ESCOLA BÁSICA E SECUNDÁRIA DA CALHETA

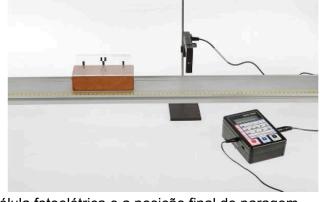
Física e Química A – 11.º Ano

RELATÓRIO SIMPLIFICADO AL 1.3

Unidade 1 / 1.3 Forças e movimentos							
ΑL	AL 1.3. MOVIMENTO UNIFORMEMENTE RETARDADO: VELOCIDADE E DESLOCAMENTO						
Noi	me dos membros do grupo: Data de realização do trabalho:						
RI	RESUMO: Objetivo e/ou Questão-problema						
Fl	JNDAMENTO TEÓRICO / QUESTÕES PRÉ-LABORATORIAIS						
1.	Faz um esquema das forças aplicadas no carrinho durante o movimento. Qual a força resultante aplicada no carrinho durante o movimento? Classifica o movimento do carrinho.						
2.	Demonstra a equação: $v^2 = v_0^2 + 2a\Delta x$ que relaciona o quadrado das velocidades com o deslocamento a partir das equações do movimento.						
3.	Personaliza a equação anterior para a situação experimental a estudar, em que o carrinho vai terminar com velocidade nula.						

Como poderás calcular a intensidade da força resulta	ante?
--	-------

MATERIAL:


Material	Alcance	Incerteza

PROCEDIMENTO:

O procedimento descrito pretende estudar o m.r.u.r ao longo de uma superfície horizontal.

 Escolher a superfície de base do carrinho ou verificar a mesma.

- 2. Medir a massa do carrinho.
- Medir o comprimento da faixa negra ou pino necessária para interromper o feixe da célula fotoelétrica.
- 4. Posicionar o carrinho antes da célula fotoelétrica e dar um empurrão para provocar o movimento.
- 5. Registar o intervalo de tempo Δt de interrupção do feixe.
- 6. Medir a distância percorrida pelo carrinho desde a célula fotoelétrica e a posição final de paragem. (considerar o centro do pino, no carrinho, que interrompe o feixe da célula fotoelétrica).
- 7. Repetir os pontos 4 a 6 quatro vezes de modo a se obter cinco pontos para a regressão linear.

RESULTADOS E TRATAMENTO DOS RESULTADOS EXPERIMENTAIS:

Massa do carrinho / kg			
Material da base do	carrinho escolhido		
comprimento da faixa ou largura do pino (L) / m			
∆t (s) (interrupção feixe posição inicial)	v_0 (m/s) $v_0 = \frac{L}{\Delta t}$	$v_0^2 ({ m m^2/s^2})$	Δ x (m)
	$ \tilde{\mathbf{a}} \mathbf{o} \text{ linear: } v_0^2 (\Delta x) \\ \mathbf{v}_0^2 = \mathbf{m} \Delta x + \mathbf{b} $		
Módulo da ace	eleração (m/s²)		
Módulo da resultante d	das forças de atrito (N)		
	gráfico de regressão linea a sua equação. Qual é o sig		
7. Como foi determinada	a a velocidade inicial do mo	vimento?	

C	CONCLUSÃO / QUESTÕES PÓS-LABORATORIAIS				
8.	A relação entre o quadrado da velocidade inicial e o deslocamento foi o esperado teoricamente? Que erros poderão ter ocorrido?				
9.	Apresentar o valor da aceleração calculada, assim como o módulo da resultante das forças de atrito.				
10	. Compare os módulos das acelerações obtidos por outros grupos e relacione-os com os materiais o que são feitas as superfícies dos blocos.				
11.	Verificar o cumprimento dos objetivos. Indicação de sugestões para otimizar a experiência. Crítica a desempenho do grupo.				
	2.2pe.				

Bibliografia

CALDEIRA, Helena; QUADROS, Júlia; MACHADO, Carla (2016) Há Física entre nós 11.º ano - FQA. 1ed. Porto: Porto Editora.