
CIS 573 Software Engineering – Summer 2021
Project Setup Guide

This guide will help you set up the database and web server for the project using:

●​ Node.js for the JavaScript runtime environment
●​ Express for handling basic web server functionality
●​ BodyParser for parsing form data in a POST request
●​ EJS for dynamically generating HTML content
●​ Mongoose for accessing the database
●​ MongoDB for storing data

This document also describes how to use the Administrator app and also set up and
use the Organization (command-line) and Contributor (Android) apps.

These instructions were written for use on a Mac/Linux platform. You may need to
make slight modifications for using Windows.

You are strongly urged to get your project environment set up and installed by
Tuesday, July 6, so that you can begin working on Phase 1 tasks, which are due a
week later. If you run into any trouble, please post a public note in Piazza so that
your classmates and TAs can help you, or visit a member of the instruction staff
during office hours.

Step 1. Download App Code
The project starter code is given in the GitHub repo and you should create a fork of
this repo to work off of. To do this, you should click “Fork” on the top right of the
repository page. You can read more about working with forks here.

Then clone/download the repo to your computer so that you have a local copy to use
and to run.

Step 2. Install and Configure Node Express App
The software system in this project depends on Node Express for acting as a
mediary between the Java applications and the database, and also for hosting the
Administrator app and generating dynamic HTML content.

You can learn more about Node Express here but the instructions below should be
sufficient to get it installed and set up so that you can run the apps on your
computer.

1. Install Node.js

●​ Go to https://nodejs.org/en/download/ and follow the instructions for
your platform

https://github.com/UPenn-CIS-573/project
https://docs.github.com/en/get-started/quickstart/fork-a-repo
https://expressjs.com/

●​ Once you’ve installed it, open Terminal/Command Prompt and check that
installation is correct by running the command: node –v

●​ Make sure all modules are up to date using: npm install npm –g
●​ You may need to have administrative privileges on your system to run these

commands, e.g on Mac/Linux you can do: sudo npm install npm –g

2. Install Node packages.
●​ Navigate to the admin folder of the project that you downloaded in Step 1.
●​ Run npm install.
●​ If everything worked correctly, you should now see a node_modules folder

within the admin folder.

Step 3. Install MongoDB
The system uses MongoDB for storing all data. You will need to install a database
instance for the system to use.

Go to https://www.mongodb.com/try/download/community and follow the
instructions for your platform to install MongoDB Community Server.

If you cannot install MongoDB on your computer, you may want to consider a cloud
platform such as https://www.mongodb.com/cloud/atlas ; the free version should
be sufficient for our purposes.

Once your project gets under way, you may want to set up a shared Mongo instance
that is used by you and your teammates, so that you can share data. You can use
Mongo Atlas for that and it should be a simple change to your database
configuration file, but for now we recommend that each student have their own
instance.

Step 4. Start the Admin App
First you need to start MongoDB. From Terminal/Command Prompt, navigate to the
directory in which you installed MongoDB in Step 3 and run the following:
Mac: ./bin/mongod --dbpath [path to db directory]
Linux: mongod --dbpath [path to db directory]
Windows: .\bin\mongod --dbpath [path to db directory]

A few things to note:

●​ the [path to db directory] must refer to a directory that already exists and is
where you will store the data for Mongo. It can be an absolute path or a
relative path

●​ Be sure to use two hyphens (two minus signs) before “dbpath”

https://www.mongodb.com/
https://www.mongodb.com/try/download/community
https://www.mongodb.com/cloud/atlas

When you start MongoDB, you’ll see a number of messages written to the console,
and the last one that you see should include “msg”: “Waiting for connections” and
something about port 27017. If you receive an error, please consult the MongoDB
documentation at https://docs.mongodb.com/manual/

Once MongoDB has started, open another Terminal/Command Prompt window,
navigate to the admin directory of the project that you downloaded in Step 1, and
run the Admin server using the command:
node admin.js

You should see “Listening on port 3000” meaning that the web server is running and
is awaiting incoming HTTP requests on port 3000.

Step 5. Access the Admin App
Now you can access the Admin webapp via a browser. Assuming you’re opening the
browser on the same computer where you started Node, open http://localhost:3000
and you should see the app. Yes, we know it’s ugly…

Click “Administer Organizations” to view a list of all the organizations in the
database. At first, because there are no organizations, you should click the “Create
New Organization” link to create a new one, and specify its name, the login ID and
password to be used in the app for organizations, and a description. Note that no
error handling is done on these fields so enter the data carefully!

When viewing an organization, you can edit or delete it, and view its funds (or
campaigns). At first, there will be no funds, so you can create one by entering its
name, description, and target amount, which should be a positive number, though
this is not enforced in the app.

When viewing a fund, you can edit or delete it, or make a new donation from one of
the contributors. However, since there are no contributors at first, you will need to
create some accounts.

You can do this by clicking “View All Organizations” and then, from there, click
“Administer Contributors,” or just navigate to http://localhost:3000/allContributors

From there, you will see a list of all contributors, and you can view, edit, or delete
them. At first, there will be no contributors, so you can create one by entering the
name, the login ID and password to be used in the app for contributors, an email
address, and credit card info (“CVV” is the three- or four-number security card on
the back of the card). You do not need to enter real info, though, as no transactions
are actually made in this system. As above, note that no error handling is done on
these fields so enter the data carefully!

https://docs.mongodb.com/manual/
http://localhost:3000
http://localhost:3000/allContributors

In addition to the fact that the Admin app does not do error handling of input fields,
the rest of the system is not guaranteed to work if data is missing for an
organization, fund, or contributor, so be sure that you do not leave any fields blank!

Step 6. Start the RESTful API Server
To make the data in Mongo available to the Contributor (Android) app and the
Organization (command-line) app, run the RESTful API server from the admin
project directory using the command:
node api.js

You should see “Listening on port 3001.” This is a separate web server from the one
you started in Step 4: although it also awaits incoming HTTP requests, it sends back
data in JSON format rather than content in HTML.

Step 7. Set Up Organization App
For the Organization (command-line) app, navigate to the org folder. This is just a
regular Java application and the main method is in the UserInterface class. However,
you will need to use the JSON-Simple library in order to parse the JSON data that
comes back from the RESTful API, so be sure that json-simple-1.1.1.jar (available in
the project repo) is in your classpath when you run your program.

To run the program, you should run the UserInterface class, and pass the login
ID and password that you created for an organization via the Admin app as the
runtime arguments to the main method. Then you will be able to view funds and
donations, and create new funds. Note that the app does not do any error handling
regarding input options so enter the data carefully!

This app uses the “N-Tier Architecture” design as follows:

●​ the UserInterface class represents the UI Tier and contains all code for
interacting with the user via the command-line, as well as the program’s main
method

●​ the DataManager class represents the Processor Tier and contains all code
for processing data in the program

●​ the WebClient class represents the Data Management Tier and has a method
for interacting with the RESTful API by sending HTTP requests and receiving
JSON objects in HTTP responses

●​ the Organization, Fund, and Donation classes represent the data shared by
the tiers

●​ the DataManager_createFund_Test class is a JUnit class that contains tests for
the DataManager.createFund method

Step 8. Set Up Contributor App (optional)
Note that working with the Contributor (Android) app is not required for all
students in the class, and a group of three is unlikely to need to work with this app at
all; a group of four will most likely need to do some work with it.

In order to use the Contributor app, you will first need to install Android Studio and
create an AVD with API level 28 or higher.

Then, start Android Studio and select “open existing Android Studio project” and
point it at the contributor directory of the project. You may get some warning
messages about directories and needing to install some packages, but Android
Studio should be able to figure out everything you need.

Once the project builds, run it in an AVD, and then log in using the login
ID/password credentials that you created for a contributor via the Admin app to log
in. You can then make donations to a fund, though be sure that you have created at
least one organization and one fund using the Admin app prior to running the
Android app.

This app uses the “N-Tier Architecture” design as follows:

●​ the MainActivity, MenuActivity, ViewDonationsActivity, and
MakeDonationActivity classes comprise the UI tier and contain all code for
interacting with the user, e.g. handling button clicks and updating the content
displayed in the Views in the classes’ Layouts

●​ the DataManager class represents the Processor tier and contains all code for
processing data in the program

●​ the WebClient class represents the Data Management tier and has a method
for interacting with the RESTful API by sending HTTP requests and receiving
JSON objects in HTTP responses

●​ the Organization, Fund, Contributor, and Donation classes represent the data
shared by the tiers

●​ the DataManager_getFundName_Test class is a JUnit class that contains tests
for the DataManager.getFundName method

https://developer.android.com/studio

