

VTKUnity - Activiz
User’s Guide

v2.0.0 - Google Docs Link

Contact: kitware.eu/contact/

Bug tracker: VTKUnity-BugTracker

Table of contents
Overview
Limitations
Contact
How to use
Monobehaviour scripts components
Order Independent Transparency

Overview
Using Dual Depth Peeling in a Unity scene
Adapt an existing material for depth peeling

License
VTK
Activiz

https://docs.google.com/document/d/1liixx8OThwbc8JbbTOAbVNZsxygrUmUQd9f3QYfPcho/edit?usp=sharing
https://www.kitware.eu/contact
https://servicedesk.kitware.fr/kitware/activiz-unity

Overview
The role of this asset is to provide access to the Visualization Toolkit (VTK) rendering and processing
capabilities inside a Unity application. It is based on ActiViz to offer a complete set of VTK features
wrapped for C#. The VTK scene is rendered into Unity’s rendering pipeline using the Unity low-level
native plug-in interface and leveraging the use of command buffers.

The asset is organized with the following directory structure:

- Plugins: Native and managed code providing VTK C++ API in Unity.

- Scripts: MonoBehaviour scripts used to synchronize and update VTK rendering.

- StreamingAssets: Data files necessary for the demo scene.

- Scenes: Example scene using files from the StreamingAssets directory to showcase VTK
visualization and computation capabilities.

In addition to bringing VTK into the Unity world. This asset also provides advanced visualization
algorithms that can be used in a Unity-only scene.

https://vtk.org/
https://www.kitware.eu/product/activiz
https://docs.unity3d.com/Manual/NativePluginInterface.html
https://docs.unity3d.com/Manual/NativePluginInterface.html
https://docs.unity3d.com/ScriptReference/Rendering.CommandBuffer.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.html

Limitations
- OS support: The native plugin has been implemented and tested for Windows only. Support for

Linux, MacOS and Android might come in future versions.

- Unity Graphics API: VTK relies on the OpenGL rendering backend, thus Unity graphics API must
be set to OpenGLCore.

- Virtual and Augmented Reality: Although VTK and ActiViz natively support rendering in VR and
AR headsets such as the Hololens 2, the Unity support for OpenXR does not work with the
OpenGLCore rendering backend. For this reason, the plugin only supports rendering in VR headsets
using the Unity legacy VR support that is based on OpenVR and available in Unity 2019.

Contact
Let us know how to improve the asset so it better fits your needs at kitware@kitware.fr, or use the
bug tracker to report issues.

© 2008-2023 Kitware, Inc. & Kitware Europe​
https://www.kitware.fr/

https://docs.unity3d.com/Manual/GraphicsAPIs.html
https://www.kitware.eu/contact
https://servicedesk.kitware.fr/kitware/activiz-unity
https://www.kitware.fr/

How to use
To use the plugin, create a new Unity 3D project and proceed as follows. Alternatively, open one of the
example scenes provided with the asset in order to adapt the existing code.

Setup project:

●​ Change rendering backend to OpenGLCore
○​ Edit->Project Settings->Player->Other Settings
○​ Untick "Auto Graphics API for Windows"
○​ Remove current API and add "OpenGLCore"

●​ Add VTKCamera.cs to every camera component in your Unity project
●​ Add VTKLight.cs to every light component in your Unity project
●​ The VTKSceneCamera.cs script can also be attached to an empty game object to trigger

rendering in the editor without starting the game. This requires all scripts to use the
[ExecuteInEditMode] keyword.

Setup VTK scene:

The VTK scene can be managed in a separate script and rendered by multiple cameras. VTK actors must
be added to every vtkRenderer object exposed in the VTKCamera scripts added in the previous step.

The VTKSceneObject.cs script implements a MonoBehavior subclass that provides callback functions
being called for each camera having a VTKCamera component. Such callbacks allow users to easily add
and remove scene objects from the associated vtkRenderer.

●​ Create an empty GameObject and attach a new script to it
●​ Edit the new script to make it a VTKSceneObject subclass and implement the methods below:

○​ void Start(): This is the MonoBehavior start callback, it should be used to initialize
data and pipelines

○​ protected override void AddSceneObjects(vtkRenderer renderer) :
Used to add actors to the VTK renderer. Called when enabled and when VTKCamera is
enabled.

○​ protected override void RemoveSceneObjects(vtkRenderer renderer) :
Used to remove actors from the VTK renderer. Called when disabled and when
VTKCamera is disabled. By default the parent class removes all actors from the renderer.

Here is an example script adding a simple VTK sphere to the Unity scene:

https://docs.unity3d.com/ScriptReference/ExecuteInEditMode.html

C/C++‎

using Kitware.VTK;
using UnityEngine;

public class VTKExample : VTKSceneObject
{
 vtkActor SphereActor;

 /** MonoBehavior Start callback: Initialize VTK scene */
 void Start()
 {
 vtkSphereSource sphereSource = vtkSphereSource.New();
 sphereSource.Update();

 vtkPolyDataMapper sphereMapper = vtkPolyDataMapper.New();
 sphereMapper.SetInputData(sphereSource.GetOutput());

 this.SphereActor = vtkActor.New();
 this.SphereActor.SetMapper(sphereMapper);
 }

 /** AddSceneObjects callback: Add VTK actors to the renderer */
 protected override void AddSceneObjects(vtkRenderer renderer)
 {
 if (renderer.HasViewProp(this.SphereActor) == 0)
 {
 renderer.AddActor(this.SphereActor);
 }
 }
}

Monobehaviour scripts components
The following script components are provided for users to set up a VTK scene within their Unity project.

Scripts within the Core folder are provided to synchronize the two scenes:

- VTKCamera.cs: This script should be attached to Unity’s Camera to trigger VTK rendering. It uses
Unity’s command buffers to call the VTK rendering callback implemented in the native plugin. It
exposes a vtkRenderer object in which the VTK scene objects can be rendered.

- VTKLight.cs: This script should be added to a Unity light object to set up the corresponding VTK
scene light and synchronize light parameters. VTK supports illumination with Directional, Point and
Spot light types. Shadows, indirect lighting and cookies are unsupported for now.

- VTKSceneObject.cs: The VTKSceneObject.cs script implements a MonoBehavior subclass that
provides callback functions being called for each camera having a VTKCamera component. Such
callbacks allow users to easily add and remove scene objects from the associated vtkRenderer.

- VTKSceneCamera.cs: This script can be attached to an empty game object to trigger rendering in
the editor without starting the game. This requires all scripts to use the [ExecuteInEditMode] keyword.

- VTKNativePlugin.cs: This script provides helper functions called internally to synchronize the VTK
render passes with the Unity render pipeline.

- Other scripts related to depth peeling are explained in the “Order Independent Transparency”
section below.

Scripts within the Scene folder provide example classes to design and update a VTK scene. Best practice
is to attach each script to an empty GameObject in Unity:

- VTKStreamlines.cs: Instantiates and updates a VTK scene to display streamlines in a vector field.

- VTKVolumeRendering.cs: Read a 3D image to perform volume rendering, display anatomical
planes, and extract polygonal surfaces using VTK filters.

- VTK.cs: Basic VTK scene showing how to use multiple cameras

- VTKSampleScene.cs: Basic VTK scene used to demonstrate the Order Independent Transparency
technique presented in the next section

https://docs.unity3d.com/Manual/GraphicsCommandBuffers.html
https://docs.unity3d.com/ScriptReference/ExecuteInEditMode.html

Order Independent Transparency

Overview

When rendering transparent objects, blending of fragments can result in rendering artifacts if the
geometry is not sorted.

Order independent transparency techniques aim to produce a correct alpha compositing, while avoiding
sorting of the geometry.

Depth Peeling is an approach using multiple render passes in order to peel the objects from front to back
until there is no more geometry to render. The order of draw calls in a render pass does not matter as
fragments are discarded based on their depth value. It has the advantage of working not only for blending
the front and back faces of the same object, but also for transparent objects intersecting each other.

Dual depth peeling is an enhancement of the Depth Peeling algorithm, allowing both the front and back
depth layers to be resolved in a single render pass. Hence the number of required render passes to
complete the resolution of all fragments is drastically reduced.

Unity rendering pipeline sorts the translucent objects from back to front, resulting in a correct alpha
blending of game objects. However, this has some limitations when objects are intersecting each other.

On the following image on the left, Unity game objects cannot be correctly sorted because sorting relies
on the center of the object. In opposition, dual depth peeling produces the expected interlaced
geometries.

Default geometry sorting in Unity Dual Depth Peeling in unity

Another big advantage of depth peeling is that it works with VTK Volume rendering, allowing a volume to
be correctly composed with a Unity transparent game object.

Without Depth Peeling, VTK volumes are
rendered on the top of Unity translucent objects

VTK Volume Rendering mixed with a Unity
transparent game object.

Using Dual Depth Peeling in a Unity scene
Depth peeling is performed by adding command buffers to the Unity camera rendering the translucent
game objects. The mesh renderer of those game objects is automatically disabled to delegate the
rendering to the depth peeling pass performed by the camera command buffers.

Depth Peeling requires modifications to the fragment shader code of transparent materials. A detailed
presentation of the steps required to adapt an existing material is given in the next section. An adaptation
of the Unity Standard material is also provided within this package.

The following MonoBehavior scripts are provided to setup depth peeling in a Unity scene:

- DualDepthPeelingCamera.cs:
This script should be attached to Unity’s Camera to setup depth peeling. It internally manages a rendering
system in a singleton to ease the addition and removal of cameras and objects to the render passes.
The following parameters are publicly exposed:

uint NumberOfLayers = 4;

Defines the maximum number of depth peeling render passes.

- DepthPeelingObject.cs:

This script should be attached to a translucent object to add it to the depth peeling rendering system. Any
mesh renderer attached to the parent game object will be disabled. A depth peeling material must be
used by the parent game object.

Current Editor limitations:

●​ The preview of depth peeling materials in the Unity editor is not supported yet.

Adapt an existing material for depth peeling
Using an existing material for Dual Depth Peeling requires modifications to the original fragment shader
code, as well as the render pass state of this material.

The steps required to adapt an existing shader are presented below. A modified version of the Unity
standard shader is also shipped with the plugin and can be used as an example for adapting a more
complex shader.

●​ Add the following properties to the shader Properties block to control the blend state of the
different depth peeling render passes:

[HideInInspector] _BlendOperation("BlendOperation", Float) = 4.0
[HideInInspector] _SrcBlend ("__src", Float) = 1.0
[HideInInspector] _DstBlend ("__dst", Float) = 0.0

●​ Override the shader Pass state in the Pass block as follow:

Blend [_SrcBlend] [_DstBlend]
BlendOp [_BlendOperation]
ZWrite Off
ZTest LEqual
Cull Off

Disabling culling makes sense for fully transparent objects where we want to see the backfaces.
Some translucent shaders effects require backface culling. In this case the Cull state can stay
unchanged.

●​ Add the following directive inside the CGPROGRAM block:

#include "DualDepthPeelingDeclaration.cginc"

The path to the include file is relative to the current shader directory.

●​ The vertex shader main function can remain unchanged

●​ The fragment shader main function should be modified to use the following:

○​ The declaration should be changed to return a FragmentOutput struct. This struct is defined
in the DualDepthPeelingDeclaration.cginc file included above. It stores the required fragment
information for depth peeling.

At the beginning of the fragment function, a depth peeling pre-color step is performed in
order to discard useless fragments. Add the following lines at the very beginning of the
fragment shader main function, before computing any color. Note the instantiation of the
FragmentOutput object that will be returned later.

FragmentOutput output;
DEPTH_PEELING_PRECOLOR(i.vertex, output)

The only variable name you have to adapt to your use case is the vertex position passed to
the depth peeling pre-color macro. In the above snippet it is referenced as i.vertex but you
should adapt this to use the name of your shader "vertex to fragment" struct.

○​ After this pre-color step should come the original fragment color computation code. For
instance, here is a very simple fragment computation sampling from a texture and setting the
opacity to 0.5.

fixed4 col = tex2D(_MainTex, i.uv);
col.a = 0.5;

Most fragment shaders return a single color targeting SV_TARGET (or COLOR0). This
corresponds to the Color0 attributes of the FragmentOutput struct.

○​ Finally copy the above computed color to the FragmentOutput instance and proceed to depth
peeling by adding the following block at the very end of the shader pass:

output.Color0 = col;
DEPTH_PEELING_PEEL(output)
return output;

None

License

VTK
VTK is an open-source toolkit distributed under the OSI-approved BSD 3-clause License. See the
following Copyright.txt for details.

/*===

 Program: Visualization Toolkit
 Module: Copyright.txt

Copyright (c) 1993-2015 Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

 * Redistributions of source code must retain the above copyright notice,
 this list of conditions and the following disclaimer.

 * Redistributions in binary form must reproduce the above copyright notice,
 this list of conditions and the following disclaimer in the documentation
 and/or other materials provided with the distribution.

 * Neither name of Ken Martin, Will Schroeder, or Bill Lorensen nor the names
 of any contributors may be used to endorse or promote products derived
 from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS''
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

===*/

Activiz
Activiz is a closed-source software licensed under the BSD license. Read the Activiz License
Agreement for more information.

http://en.wikipedia.org/wiki/BSD_licenses
https://www.kitware.eu/wp-content/uploads/2022/01/ActiViz-License-Agreement.pdf
https://www.kitware.eu/wp-content/uploads/2022/01/ActiViz-License-Agreement.pdf

	
	Overview
	Limitations
	Contact
	
	How to use
	
	Monobehaviour scripts components
	Order Independent Transparency
	Overview
	Using Dual Depth Peeling in a Unity scene
	Adapt an existing material for depth peeling

	License
	VTK
	Activiz

