
Go Preemptive Scheduler Design Doc

Dmitry Vyukov
dvyukov@

May 15, 2013

Problem

1. Some user programs visibly "misbehave" due to absence of preemption, a single goroutine
can run all the time and do not switch to other goroutines, timers do not fire.
2. Currently GC needs to "stop the world", and w/o means for preemption this can take arbitrary
amount of time (users reported up to several minutes).
Examples of the issues:
https://code.google.com/p/go/issues/detail?id=5324
https://code.google.com/p/go/issues/detail?id=4711
https://code.google.com/p/go/issues/detail?id=5163
https://code.google.com/p/go/issues/detail?id=543

Proposed Solution

The idea is to use existing split stack mechanism for preemption. Each goroutine checks for split
stack on every function call, if it's out of stack, it calls into runtime. If we can make this check fail
by an external request, we get the preemption.
Sysmon thread watches for P's executing the same goroutine for more than X ms. If finds a one
it sets g->stackguard to a very large value, so that on next split stack check the goroutine calls
morestack(). Morestack() is modified to check for preemption and call into scheduler if needed.
GC issues preemption request for all currently running goroutines during stop the world.

It should plays well with precise GC because goroutine are preempted only at controllable
points. So we can emit all the necessary information required for GC.

Pros:
- No additional overheads
- Relatively simple implementation, no signals, minimal synchronization

Cons:
- Increases runtime complexity
- ?

Evaluation

For evaluation I've used the prototype of the design:
https://codereview.appspot.com/9136045

https://code.google.com/p/go/issues/detail?id=5324
https://code.google.com/p/go/issues/detail?id=4711
https://code.google.com/p/go/issues/detail?id=5163
https://code.google.com/p/go/issues/detail?id=543
https://codereview.appspot.com/9136045

Go1 benchmark suite shows no slowdown:
benchmark old ns/op new ns/op delta
BenchmarkBinaryTree17 4604208550 4607734202 +0.08%
BenchmarkFannkuch11 2903981794 2925657766 +0.75%
BenchmarkFmtFprintfEmpty 83 82 -1.44%
BenchmarkFmtFprintfString 210 210 +0.00%
BenchmarkFmtFprintfInt 171 168 -1.75%
BenchmarkFmtFprintfIntInt 284 271 -4.58%
BenchmarkFmtFprintfPrefixedInt 259 260 +0.39%
BenchmarkFmtFprintfFloat 377 377 +0.00%
BenchmarkFmtManyArgs 1067 1053 -1.31%
BenchmarkGobDecode 8793949 8781962 -0.14%
BenchmarkGobEncode 10055812 10144175 +0.88%
BenchmarkGzip 422396880 413429581 -2.12%
BenchmarkGunzip 100201142 99900778 -0.30%
BenchmarkHTTPClientServer 43658 43523 -0.31%
BenchmarkJSONEncode 34239405 33973689 -0.78%
BenchmarkJSONDecode 79118008 77890662 -1.55%
BenchmarkMandelbrot200 4033471 4034173 +0.02%
BenchmarkGoParse 5209448 5256012 +0.89%
BenchmarkRegexpMatchEasy0_32 106 107 +0.94%
BenchmarkRegexpMatchEasy0_1K 301 300 -0.33%
BenchmarkRegexpMatchEasy1_32 89 90 +0.67%
BenchmarkRegexpMatchEasy1_1K 755 749 -0.79%
BenchmarkRegexpMatchMedium_32 163 163 +0.00%
BenchmarkRegexpMatchMedium_1K 59182 58977 -0.35%
BenchmarkRegexpMatchHard_32 2796 2810 +0.50%
BenchmarkRegexpMatchHard_1K 91888 92296 +0.44%
BenchmarkRevcomp 685704524 687030150 +0.19%
BenchmarkTemplate 111448907 111908050 +0.41%
BenchmarkTimeParse 408 405 -0.74%
BenchmarkTimeFormat 437 438 +0.23%

The following program demonstrates the GC "stop the world" issue:
http://play.golang.org/p/Yzc4Vx-KaF

Current GC trace:
gc7(8): 0+0+429 ms, 3462 -> 2908 MB
gc8(8): 0+0+296 ms, 5830 -> 3861 MB
gc9(8): 0+0+661 ms, 7758 -> 3825 MB
gc10(8): 0+0+939 ms, 7664 -> 4014 MB
gc11(8): 0+0+907 ms, 8063 -> 4016 MB

http://play.golang.org/p/Yzc4Vx-KaF

GC trace with the preemptive scheduler:
gc8(8): 0+0+126 ms, 4989 -> 3020 MB
gc9(8): 0+0+124 ms, 6057 -> 3249 MB
gc10(8): 0+0+72 ms, 6499 -> 3711 MB
gc11(8): 0+0+121 ms, 7434 -> 3250 MB

Note significant decrease in the stoptheworld pause.

The following test does not work now, but works with the preemptive scheduler:
http://play.golang.org/p/86i_dRxWBm

Implementation Plan

1. Introduce a copy of g->stackguard variable, because it can be overwritten during preemption.
2. Sysmon background thread watches for goroutines that execute for more than X ms (the
initial proposed value is 10 ms) stores preemption mark into g->stackguard.
3. GC issues preemption request for all running g's.
4. Morestack() checks for preemption mark and switches the goroutine if possible.
5. Protect critical sections in runtime with m->lock++/-- (e.g. runtime.newproc, runtime.ready).
See Non-preemptible Regions section below.
6. Properly synchronize finalizer goroutine with GC, because it can not longer rely on
preemption at known points.
7. Remove existing runtime.gcwaiting checks in chan/hashmap/malloc (poor man's preemption).

At this point we get working preemptive scheduler.

8. Currently framesize is not always passed to morestack() to save code size. It makes it
impossible to reuse the current stack frame after preemption (even unsuccessful), and forces to
allocate a new frame each time.
The proposed solution is to introduce morestackNxM() functions, where N is argsize (8,16..64)
and M - framesize (8,16..64), i.e. 64 functions; and a general morestack() function that accepts
argsize and framesize explicitly. This way we will always know argsize/framesize in morestack(),
and so will be able to reuse frames. The exact ranges for N and M require additional
investigation, potentially less than 64 functions is sufficient.

9. Refactor gogo/gogocall/gogocallfn. We have 3 of them, and context restoration after
preemption requires one more (gogo that restores DX -- closure context). We can have 1
context switching function that accepts and restores both AX and DX. The proposed interface is:
// "Executes" PUSH PC in the BUF context.
void runtime·returnto(Gobuf *BUF, uintptr PC);

http://play.golang.org/p/86i_dRxWBm

// Moves CRET into AX, CTX into DX and switches to BUF.
void runtime·gogogo(Gobuf *BUF, uintptr CRET, uintptr CTX);

The existing functions and the new function gogo2 can be implemented in terms of the interface
as follows:

void​ runtime·gogo(Gobuf *buf, uintptr cret)​
{

runtime·gogogo(buf, cret, 0);​
}
void​ runtime·gogocall(Gobuf *buf, void(*f)(void), uintptr ctx)
{
​ runtime·returnto(buf, buf.pc);
​ buf.pc = f;

runtime·gogogo(buf, 0, ctx);​
}
void​ runtime·gogocallfn(Gobuf *buf, FuncVal *fn)
{
​ runtime·returnto(buf, buf.pc);
​ buf.pc = *(uintptr*)fn;

runtime·gogogo(buf, 0, fn);​
}
void​ runtime·gogo2(Gobuf *buf, uintptr ctx)​
{

runtime·gogogo(buf, 0, ctx);​
}

Points 1-9 are implemented before Go1.2.

10. Collect experience with the scheduler and decide on necessity of compiling additional
preemption checks on back edges. Checks on function entry should be sufficient for most
practical cases, so it's unclear whether checks on back edges are required. The check may look
as:
MOV​ [g], CX
CMP​ $-1, g_stackguard(CX)
JNZ​ nopreempt
CALL​ $runtime.preempt(SB)
nopreempt:
…

11. An optimization proposed by iant@ is to allocate an additional TLS slot for stackguard. This

will allow to optimize split stack checks and the additional preemption checks:

CMP​ $-1, [stackguard]
JNZ​ nopreempt
CALL​ $runtime.preempt(SB) // can be further moved onto cold path
nopreempt:

Points 10, 11 are not implemented for Go1.2.

Non-preemptible Regions

The preemptive scheduler adds a new complication to the runtime library -- a goroutine can be
preempted and descheduled at a lot more points. Current code is not ready for this.
One of the measures to mitigate this is to do very conservative preemption. Namely a goroutine
is not preempted if one of the following is true:
 - it holds runtime locks
 - it executes on g0
 - it's mallocing or gcing
 - it's not in Grunning state (e.g. Gsyscall)
 - it does not have a P or the P is not in Prunning state
This covers most of the cases where preemption is unwanted. However, there are some
remaining cases. I've identified 2 places in the scheduler: runtime.newproc() and
runtime.ready(), in both cases a goroutine can hold a P in a local variable; it's just bad, and
leads to deadlock if stoptheworld is requested (the P will never be stopped).
Chans are protected by locks, and hashmaps seems to be safe.
The general recipe is: the preemption must be disabled when shared data structures (e.g.
chans, hashmaps, scheduler, memory allocator, etc) are in inconsistent state, and that
inconsistency can break either scheduler or GC.
The proposed mechanism to manually disable preemption is to use m->lock++/--. It's already
used to disable GC and preemption in runtime.

	Go Preemptive Scheduler Design Doc
	Problem
	Proposed Solution
	Evaluation
	
	Implementation Plan
	Non-preemptible Regions

