

GPT-4 Weighs In:

Does CMS Hold the Key to AI Adoption in US Healthcare?

In a 12-question, 5000-word interview, we get the views of Chat GPT-4 on how CMS may be promoting or retarding the adoption of impactful uses of artificial intelligence in healthcare.

The interview includes an Al-generated summary at top. I have clipped the whole interview (which would equal a 30-minute webinar) in this blog. I have also clipped the whole interview in an open access Google doc, which some readers may prefer.

The interview is entirely unedited except for minor wordsmithing of the summary.

Blog link:

http://www.discoveriesinhealthpolicy.com/2023/03/ai-exploration-series-we-interview-gpt4.html

Summary (Al generated)

This interview between Dr Bruce Quinn and GPT-4 discusses various aspects of AI in healthcare, including its applications, challenges, and the roles of different stakeholders. AI has the potential to revolutionize healthcare by improving diagnostics, treatment planning, patient

monitoring, and workflow efficiency. Radiology and pathology have been particularly impacted by AI, with innovations that were previously impossible without AI technology.

However, the adoption of AI in healthcare faces challenges, particularly in the Medicare reimbursement system. The current reimbursement models, such as the Medicare RVU payment system, may not account for the unique costs and benefits associated with AI technologies. This can create financial barriers for healthcare providers and organizations, limiting the integration of AI-driven solutions.

The interview explores strategies for engaging with policymakers, focusing on simplifying the message, quantifying the impact of AI, and connecting the issue to broader public health goals. Collaboration with various stakeholders, including healthcare providers, AI developers, professional organizations, and patient advocacy groups, is crucial for driving meaningful change in reimbursement policies and fostering a supportive environment for AI adoption in healthcare.

Also discussed: the roles of organizations like the American Medical Association, the National Institutes of Health (NIH), and the Centers for Medicare & Medicaid Services (CMS) in promoting AI in healthcare. Cross-agency collaborations between the NIH and CMS, as well as efforts to address ethical considerations and integrate AI into medical education, can contribute to the successful integration of AI into the healthcare system.

The take-home lesson is that AI has the potential to significantly improve patient care and outcomes, but its impact largely depends on addressing financial, regulatory, and technical barriers. Collaborative efforts among stakeholders are essential to promote AI adoption in healthcare and ensure its benefits are fully realized.

Q1. What activities, programs, or policies is the Medicare agency using to Promote or to reimburse for uses of artificial intelligence in healthcare?

Q2. Are there any major features of Medicare payment policy that are barriers to expanded use of Al in healthcare?

- Q3. How does the cost architecture of the Medicare RVU payment system discourage use of AI?
- Q4. Is the American Medical Association doing much to encourage use of true AI (not just telemedicine) in US healthcare?
- Q5. What are the most impactful uses of Al in radiology?
- Q6. What are the most impactful applications of Al in pathology? Focus on things that require Al and we're not possible without it.
- Q7. What is the NIH doing to encourage breakthroughs in AI that will improve healthcare in new ways?
- Q8. Are there Al focused collaborations between NIH and CMS?
- Q9. Help me compare two things. (1) There is a well known problem that biopharmas, especially new venture funded ones, have difficulty getting good ROI for novel antibiotics and may even go bankrupt after FDA approval. (2) Similarly, I am concerned that healthcare coding and coverage and reimbursement is lacking for breakthrough or out of the box AI innovations, and limiting progress in healthcare. Can you comment?
- Q10. I would like to focus on your point which begins, "for breakthrough Al innovations in healthcare..." How would you explain the problem to a senior CMS policymaker who has limited knowledge

about AI in healthcare? How would you help him understand the problem, prioritize the problem, and engage in solutions?

Q11. Let's assume you have been meeting with the senior CMS policymaker, and your presentation has covered these five points. He seems a little disengaged and you are concerned that he won't do much once the meeting is over. What would you do next? Would you focus on this person, or seek higher level meetings, or turn to other government bodies, what is missing?

Q12. Your help is excellent. I find that higher level policymakers should take a broader view of public health goals, yet, they are farther from details like coding or RVU rules where the problems for reimbursements lie. How can we overcome this dilemma?

Q13. Can you provide a single summary (200-300 words) of our discussion.

Q1. What activities, programs, or policies is the Medicare agency using to Promote or to reimburse for uses of artificial intelligence in healthcare?

As of my knowledge cutoff date in September 2021, the Centers for Medicare & Medicaid Services (CMS) had already started exploring ways to incorporate artificial intelligence (AI) into healthcare programs and policies. While there may have been developments since then, the following are some notable examples of AI integration within the Medicare system up to 2021:

- Virtual Care: CMS expanded telehealth services during the COVID-19 pandemic, which included remote patient monitoring and virtual consultations. Al plays a significant role in these services by assisting with diagnostics, patient triage, and care management.
- 2. **Al Health Outcomes Challenge:** CMS, in collaboration with the American Academy of Family Physicians and the Laura and John Arnold Foundation, launched the Al Health Outcomes Challenge. This initiative aimed to accelerate the development and adoption of Al-driven solutions to predict patient outcomes and improve care quality.
- Chronic Care Management (CCM): CMS has recognized the potential of Al-driven remote monitoring and care management tools to improve the management of chronic conditions. They have introduced reimbursement codes for remote patient monitoring, allowing healthcare providers to bill Medicare for these services.
- 4. **Fraud, Waste, and Abuse Detection:** CMS has started using AI and machine learning algorithms to detect patterns of fraud, waste, and abuse in the Medicare system. This can help identify and prevent inappropriate billing practices and protect the program's integrity.
- 5. **Electronic Health Records (EHRs**): CMS has been promoting the use of EHRs and interoperability to improve care coordination and reduce errors. Al-powered tools can analyze large amounts of data from EHRs to identify patterns and trends that can inform better clinical decision-making.
- 6. **Quality Payment Program (QPP):** The QPP focuses on improving the quality of care and encouraging the adoption of innovative technologies, including AI. The Merit-based Incentive Payment System (MIPS) and Advanced Alternative Payment Models (APMs) within the QPP financially reward healthcare providers for using technology to improve patient outcomes.

It is essential to note that the Medicare landscape is continually evolving, and CMS may have implemented new programs or policies since September 2021. It is recommended to visit the CMS website or consult with healthcare experts for the most up-to-date information on AI integration in the Medicare system.

Q2. Are there any major features of Medicare payment policy that are barriers to expanded use of Al in healthcare?

There are several aspects of Medicare payment policy that can act as barriers to the expanded use of Al in healthcare. Some of these include:

- Fee-for-service reimbursement model: Medicare's traditional fee-for-service (FFS) reimbursement model might not adequately incentivize the adoption of Al technologies, as it mainly focuses on the quantity of services provided rather than the quality or efficiency of care. This system may not provide appropriate incentives for healthcare providers to invest in Al solutions that could improve patient outcomes and reduce costs.
- Limited coverage and reimbursement: Medicare's coverage and reimbursement policies for Al-driven technologies are still in the early stages of development. Many Al-based tools and services might not yet have established billing codes or specific reimbursement pathways, making it challenging for healthcare providers to adopt these innovations due to financial uncertainty.
- 3. Regulatory and approval processes: The development and adoption of AI technologies in healthcare can be slowed down by lengthy regulatory and approval processes. In the United States, AI-driven medical devices and software must be approved by the Food and Drug Administration (FDA) before they can be reimbursed by Medicare. This can result in delays and added costs for innovators and healthcare providers.
- 4. Data privacy and security concerns: Medicare payment policies need to address data privacy and security concerns related to AI technologies. As AI systems often rely on large datasets, including sensitive patient information, there is an increased risk of data breaches and misuse of information. These concerns can slow down the adoption of AI in healthcare.
- 5. **Fragmentation of care:** The Medicare system is fragmented, with various parts (Part A, Part B, Part C, and Part D) catering to different healthcare needs. This fragmentation can make it challenging to coordinate and integrate Al-driven solutions across different parts of the system.
- 6. Lack of standardized data and interoperability: Al systems require standardized, high-quality, and interoperable data to function effectively. However, the lack of standardized data formats and interoperability between electronic health record (EHR) systems can hinder the adoption of Al in healthcare.

To overcome these barriers and encourage the adoption of AI in healthcare, Medicare payment policies should focus on creating incentives for providers to invest in innovative technologies, streamlining regulatory and approval processes, and addressing data privacy and security concerns. Additionally, fostering collaboration between various stakeholders, including healthcare providers, payers, technology developers, and regulatory agencies, can further help accelerate AI's integration into the healthcare system.

Q3. How does the cost architecture of the Medicare RVU payment system discourage use of AI?

The Medicare Relative Value Unit (RVU) payment system is based on the Resource-Based Relative Value Scale (RBRVS), which assigns a relative value to each medical service or procedure. This value is determined based on three components: Physician Work RVUs, Practice Expense RVUs, and Malpractice RVUs. The total RVUs are then multiplied by a monetary conversion factor to determine the payment amount for a specific service or procedure.

The RVU payment system can discourage the use of AI in healthcare in the following ways:

- 1. Limited incentives for innovation: The RVU payment system mainly focuses on compensating healthcare providers for their time and expertise, practice expenses, and malpractice costs. It may not account for the potential benefits of adopting AI technologies, such as improved patient outcomes, reduced costs, or increased efficiency. This lack of incentives for innovation can discourage healthcare providers from investing in AI solutions.
- Inadequate reimbursement for Al-driven services: The current RVU payment system may not adequately reimburse Al-driven services, as it is not explicitly designed to account for the unique costs and benefits associated with Al technologies. This can result in healthcare providers being hesitant to adopt Al solutions due to financial concerns.
- 3. **Fee-for-service model:** The RVU payment system is a fee-for-service model, which rewards providers based on the volume of services rendered rather than the quality or effectiveness of care. This model may not create incentives for healthcare providers to adopt Al-driven solutions that could improve care quality, as they may not be directly rewarded for the improved outcomes resulting from the use of Al.
- 4. **Slow to adapt:** The RVU payment system may be slow to adapt to new technologies, such as AI, as it requires updates to incorporate new billing codes and reimbursement pathways for AI-driven services. This slow adaptation process can hinder the integration of AI into the healthcare system.
- 5. Lack of specific billing codes: Al-driven services may not have specific billing codes within the RVU payment system. Without well-defined billing codes, healthcare providers may face difficulties in receiving reimbursement for these services, discouraging their adoption.

To encourage the use of AI in healthcare, the Medicare RVU payment system needs to evolve and adapt to the unique costs and benefits associated with AI technologies. This could involve developing new billing codes and reimbursement pathways, as well as creating incentives for healthcare providers to invest in AI-driven solutions that can improve patient outcomes and reduce healthcare costs.

Very good.

Thank you! I'm glad you found the information helpful. If you have any more questions or need further assistance, please don't hesitate to ask.

Q4. Is the American Medical Association doing much to encourage use of true Al (not just telemedicine) in US healthcare?

The American Medical Association (AMA) has shown interest in promoting the responsible adoption of AI in healthcare to improve patient care and outcomes. Although the AMA's efforts are not limited to true AI, they have taken several initiatives to encourage the use of AI and related technologies in the US healthcare system:

- Al policy development: The AMA has been working on developing policy recommendations related to AI in healthcare. In 2018, the AMA adopted a new policy that provided a broad framework for AI's role in healthcare, focusing on ensuring that AI-driven tools are safe, effective, and evidence-based, while prioritizing patient interests and addressing liability concerns.
- 2. Ethical guidelines: The AMA has emphasized the importance of developing and implementing ethical guidelines for AI in healthcare. They encourage AI developers, healthcare providers, and other stakeholders to follow ethical principles, such as transparency, accountability, privacy, and fairness, when designing and using AI systems.
- Education and training: The AMA recognizes the need for medical
 professionals to be well-equipped to integrate AI into their practice. They support
 education and training efforts that can help physicians and other healthcare
 providers understand AI's potential benefits, limitations, and ethical
 considerations.
- 4. Collaboration with other organizations: The AMA has been involved in collaborative efforts with other organizations to promote the responsible use of AI in healthcare. For example, they have partnered with organizations like the American Heart Association (AHA) to develop certification programs for AI-driven digital health tools, aiming to establish standardized criteria for evaluating these technologies.

- 5. Advocacy for research and development: The AMA has been advocating for increased research and development in AI for healthcare applications. They support federal efforts to fund AI research and encourage collaboration between the public and private sectors to drive innovation in this field.
- 6. **Participation in Al-focused events**: AMA representatives have participated in various Al-focused conferences, workshops, and panel discussions, contributing their insights and promoting discussions around Al's role in healthcare.

While the AMA's efforts may not be exclusively focused on true AI, they play an essential role in shaping the landscape for AI adoption in healthcare. By developing policies, ethical guidelines, and educational resources, the AMA is working to ensure that AI-driven technologies are responsibly integrated into the US healthcare system to improve patient care and outcomes.

What are the most impactful uses of Al in radiology?

Al has made significant strides in radiology, leading to various impactful applications that can improve diagnostic accuracy, efficiency, and patient outcomes. Some of the most notable uses of Al in radiology include:

- 1. **Image analysis and interpretation:** Al algorithms, particularly deep learning techniques like convolutional neural networks (CNNs), can automatically analyze medical images (e.g., X-rays, MRIs, CT scans) to detect and classify abnormalities, such as tumors, fractures, or lung nodules. These algorithms can achieve high accuracy and sometimes even surpass human radiologists in certain tasks, resulting in faster and more reliable diagnoses.
- Computer-aided detection and diagnosis (CAD): Al-powered CAD systems
 can assist radiologists by flagging potential abnormalities and providing
 diagnostic suggestions. By serving as a "second opinion," these systems can
 help reduce diagnostic errors, improve the consistency of interpretations, and
 alleviate the workload for radiologists.
- 3. Automated measurements and quantification: All algorithms can automatically measure and quantify various imaging features, such as the size, shape, and volume of tumors or other structures. This can help radiologists monitor disease progression, assess treatment response, and provide more accurate prognoses for patients.
- 4. **Radiation dose optimization:** All can help optimize radiation doses in imaging procedures, ensuring that patients receive the minimum necessary dose while

- maintaining image quality. This can reduce patients' exposure to ionizing radiation and minimize potential risks associated with radiation exposure.
- 5. **Image reconstruction and enhancement:** All techniques can help improve the quality of medical images by reducing noise, correcting artifacts, and enhancing image resolution. This can lead to better visualization of anatomical structures and pathological findings, enabling more accurate diagnoses.
- 6. **Workflow optimization:** All can streamline radiology workflows by automating tasks like image sorting, prioritization, and report generation. By identifying urgent or critical cases and prioritizing them for review, All can help radiologists focus on the most important cases, thereby reducing turnaround times and improving patient outcomes.
- 7. **Predictive analytics:** All can analyze large datasets of radiological images and associated clinical data to identify patterns and correlations that can inform clinical decision-making. These insights can help radiologists predict disease progression, treatment response, and patient outcomes more accurately.

These impactful AI applications in radiology have the potential to revolutionize the field by improving diagnostic accuracy, reducing human errors, enhancing efficiency, and ultimately leading to better patient care and outcomes.

Q6. What are the most impactful applications of AI in pathology? Focus on things that require AI and we're not possible without it.

AI, particularly deep learning techniques, has shown great potential in the field of pathology, enabling the development of various impactful applications that were not previously possible without it. Some of the most significant AI applications in pathology include:

- 1. Digital pathology and whole-slide image analysis: Al-powered algorithms can analyze digitized whole-slide histopathology images at high resolution to detect and classify various features, such as cancerous cells, tissue architecture, and biomarkers. The ability to efficiently and accurately analyze large-scale, high-resolution images is a task that was not feasible without Al, given the substantial amount of data involved and the level of detail required.
- 2. Computer-aided diagnosis and prognosis: Al algorithms can assist pathologists in making more accurate and consistent diagnoses by identifying and quantifying specific features in histopathological samples. These algorithms can also predict patient outcomes, such as the likelihood of cancer recurrence or metastasis, based on the analysis of complex patterns within the tissue samples that may be challenging for human pathologists to discern.

- 3. Personalized medicine and treatment planning: Al can analyze large amounts of data from pathological samples, including genetic, molecular, and imaging data, to identify patterns and correlations that can inform personalized treatment plans. By considering the unique characteristics of a patient's tumor or disease, Al can help pathologists and oncologists recommend the most effective therapies tailored to individual patients.
- 4. Biomarker discovery and validation: All can efficiently analyze large datasets to identify potential biomarkers associated with specific diseases or treatment responses. This process can help researchers discover new diagnostic, prognostic, or predictive biomarkers that were previously hidden in the vast amount of data, leading to new insights and breakthroughs in disease understanding and treatment.
- 5. Computational pathology and multi-modal data integration: Al can integrate and analyze multi-modal data, such as histopathology images, radiology images, genomic data, and clinical information, to provide a more comprehensive understanding of diseases. This integrative approach was not possible without Al, as it requires the efficient processing and analysis of vast and heterogeneous datasets to generate meaningful insights.

These AI applications in pathology have the potential to revolutionize the field by enhancing diagnostic accuracy, enabling personalized medicine, and uncovering new biomarkers, ultimately leading to better patient care and outcomes. The ability of AI to process and analyze large-scale, complex data has opened up new possibilities in pathology that were not feasible without its advanced capabilities.

Q7. What is the NIH doing to encourage breakthroughs in AI that will improve healthcare in new ways?

The National Institutes of Health (NIH) has been actively involved in fostering research and innovation in AI to improve healthcare. The agency has undertaken several initiatives to promote breakthroughs in AI that can lead to better healthcare outcomes, such as:

 Funding Al research: The NIH provides funding opportunities for researchers focused on Al and its applications in healthcare through various grants and programs. These funding opportunities support Al-related projects across a wide range of areas, including diagnostics, therapeutics, medical imaging, and genomics.

- Collaborations and partnerships: The NIH collaborates with other government agencies, academic institutions, and private organizations to promote AI research in healthcare. These collaborations help to facilitate knowledge exchange, share resources, and accelerate the development of AI-driven solutions for healthcare.
- 3. **Initiatives for data sharing and accessibility:** The NIH supports initiatives that promote data sharing and accessibility for AI research, such as the National Library of Medicine's National Center for Biotechnology Information (NCBI) and the National Cancer Institute's Cancer Imaging Archive (TCIA). These resources provide researchers with access to large-scale datasets that are critical for developing and validating AI algorithms.
- 4. **Al-focused workshops and conferences:** The NIH organizes and participates in Al-focused workshops, conferences, and panel discussions to share insights, promote discussions, and identify new research directions in Al for healthcare.
- 5. **Training and educational programs:** The NIH supports training and educational programs aimed at developing the next generation of AI researchers and healthcare professionals. These programs help to build a skilled workforce capable of harnessing AI's potential to improve healthcare.
- 6. **Strategic Roadmap for AI in Biomedical Research:** In 2021, the NIH released a strategic roadmap that outlines the agency's vision for AI in biomedical research. The roadmap identifies key priorities and strategies for promoting AI research and applications in healthcare, such as fostering interdisciplinary collaboration, addressing data challenges, and ensuring the ethical development and use of AI.

These initiatives by the NIH demonstrate a commitment to advancing AI research and innovation in healthcare. By providing funding, promoting collaborations, and supporting data sharing and training initiatives, the NIH is actively working to encourage breakthroughs in AI that can lead to improved healthcare outcomes.

Q8. Are there AI focused collaborations between NIH and CMS?

While there might not be any direct Al-focused collaborations between the National Institutes of Health (NIH) and the Centers for Medicare & Medicaid Services (CMS), these agencies work together in certain areas where Al plays a crucial role. The primary goal of these collaborations is to improve healthcare outcomes, reduce costs, and promote the adoption of innovative technologies, including Al. Some indirect collaborations include:

- Data sharing initiatives: Both the NIH and CMS have taken steps to make healthcare data more accessible to researchers and developers. By promoting data sharing and the use of standardized data formats, these agencies can help Al researchers access the datasets they need to develop and validate Al-driven solutions for healthcare.
- 2. Quality improvement programs: CMS runs various quality improvement programs aimed at enhancing patient care and reducing costs in the Medicare and Medicaid systems. Some of these programs, such as the Quality Payment Program (QPP), encourage healthcare providers to adopt innovative technologies, including AI, to improve patient care. The NIH, through its research and support for AI in healthcare, can indirectly contribute to these quality improvement efforts.
- 3. Interagency collaborations: Both the NIH and CMS participate in interagency collaborations that involve AI in healthcare. For example, they may work together in initiatives led by the Office of the National Coordinator for Health Information Technology (ONC), which focuses on promoting the adoption of health IT and fostering innovation in healthcare. In this context, both agencies may contribute to AI-related discussions, policy development, and research directions.
- 4. **Support for AI research and development:** While the NIH primarily funds and promotes AI research in healthcare, CMS can play a role in adopting AI-driven solutions through reimbursement policies and coverage decisions. By working together, both agencies can create an environment that encourages the development, validation, and integration of AI in healthcare systems.

Although there might not be direct Al-focused collaborations between the NIH and CMS, these agencies play complementary roles in promoting Al research and adoption in healthcare. Their joint efforts can help foster a supportive environment for Al-driven innovations, ultimately improving patient care and outcomes.

Q9. Help me compare two things. (1) There is a well known problem that biopharmas, especially new venture funded ones, have difficulty getting good ROI for novel antibiotics and may even go bankrupt after FDA approval. (2) Similarly, I am concerned that healthcare coding and coverage and reimbursement is lacking for breakthrough or out of the box AI innovations, and limiting progress in healthcare. Can you comment?

Certainly, both situations involve challenges related to market dynamics and financial incentives, which can hinder the development and adoption of novel solutions in their respective fields. Let's compare the two scenarios:

1. Difficulty in achieving ROI for novel antibiotics:

- The development of new antibiotics is costly and time-consuming. However, the
 return on investment (ROI) for these drugs tends to be lower compared to other
 therapeutic areas, such as oncology or rare diseases. This is because antibiotics
 are typically prescribed for short durations and are often saved as a last resort to
 avoid the development of antibiotic resistance.
- Moreover, generic antibiotics are widely available at low prices, making it difficult for novel antibiotics to compete in the market.
- This financial disincentive has led to a decline in antibiotic research and development, as biopharmaceutical companies, particularly new venture-funded ones, may struggle to recoup their investments or even go bankrupt after FDA approval.

2. Limited coding, coverage, and reimbursement for breakthrough Al innovations in healthcare:

- Healthcare coding, coverage, and reimbursement systems, such as the Medicare RVU payment system, can be slow to adapt to new technologies like AI, leading to inadequate reimbursement for AI-driven services.
- The current reimbursement models may not account for the unique costs and benefits associated with AI technologies, and there may be a lack of specific billing codes for AI-driven services.
- This situation can create financial barriers for healthcare providers and organizations to adopt breakthrough AI innovations, as they may not receive sufficient reimbursement to cover the costs and justify their investments.

In both scenarios, the lack of appropriate financial incentives and market dynamics can limit the development and adoption of novel solutions. To address these challenges, it is essential to create a supportive environment that fosters innovation and provides appropriate financial incentives:

- For novel antibiotics, this could involve implementing new reimbursement
 models, such as subscription-based or value-based pricing, offering incentives
 for antibiotic R&D, and providing regulatory support to expedite the development
 and approval process.
- For breakthrough Al innovations in healthcare, this could involve updating reimbursement systems to account for the unique costs and benefits of Al technologies, creating new billing codes for Al-driven services, and incentivizing healthcare providers to invest in Al-driven solutions that can improve patient care and outcomes.

By addressing these financial barriers and aligning incentives, it is possible to encourage the development and adoption of novel antibiotics and breakthrough Al innovations in healthcare, ultimately leading to better patient care and outcomes.

Q10. I would like to focus on your point which begins, "for breakthrough Al innovations in healthcare..." How would you explain the problem to a senior CMS policymaker who has limited knowledge about Al in healthcare? How would you help him understand the problem, prioritize the problem, and engage in solutions?

When explaining the problem of limited coding, coverage, and reimbursement for breakthrough AI innovations in healthcare to a senior CMS policymaker with limited knowledge about AI in healthcare, it's essential to convey the information in a clear and concise manner. Here's a suggested approach:

- Introduce Al in healthcare: Begin by briefly explaining what Al is and how it has
 the potential to revolutionize healthcare by enhancing diagnostics, treatment
 planning, patient monitoring, and workflow efficiency. Highlight a few key
 examples of Al applications that have demonstrated success in improving patient
 outcomes and reducing costs.
- 2. Explain the problem: Describe how the current coding, coverage, and reimbursement systems may not account for the unique costs and benefits associated with AI technologies. Explain that healthcare providers and organizations may be hesitant to adopt AI-driven solutions if they cannot receive sufficient reimbursement to cover the costs and justify their investments. Emphasize that this situation can limit the adoption of AI innovations in healthcare, which in turn may hinder improvements in patient care and outcomes.
- 3. **Discuss the importance of prioritizing the problem:** Help the policymaker understand that addressing this issue is essential for promoting Al-driven healthcare innovations, which have the potential to significantly improve patient care, reduce healthcare costs, and increase efficiency. Emphasize that, as Al technology continues to advance, it is critical to create a supportive environment that fosters its adoption in healthcare systems.
- 4. **Engage in solutions:** Suggest potential solutions to the problem, such as: a. Updating reimbursement systems to account for the unique costs and benefits of AI technologies, which could involve exploring alternative payment models, like value-based or bundled payments. b. Developing new billing codes specifically for AI-driven services, ensuring that providers can receive appropriate

reimbursement for Al-enabled care. c. Collaborating with stakeholders, including Al developers, healthcare providers, and professional organizations, to develop guidelines and standards for the integration of Al in healthcare. d. Encouraging pilot programs and studies to evaluate the real-world impact of Al innovations on patient outcomes and healthcare costs, providing evidence to support future reimbursement decisions.

5. Offer support and collaboration: Offer your expertise and knowledge in AI in healthcare to help the policymaker navigate this complex issue. Suggest working together to explore solutions, gather input from stakeholders, and develop policy recommendations that can help create a supportive environment for AI adoption in healthcare systems.

By explaining the problem clearly and emphasizing the potential benefits of addressing it, you can help the senior CMS policymaker understand the importance of tackling this issue and engaging in solutions that promote the adoption of AI innovations in healthcare.

Q11. Let's assume you have been meeting with the senior CMS policymaker, and your presentation has covered these five points. He seems a little disengaged and you are concerned that he won't do much once the meeting is over. What would you do next? Would you focus on this person, or seek higher level meetings, or turn to other government bodies, what is missing?

If the senior CMS policymaker seems disengaged and you are concerned about the potential lack of follow-up, you can take several additional steps to ensure the issue remains on the agenda and gains momentum. Here are some suggestions:

- Recap and address concerns: Before ending the meeting, briefly recap the
 main points discussed and emphasize the urgency of addressing the issue. Ask
 the policymaker if they have any concerns or questions that you could address,
 and make sure to clarify any misunderstandings or provide additional information
 as needed.
- 2. Offer follow-up materials: Provide the policymaker with follow-up materials, such as a one-page summary of the key points, relevant research articles, or case studies that demonstrate the impact of AI in healthcare. This information can help reinforce the importance of the issue and serve as a reference for future discussions.

- 3. **Establish a follow-up plan:** Suggest scheduling a follow-up meeting or call to discuss progress and any updates on the issue. This can help keep the momentum going and demonstrate your commitment to addressing the problem.
- 4. **Engage other stakeholders:** Consider reaching out to other stakeholders within CMS, such as other policymakers, program managers, or department heads who might have a vested interest in AI adoption in healthcare. Share your concerns and insights with them and explore potential collaboration opportunities.
- 5. **Seek higher-level meetings:** If you believe that your message is not being effectively communicated or prioritized, consider requesting a meeting with higher-level officials within CMS or the Department of Health and Human Services (HHS). Present your case to them and emphasize the importance of addressing the issue for the future of healthcare.
- 6. **Collaborate with external organizations:** Partner with professional organizations, Al developers, healthcare providers, and patient advocacy groups to build a coalition that can raise awareness of the issue and advocate for policy changes. By working together, you can create a stronger and more unified voice in support of Al adoption in healthcare.
- 7. **Engage with other government bodies**: Explore opportunities to collaborate with other government agencies that have an interest in AI and healthcare, such as the NIH, the FDA, or the ONC. By working together, you can leverage their expertise and resources to address the issue and promote the development and adoption of AI innovations in healthcare.

By taking these additional steps, you can increase the likelihood that the issue of limited coding, coverage, and reimbursement for breakthrough AI innovations in healthcare remains on the agenda and gains the attention it deserves. Building support from various stakeholders and keeping the conversation going are crucial to driving meaningful change in policy and practice.

Q12. Your help is excellent. I find that higher level policymakers should take a broader view of public health goals, yet, they are farther from details like coding or RVU rules where the problems for reimbursements lie. How can we overcome this dilemma?

To overcome the dilemma of higher-level policymakers having a broader view of public health goals while being farther from the details like coding or RVU rules, you can take the following steps to bridge the gap and effectively communicate the importance of addressing reimbursement challenges for Al-driven healthcare solutions:

- Simplify the message: Translate complex issues related to coding and RVU
 rules into simpler, more relatable messages that emphasize the impact on patient
 care, healthcare costs, and overall public health goals. Use clear language and
 focus on the broader implications of addressing reimbursement challenges for Al
 adoption in healthcare.
- Quantify the impact: Present data and real-world examples that quantify the
 potential impact of AI innovations on patient outcomes, cost savings, and
 healthcare efficiency. Use compelling statistics and case studies to demonstrate
 the value of investing in AI-driven solutions and the risks of not addressing
 reimbursement challenges.
- 3. **Connect to broader policy goals:** Link the issue of AI reimbursement to broader public health goals, such as improving patient outcomes, reducing healthcare disparities, and promoting the adoption of innovative technologies. Explain how addressing reimbursement challenges for AI can contribute to these larger objectives and align with the policymakers' priorities.
- 4. **Develop targeted policy recommendations:** Develop specific, actionable policy recommendations that can address the reimbursement challenges for Al-driven healthcare solutions. By presenting clear and feasible solutions, you can help policymakers understand how changes in coding and RVU rules can lead to better healthcare outcomes without getting lost in the technical details.
- 5. Build a coalition of support: Engage with various stakeholders, including Al developers, healthcare providers, professional organizations, and patient advocacy groups, to create a unified voice advocating for policy changes. A strong coalition can help communicate the importance of the issue to policymakers at various levels and increase the likelihood of driving meaningful change.
- 6. Encourage cross-functional collaboration: Facilitate collaboration between policymakers who focus on broader public health goals and those who are more involved in the technical aspects of healthcare reimbursement. Encourage cross-functional discussions and working groups that can bridge the gap between the high-level goals and the specific coding or RVU rules.
- 7. Ongoing communication and education: Maintain an ongoing dialogue with policymakers to keep them informed about advancements in AI, the impact of AI-driven healthcare solutions, and the evolving challenges related to reimbursement. Provide educational resources, host workshops, or organize briefings to ensure they stay informed and engaged in the issue.

By simplifying the message, connecting the issue to broader policy goals, and facilitating collaboration and communication, you can help higher-level policymakers understand the importance of addressing reimbursement challenges for Al-driven

healthcare solutions and encourage them to take action to support innovation in the field.

Q13. Thank you. Considering the whole range of 12 questions we have discussed above, do you have any concluding comments for me? Is there anything I should have asked you, but didn't?

Over the course of our discussion, we have covered various aspects of AI in healthcare, including its applications in radiology and pathology, the role of the American Medical Association, NIH and CMS collaborations, and the challenges related to Medicare reimbursement for AI-driven services. We have also explored strategies for engaging policymakers and driving meaningful change in this area.

As a concluding comment, I would like to emphasize that AI has the potential to revolutionize healthcare, but its adoption and impact largely depend on creating a supportive environment that addresses the financial, regulatory, and technical barriers to its integration. In this context, it is crucial to work collaboratively with various stakeholders, including policymakers, healthcare providers, AI developers, and professional organizations, to ensure that AI-driven innovations can effectively contribute to improving patient care and outcomes.

As for any questions that were **not asked**, you might consider exploring the following topics in future discussions:

- 1. **Ethical considerations** related to Al in healthcare, such as privacy, data security, and algorithmic bias.
- 2. The role of AI in addressing **healthcare disparities** and promoting equitable access to care.
- 3. How AI can be integrated into **medical education** and training to prepare healthcare professionals for the future.

These additional areas of inquiry can provide further insights into the broader implications of AI adoption in healthcare and help guide your efforts to address the challenges and opportunities associated with this rapidly evolving technology.

Appendix A

Tweet Ideas

- 1. "Discover how #AI is revolutionizing #healthcare! From radiology to pathology, learn about the innovations, challenges, and solutions for integrating AI in patient care.
 \$\forall \text{im} \text{ } \text{ #ArtificialIntelligence #MedTech"}
- 2. "Barriers to Al adoption in healthcare: how can we tackle reimbursement challenges to unlock the full potential of Al-driven solutions? #AlinHealthcare #HealthTech"
- 3. "Collaboration is key! Find out how the American Medical Association, NIH, and CMS play crucial roles in promoting AI in healthcare and overcoming obstacles. #HealthcareInnovation #AI #DigitalHealth"
- 4. "How can we engage policymakers to drive meaningful change in Al reimbursement and foster innovation in healthcare? Check out our comprehensive discussion on Al in healthcare! #HealthPolicy #AlHealthcare #FutureOfMedicine"

Appendix B - More on Ethics & Education

Further above, I asked if GPT4 has anything else to add and if there were any questions that were not asked. See the section that begins with "As for any questions that were not asked..." Just to mention, while I did not explicitly ask questions about health equity or medical education, I did ask open ended questions about advantages and disadvantages of CMS policies, and GPT4 could have incorporated issues from the areas of equity or education in its answers to the open ended questions.

You are correct that the **open-ended questions** provided an opportunity to discuss health equity and medical education. Here is a **brief overview** of these topics in relation to AI in healthcare and CMS policies:

Health Equity:

Al has the potential to address healthcare disparities and promote equitable access to care. CMS policies can play a role in ensuring that Al-driven solutions are accessible to underserved populations, including rural areas and low-income communities. By providing adequate reimbursement for Al-driven services and considering the specific needs of these populations when designing policies, CMS can help bridge the gap in healthcare access and quality. On the other hand, if CMS policies do not adequately address the unique challenges faced by these communities, there is a risk that Al could exacerbate existing disparities.

Medical Education:

The integration of AI in healthcare also has implications for medical education and training. Preparing healthcare professionals for the future requires incorporating AI-related knowledge and skills into their education. CMS policies could influence medical education by incentivizing the adoption of AI-driven technologies and supporting the development of AI-related curricula. For example, policies that promote the use of AI in clinical decision-making or care delivery could encourage medical schools and training programs to incorporate AI education into their programs.

These topics can be integrated into your discussion to provide a more comprehensive perspective on the implications of CMS policies for AI in healthcare, touching on both health equity and medical education aspects.

Thank you. Using the materials above, and the summary, you generated, several entries earlier, please generate a two or three minute video script to raise awareness of the whole interview, which will be published as a document. The video will be seen by experts in the field, who have an interest in CMS innovation, and in artificial intelligence. we are keeping the video to 2 to 3 minutes so it will be ample time for a good overview of the project, while not imposing too much on the viewers busy schedule.

[Scene 1: Introduction]

Host: "Welcome to our AI in Healthcare video overview! Today, we'll be giving you a glimpse of our comprehensive interview with GPT-4, discussing how CMS policies impact the adoption of AI in US healthcare. Let's dive in!"

[Scene 2: Al Applications in Healthcare]

Host: "Al is transforming healthcare, from radiology and pathology to personalized treatment planning and patient monitoring. However, integrating Al into healthcare systems is not without challenges."

[Scene 3: Challenges in Medicare Reimbursement]

Host: "One major hurdle is Medicare reimbursement. The current RVU payment system might not account for the unique costs and benefits of Al-driven services, creating financial barriers for healthcare providers and organizations."

[Scene 4: Strategies to Engage Policymakers]

Host: "To address these challenges, we explored strategies for engaging with policymakers, such as simplifying the message, quantifying Al's impact, and connecting the issue to broader public health goals."

[Scene 5: Roles of Key Stakeholders]

Host: "Key stakeholders like the American Medical Association, NIH, and CMS play crucial roles in promoting AI in healthcare. Collaborations between these organizations can help overcome obstacles and foster a supportive environment for AI adoption."

[Scene 6: Health Equity and Medical Education]

Host: "Al has the potential to address healthcare disparities and promote equitable access to care. It's also vital to integrate Al-related knowledge and skills into medical education and training, preparing healthcare professionals for the future."

[Scene 7: Conclusion]

Host: "In conclusion, AI promises to revolutionize healthcare, but its success depends on addressing financial, regulatory, and technical barriers. Collaboration among stakeholders is essential to promote AI adoption and ensure its benefits are fully realized."

[Scene 8: Call to Action]

Host: "If you're intrigued by this overview and want to learn more, don't miss our in-depth interview with GPT-4 on AI in healthcare and CMS policies. The full article provides valuable insights and strategies to drive meaningful change in the field. Thanks for watching, and stay tuned for more AI in healthcare updates!"

[End]

Wow, that was really an excellent short script. I am very impressed.