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Introduction 
​ Sea ice plays an important role in the world’s climate, covering ~12% of the ocean’s 
surface. It is a major determinant of climate stability/instability, polar shipping routes, and it 
affects heat currents under the ocean’s surface. In the past few decades, the rapidly changing 
climate has caused ice in the Arctic to thin out and disappear. Ice has become more of a seasonal 
occurrence in regions where it used to occur year round, and ice fractures have become far more 
common (Horvat and Tziperman, 2015). This has necessitated the development of more precise 
models to study sea ice-floe (ice sheets) fractures. 
​ Unfortunately, the current sea-ice floe models are computationally expensive and can 
take days to run. The ice fracture process is related to the two-dimensional ocean wave height 
field, which is too computationally expensive to simulate in a climate model. Previously, a 
super-parametrized one-dimensional model (SP-WIFF) was used, but it is expensive to run as 
well (Horvat and Tziperman, 2015). Additionally, the SP-WIFF model has a stochastic 
component, so its results are not easily reproducible. To provide  a more deterministic output, as 
well as reduce computation time, we use a classifier as well as a mixture density network to 
replicate the output of the SP-WIFF climate model when run to convergence.   
 
Data 

The data received from SP-WIFF is saved in the files “X_train.p”, "X_test.p", 
"y_train.p", and "y_test.p", where the X_train and X_test correspond to the inputs in the 
SP-WIFF model, which are 26 dimensional vectors corresponding to input frequencies of forces 
that could cause fractures in ice floes. y_test and y_train correspond to the outputs of the 
SP-WIFF model. They are 49 dimensional vectors representing a discrete probability distribution 
of fracture sizes (scaled logarithmically). 

Not all of the data is usable, since not all input frequencies are strong enough to create ice 
floe fractures. The SP-WIFF model automatically differentiates between usable and unusable 
data, and this process is learned by a 2 layer feed-forward neural network provided by Horvat 
with a 98% accuracy rate, deemed suitable enough for the model.  Thus out of 1.8 million 
original inputs, only ~400 thousand inputs are deemed acceptable for the use of DeepWIFF, 
which are then saved in a 70%/30% test data/training data split to “X_train.p” and "X_test.p" 
respectively. The respective outputs of the usable inputs are saved to "y_train.p", and "y_test.p". 
This data is summarized in the table below.  
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Fig 1: DeepWIFF Input Data Summary 

 
 
 
 
 
Model Architectures 
​ A few different model architectures for DeepWIFF are tested, namely a feed-forward 
neural network and a mixture density network (MDN). Because the output of SP-WIFF is 
interpreted as a probability distribution, it is important for the models to produce valid discrete 
probability distributions in the output of their call functions. The feed-forward network acts as a 
control against which the results of the MDN are compared, and the specifics of each model are 
listed below. 
 
Feed-Forward (Control Network) 

The simplest model tested, which is also used as a control, is a multilayer feed-forward 
neural network (FFNN). Besides the inclusion of a LeakyReLU function between each of the 5 
hidden layers, this control network is relatively simple and includes no surprise parts. A softmax 
layer is included at the end to ensure that the output is a valid probability distribution. The 
figures below represent the FFNN’s architecture and important hyperparameters for training and 
testing. 
 

Fig 2: Feed Forward Network Architecture 

 
 

 
 
 



Fig 3: Feed Forward Network Parameters 

 
 

Mixture Density Network 
The main test network is a Mixture Density Network (MDN), a type of network that 

learns probability distributions. The justification for using this model is that SP-WIFF can 
essentially be interpreted as a model that outputs conditional probability distributions. Any type 
of deep neural network emulating this process is likely to benefit from also learning conditional 
probability distributions (Bishop, 1994). 

The MDN produced consists of hidden dense layers and a custom MixtureDensity layer. 
After passing inputs through multiple dense layers with Leaky ReLU activations, the final dense 
layer output is passed through the MixtureDensity. Within the Mixture Density layer, DeepWIFF 
learns to approximate a probability distribution to match the SP-WIFF output using a sum of 
Gaussian (normal) distributions.  

The sublayer within the MixtureDensity Layer that learns variances (sigma) for the 
Gaussian mixture is passed through a softplus activation function, to ensure that produced 
variances are always positive. The sublayer which learns the mixture parameters (alpha) is 
passed through a softmax layer, to ensure that the mixture ratios are positive and all sum to one. 
Because a sum of Gaussian distributions is a continuous distribution, a custom discretized 
function based on integer rounding and the distribution’s cumulative distribution function (CDF) 
is implemented to allow the MDN to give data comparable to SP-WIFF’s outputs. There is no 
need to softmax at the end of the network, as the discretized data is still a valid probability 
distribution. The two figures below document both the MDN’s architecture and its important 
hyperparameters used in training and testing. 

 
 
 
 
 
 
 
 
 
 



Fig 4: Mixture Density Network Architecture 

 
 

Fig 4: Mixture Density Network Parameters 

 
 
Loss 

Because DeepWIFF is essentially a regression model, regression-type loss functions 
provide a more robust metric for measuring the network’s performance. Following the idea that 
simpler is better, all the models employ mean squared error (MSE) as a loss function to train on. 
Although a few other loss functions, such as mean average error (MAE), log mean squared error 
(LMSE), and Kullback-Leibler divergence (KLD) were initially considered, MSE outperformed 
all other loss functions in testing. Based on these observations, and for the sake of 
standardization, it was deemed most effective to train the models using MSE. The formula for 
MSE is given below, where n represents the size of the output vector (distribution),  represents 𝑦
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the actual ith value, and represents the predicted ith value. 𝑦
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Results 

Because there are many different metrics for measuring the accuracy of each network’s 
output, multiple different loss metrics are measured throughout the training. Three different loss 
functions are used: Mean Squared Error (MSE), Mean Absolute Error (MAE), and 
Kullback-Leibler Divergence (KLD). Each loss is listed on the graphs and tables below in their 
abbreviated forms. The graphs below represent the validation loss (testing loss) measured at the 
end of each epoch. The first two tables also represent the exact measured training and validation 
losses on the final epoch of the model being run. To measure the number of outputs deemed 
close enough in valuation in the output SP-WIFF, the final table documents the ratio of 
validation data (testing data) within different percentages of the Squared Absolute Error (SAE). 

 
Fig 4: MSE Validation Loss 

 
 

Fig 5: MAE Validation Loss 

 
 
 
 



 
 
 
 

Fig 6: KLD Validation Loss 

 
 

Fig 7: Training Losses Final Epoch 

 
 

Fig 8: Validation (Test) Losses Final Epoch 

 
 

Fig 9: Model Accuracy Based on SAE 



 
 
 
 

Discussion of Results 
​ As the data points out, the control feed forward neural network outperformed the mixture 
density in every single metric, albeit just barely. Throughout training, both the feed forward 
network and mixture density network experience large fluctuations in loss within the first 30 
epochs before steadily decreasing to a plateau at epoch 60. Throughout training, with the 
exception of a few spikes in the beginning of the training, the feed forward neural network 
consistently outperforms the mixture density network. If <10% Squared Absolute Error is taken 
the determinant for whether or not a prediction is deemed “acceptable” (i.e. close enough to the 
real prediction), it is observed that the feed forward neural network has a ~70% accuracy rate and 
that the mixture density network as a ~65% accuracy rate.  
​ The results are rather surprising, as it was expected that the mixture density network 
would outperform the feed forward neural network by a considerable margin. The justification 
for this belief was that mixture density networks are specifically designed to learn dependent 
probability distributions, whereas feed forward networks hold no such specialization. While the 
data may point to the feed forward neural network as the model architecture for DeepWIFF, it 
may be less desirable simply because its results are less interpretable. The mixture density 
network has the added advantage of easily being interpreted as a mixture of gaussian 
distributions being used to approximate an arbitrary probability distribution. It also should be 
noted that an accuracy of 70% would not be considered acceptable enough to properly replace 
SP-WIFF in climate models. An accuracy of >95% is necessary for this, which neither model 
came close to achieving. That being said, both neural networks are very successful in terms of 
training time, taking less than a minute to run data that would normally take 9+ hours on 
SP-WIFF. 
 
Challenges 
​ Because this project is inherently exploratory in nature, the biggest obstacle for us was 
that we had no point of reference to make sure our model was maximizing its effectiveness. As 
such, it was quite difficult to settle on a model of choice that could effectively address the 
problem at hand. After testing a few networks and playing around with a few potential ideas 
(partially connected networks, seq2seq models, etc.), we found that the mixture density network 



would be most suitable for our problem at hand. Many other network we tested models simply 
failed to train properly or converge at a realistic speed 
​ Within our mixture density model, our biggest challenge was figuring out how to 
compare the continuous output of our network (a Gaussian mixture) to a discrete probability 
distribution, which was the form our testing/training labels used. Searching online and reading 
articles provided little help, as the articles describing mixture density networks always deemed 
the continuous outputs of the MDNs as acceptable. The other problem we encountered with this 
was making a differentiable "discretize'' function to backpropagate on, as methods such as 
randomly sampling from a continuous distribution don’t necessarily allow 
differentiation/backpropagation. We finally overcame this issue by creating a custom discretize 
function based on calculating differences in values from each Gaussian mixture’s cumulative 
distribution function.  

The other major point of difficulty in our models was hyperparameter tuning. We spent a 
large portion of our time tweaking the hyperparameters of our models to minimize MSE 
throughout training. Within our mixture density network, we often had to deal with numerical 
overflow errors when calculating gradients. To sidestep this issue, we changed learning rates, 
imposed regularity conditions, and started working with float64 rather than float32 values. While 
overcoming these challenges was difficult, we learned a great deal about neural networks and 
how to properly work with the nuances of different neural network architectures.  
 
Reflection 
​ Overall, we feel that our project was relatively successful. While we were disappointed to 
see that the control feed-forward neural network outperformed our mixture density network 
slightly, it provided important insight on what networks might be good for learning the data that 
SP-WIFF outputs. We were also disappointed to see that the models were not completely 
accurate, only correctly predicting outputs with a ~70% success rate. This would not be enough 
to hold up in the real world. We feel that while we may not have reached our stretch goals, we 
did realize our target goal to analyze the effectiveness of at least 2 different networks learning the 
SP-WIFF model.  
​ Surprisingly, our data was contradictory to our original assumptions. Given that mixture 
density networks are specifically designed with the purpose of learning probability distributions, 
we expected the feed forward network to underperform in comparison to our mixture density 
network. This held true even after tuning our MDN’s hyperparameters. We were also quite 
surprised to see that mean square error was the most effective loss function to train our model 
against. Although we performed relatively few runs using Kullback-Leibler divergence for 
training loss, our initial tests strongly suggest that it would be a weaker loss function, despite 
being a more technically backed measure of distribution similarity.  
​ Reflecting on our overall work process, we realized that our approach changed greatly 
over time. Our initial strategy was to try complex architectures that failed, rather than sticking to 
the basics and building up. As we progressed through the project, we learned that tuning network 



hyperparameters could provide far more improvement than adding newer or fancy layers. Given 
more time, we would approach our network designs more systematically, and we would explore 
other network architectures with known success. We would also train our MDN with far more 
mixture components (>25 rather than just 12), as we suspect this might also significantly 
improve the accuracy of our MDN. 
​ It seems that the biggest takeaway from our paper is that “simpler is better”. We found 
that the simpler models and simpler loss functions were much more effective than complex 
models. We suspect that with the addition of complexity to a model, unless utilized properly, the 
complexity acts as a buffer which prevents a model from achieving maximal success. Since we 
would like to continue working on this project, we will take this approach in the future and 
hopefully create a robust deep learning model which accurately predicts the data given by 
SP-WIFF. This work on our DeepWIFF model will hopefully be one of the first in a long line of 
neural networks used to learn models in climate science. 
 
Ethical Considerations 
​ While the DeepWIFF model experienced relative success in emulating the outputs of the 
SP-WIFF model, these results should not be taken at face value. As is the case with many other 
deep learning models, DeepWIFF must contend with the Black Box problem, a set of problems 
in which deep learning models lack interpretability (Rudin, 2019). On the broadest level, the 
network architectures of models like Mixture Density Networks are understood; one is simply 
approximating an arbitrary probability distribution using a mixture of Gaussians distributions. 
However, the calculations within the layers, especially in the feed-forward layers, offer little 
insight into why DeepWIFF outputs the distributions it does. Without further calculations to 
support using DeepWIFF in place of SP-WIFF, blindly using the output of DeepWIFF could 
potentially be dangerous, especially in a climate model where incorrect calculations could lead to 
incorrect conclusions about environmental phenomena.  

Furthermore, DeepWIFF is finely tuned to specific climate parameters of SP-WIFF at a 
specific moment in time. As the climate changes and the parameters used in SP-WIFF change, 
the DeepWIFF network would need to be retrained, otherwise outputs of the DeepWIFF model 
could be outdated and possibly incorrect. As the process of constantly retraining the network 
might be costly, one should consider the environmental and temporal ramifications of using the 
DeepWIFF network.  
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