, 2019). On the broadest level, the
network architectures of models like Mixture Density Networks are understood; one is simply
approximating an arbitrary probability distribution using a mixture of Gaussians distributions.
However, the calculations within the layers, especially in the feed-forward layers, offer little
insight into why DeepWIFF outputs the distributions it does. Without further calculations to
support using DeepWIFF in place of SP-WIFF, blindly using the output of DeepWIFF could
potentially be dangerous, especially in a climate model where incorrect calculations could lead to
incorrect conclusions about environmental phenomena.

Furthermore, DeepWIFF is finely tuned to specific climate parameters of SP-WIFF at a
specific moment in time. As the climate changes and the parameters used in SP-WIFF change,
the Deep WIFF network would need to be retrained, otherwise outputs of the DeepWIFF model
could be outdated and possibly incorrect. As the process of constantly retraining the network
might be costly, one should consider the environmental and temporal ramifications of using the
DeepWIFF network.

References
Bishop, C. (1994). Mixture density networks. Technical Report. Aston University, Birmingham.

(Unpublished). http://publications.aston.ac.uk/id/eprint/373/

Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions
and use interpretable models instead. Nature Machine Intelligence, 1, 206-215.
https://doi.org/10.1038/s42256-019-0048-x

http://publications.aston.ac.uk/id/eprint/373/
https://doi.org/10.1038/s42256-019-0048-x

Horvat, C., & Tziperman, E. (2015). A prognostic model of the sea-ice floe size and thickness
distribution. The Cryosphere, 9(6), 2119-2134.
https://tc.copernicus.org/articles/9/2119/2015/

https://tc.copernicus.org/articles/9/2119/2015/

