CS 240 #5: Binary Adders and Memory Hierarchy

Computer CS 240 - September 8, 2020 Wade Fagen-Ulmschneider

Truth Table: Binary Addition

In the last lecture, we explored "Binary Addition". Let's see if we can begin to design the circuit to complete the binary addition!

Truth Table:

A	В	A + B	SUM	CARRY

Circuit Diagram for a "Half Adder":

Truth Table:

A	В	CARRY _{in}	CARRY _{in} + A + B	SUM	CARRY _{out}

Circuit Diagram for a "Full Adder":

Complete Circuit for a "Ripple Carry Adder":	Memory Hierarchy: The third foundation of a computer system is the memory the storage of data to be processed by our CPU. There are many different types of common memory in a system:		
	1. [Processor Registers]:		
	2. [Processor Cache]:		
Disadvantages: - [Speed]:	3. [RAM]:		
- [Parallel Operations]:	4. [Solid State / Flash Memory/Storage]:		
Building Complex Circuits:	5. [Hard Disk Storage]:		
	6. [High-Density / Offline / Tape Storage]:		