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Compositional Sculpting of Iterative Generative Processes

High training costs of generative models and the need to fine-tune them for specific tasks have created a strong interest in model
reuse and composition. A key challenge in composing iterative generative processes, such as GFlowNets and diffusion models,
is that to realize the desired target distribution, all steps of the generative process need to be coordinated, and satisfy delicate
balance conditions. In this work, we propose Compositional Sculpting: a general approach for defining compositions of iterative
generative processes. We then introduce a method for sampling from these compositions built on classifier guidance. We
showcase ways to accomplish compositional sculpting in both GFlowNets and diffusion models. We highlight two binary
operations — the harmonic mean (p ® q) and the contrast (p ® q) between pairs, and the generalization of these operations to
multiple component distributions. We offer empirical results on image and molecular generation tasks.

DOarta Ooknagyuk n Tema Martepuansi
21.11.2023 Timur Garipov (PhD student, Computer Science at MIT EECS & MIT CSAIL) [peserTauna
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Bce neno B s3blke, a OH — MeHsieTcs. U NoO3TOMY...

B poknage peyb nongeT 0 A3bIKOBbIX U3MEHEHUSIX.

OTO NOCTOSIHHBIV M HEYNpaBnsieMbI MPOLIECC, CBA3AHHbIN C U3AMEHEHNEM 3Ha4YeHuI 6onbLIOro Yncna nepemeHHbix. OgHako,
npexae YeM Hay4nTbCs ero U3MepsiTb, BbIYUCTATL U NPeAcKasbiBaTh, HYXXHO y6eauTbCcsa B TOM, YTO OH €CTb U MacluTabeH —
Npu4eM He TOMNbKO Ha ANUTENbHBLIX MCTOPUYECKUX MPOMEXYTKaX (NaTbiHb U COBPEMEHHbIN (OpaHLy3CKuit), HO 1 Ha Bonee
0003pUMBbIX AN CErOAHALLHMX roBopsAwmx. Kak npaBumno, B 3T0 HOCUTENSM A3blka TPYAHO NOBEPUTL — HO Mbl B 3TOM ybeanmcs Ha
WHTEPECHbIX NpUMepax.

daTa [Noknaa4yumk n tema MaTtepuansbi
10.02.2023 EkarepuHa Paxununa (HUY BLLJ) Buneo

03.03.2023 Bayram Akdeniz (Norwegian Centre for Mental Disorders Research), Oleksandr Frei
(University of Oslo)

[pe3eHTauuns 1 (banpam Akoexuns)
[pesenTauva 2 (banpam Akaenus & Onekcanap
Ppeir)
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Finemap-MiXeR: A variational Bayesian approach for genetic finemapping

Genome-wide association studies (GWAS) implicate large clusters of highly correlated genetic variants, which makes it hard to
interpret the results from a biological point of view. Several methods in statistical genetics allow to "finemap" underlying causal
variants, or at least point to genes or gene sets that are responsible for associations observed in GWAS. In the seminar we will
discuss two new methods, GSA-MiXeR and Finemap-MiXeR, which address these issues. Finemap-MiXeR is a variational
Bayesian approach for finemapping genomic data, using optimization of Evidence Lower Bound of the likelihood function obtained
from the MiXeR model. The optimization is done using Adaptive Moment Estimation Algorithm, allowing to obtain posterior
probability of each SNP to be a causal variant. We apply Finemap-MiXeR to a range of different scenarios, using both synthetic

CraTtbum:

Einemap-MiXeR: A variational Bayesian approach for
genetic finemapping

Improved functional mapping with GSA-MiXeR
estimates enrichment magnitude

and real data from the UK Biobank, using standing height phenotype as an example. In comparison to the existing finemapping Bu neo
methods FINEMAP and SuSiE methods, we observed that Finemap-MiXeR in most cases has better accuracy. For the
GSA-MiXeR we'll demonstrate its application to schizophrenia, where GSA-MiXeR implicate the role of calcium channel function,
GABAergic and dopaminergic signaling. To conclude, we will discuss more broadly what are some of the main methodological
challenges in statistical genetics, and how new methods can improve our understanding of complex polygenic traits and disorders.
10.03.2023 AHTOH Baxpywes (Sber Al Lab) [pesenTauns
SketchBoost: 6bicTpbii BycTuHr Ana multiclass/multilabel knaccndukaumm n multitask CraThs:
perpeccun SketchBoost: Fast Gradient Boosted Decision Tree
for Multioutput Problems
[pagneHTHbIN BYCTUHT — OAUH M3 CaMblX 3PMEKTUBHBIX MHCTPYMEHTOB A8 PeLUeHNs 3a4a4 MaLUMHHOTO 0byYeHnst Ha TabnnyHbIX
naHHbix. OgHako B 3ajavax, korga Tpebyercs NporHo3upoBaTh Cpa3y HECKONbKO BbIXOAOB, Takux kak multiclass/multilabel Buoeo
knaccudukauma n multitask perpeccusi, noctpoeHne 6ycTHra Ha AepeBbsx TpebyeT CyLEeCTBEHHbIX BbIMUCIIUTENbHBIX 3aTpaT U Buieo
MOXeT 3aHUMaTb HenpuemsIemMo MHOro BpemeHun. Mbl npyuayManu NpakTUYHbIA METOA CXaTusi MHopMaLmun, KOTOPbIN
NPUMEHSIETCS Ha KaxaoW uTepaumm BycTuHra, a Takke peanvsoBany ero Ha 6a3e Haluel 6ubnuoTeku py-boost, koTopasi focTynHa
B opensource. B xofe Hallero goknaga Mbl pacckaXem, Kak MOXHO J0OUTbCS 3HAaUUTENbHOTO YCKOPeHUst BpemeHn obyveHns
mMogenu (B gecAtku pas) 6e3 kakmx-nmbo notepb B KadecTse.
17.03.2023 AnekcaHgp Man4yeHko (Associate Professor, Skoltech, NLP Lab, Al Center) [pesexTauns
Monolingual and Cross-lingual Text Detoxification YaT-60T G 1eMO MOHOS3bIMHLIX (AHITMICKWT 1
DYCCKUIA) TEKCTOBbIX ETOKCMDMKATOPOB
B aTom foknagae Mbl paccMOTPUM 3aaadvy nepeHoca TEKCTOBOrO CTUMS Ha NpuMepe 3afadun AeToKcukauuy Tekcta. B nepoit yactu Be6-npunoxeHns
AoKnaga Mbl paCCMOTPUM MOHOSI3bIYHbIN 3KCNEPUMEHT cbopa napannenbHbiX AaHHbIX ANS 3a4adm geTokemkaumn. Mbel cobrpaem
HETOKCMYHble Napadppasbl ANs aHIMUACKMX U PYCCKMX TOKCUYHBIX NPeanoXeHui. Micnonb3ays nonyyYeHHbln Habop AaHHbIX, Mbl CTatbu:
obyyaeM HecKonbko Mogerei seq2seq AeToKCUMKaLumMy Ha CobpaHHbIX AaHHbIX U CPaBHMBAEM UX C HECKONbKUMM 6a3oBbIMU ’ o .
ParaDetox: Detoxification with Parallel Data
MopensiMn 1 CoBpeMeHHbIMW nogxogamu, He Tpebytowmnmmn HabnogeHusi. Bce mogenu, obyyeHHble Ha napannenbHbiX AaHHbIX, C
60onbLUMM OTPLIBOM NPEBOCXOAST COBPEMEHHbIe Mofenn. Bo BTopoi YacTu goknaga Mbl pPacCMOTPUM MHOMOA3bIYHbI o
9KCMEPUMEHT, B KOTOPOM Mbl peLuaem npobrnemy AeTOKCUKaLMM TeKcTa AN A3blka, Ha KOTOPOM OTCYTCTBYET napannenbHblii RUSSE-2022 Detoxification
kopnyc. Kpome aT0ro, Mbl 06CyAMM 3KCNEPVMEHTBI, B KOTOPbIX NEPEBOA, 1 Nepeaada CTUNS AOIMKHbI peLlaTbCcsl COBMECTHO.
Buoeo
24.03.2023 Angpen OxotuH (HAY BLUD) [Opesextaums
Star-Shaped Denoising Diffusion Probabilistic Models
Cratbsa:

Methods based on Denoising Diffusion Probabilistic Models (DDPM) became a ubiquitous tool in generative modelling. However,
they are mostly limited to Gaussian and discrete diffusion processes. We propose Star-Shaped Denoising Diffusion Probabilistic

Star-S Denoising Diffusion P listic M
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Models (SS-DDPM), a model with a non-Markovian diffusion-like noising process. In the case of Gaussian distributions, this model Buaeo
is equivalent to Markovian DDPMs. However, it can be defined and applied with arbitrary noising distributions, and admits efficient
training and sampling algorithms for a wide range of distributions that lie in the exponential family. We provide a simple recipe for
designing diffusion-like models with distributions like Beta, von Mises--Fisher, Dirichlet, Wishart and others, which can be
especially useful when data lies on a constrained manifold such as the unit sphere, the space of positive semi-definite matrices, the
probabilistic simplex, etc. We evaluate the model in different settings and find it competitive even on image data, where Beta
SS-DDPM achieves results comparable to a Gaussian DDPM.
31.03.2023 Unbayc CagptamHos (HAY BLUD) [lpesenTauns
Self-supervised Pre-training with Masked Image Modeling
CraTtbu:
Consistent success of BERT-like models in language processing has lead to attempts to adapt masked modeling task to other data B_EiT: BE.RT ?re-Trainin of Image Transformers
domains and create a universal framework for pre-training without manual annotations. In this seminar, we will have an overview of S'mMI_M‘ A Simple Framework for Masked Image
relatively recent (2021-2022) approaches for masked image modeling (MIM). We will start with a brief history of self-supervised Modeling o
methods for images and then discuss different masking strategies, image-processing pipelines and what targets are suitable for %&MMW
masked modeling. We will consider BEIT, SimMIM, MAE, UM-MAE and MaskFeat. Uniform Masking: Enabling MAE Pre-training for
Pyramid-based Vision Transformers with Locality
M E Prediction for Self-S - Vi
Pre-Training
Buneo
07.04.2023 Anbek Ananos (AIRI, HAY BLL3) [pesexTauns
Image Manipulation by Diffusion Models
Cratbu:
Large-scale text-to-image diffusion models have shown their impressive ability to synthesize diverse and high-quality images. An Im is Worth n. W r.: Personalizin .
However, it is still challenging to directly apply these models for editing real images or generating special concepts provided by the Text-to-lma ('e C.Eeneraﬂ.on using Textual In\{erspn
user. Recently there were proposed many works to deal with these problems. In this seminar, we will examine most of these Wmﬂ
approaches, analyze its properties and indicate their advantages and weak sides. At first, we will start with a brief overview of Models for Subject-Driven Generation _
contemporary text-to-image diffusion models. Secondly, we will give the formulation for two types of image manipulation problems: Prompt-to-Prompt Image Editing with Cross Aftention
personalized generation of the user-provided concept and editing of the given real image. Then we will examine current methods m i ) o
that tackle these problems. Imagic: Text-Based Real Image Editing with Diffusion
Models
Null-text Inversion for Editing Real Images using
Gui Diffusion M
Buaeo
14.04.2023 Unbs Tpodumos (Skoltech) Crartbu:

Topological data analysis and machine learning

B nocnegHee Bpems 6binu paspaboTtaHbl 3 eKTNBHbIE METOAbI BblMMCAMTENbHOM Tononoruv. KoHuenuuu, ncnons3osasLunecs
paHee TOMbKO B MatemaTtuke (Hanpumep, NepCUCTEHTHbIE FTOMOMONN), HAaLLNW NPUMEHEHVE B MalLMHHOM Oby4eHun. Tononorus
onvcbiBaeT "dpopmMy" AaHHbIX Ha pa3Hbix MacluTabax. Tononormyeckuin "B3rmaa" AONOMNHSAET CyLUECTBYOLME Noaxoab! K aHanmay

naHHbIX. B naHHoM goknage 6y,qu BbIMNOJIHEH 0630p HECKOJ1IbKUX pe3ynbTaToB, NoJly4YeHHbIX Ha CTbIKe TOMOMormm N MallMHHOro

Manifold Topology Divergence: a Framework for
Comparing Data Manifolds
R on T DI AM f
Comparing Neural Network Representations

ing T P ng O R .

Bugeo
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0byyeHns: Ans OLEeHKN reHepaTnBHbIX MOAENeN, CpaBHEHUSt IMOEMHIOB HEMPOCETEN, TOMOMOIMYECKN Perynsapu3oBaHHOIo
MOHWXEHNS pa3MepHOCTH.

21.04.2023 Hukuta Moposos (HNY BLUJ), Bauecnas MewwanuHos (HNY BLUJ), Mpuropwuin BapTtoLw Opesentauna 1 (Huknra Mopogos)
AMLab. UvA [pesenTaumns 2 (Bayecnas MeuiaHnHOB)
( ap, Uv ) Mpe3eHTaumns 3 (Tpuropui baproLu)
[nckyccroHHbIN cemmHap o Anddy3HbIX Mogensx
Crartbu:
Kak 1 B npeablayLLem 0OCeHHeM Ce30He, B BeCeHHeM y Hac ByaeT oanH ceMnHap B HeobblYHOM dhopmaTte. BeicTynat Tpu ) o o
oknag4uka ¢ HebonbLmmm (no 20-25 MUHYT) Aoknagamu Ha obLuyto Temy au 3HbIX MOZenen. Novel View Syntzesis with Diffusion bMoccls
A A ( yr)a A H Y Aucdy A Simple diffusion: End-to-end diffusion for high
Mol noroBopumM o NpuMeHeHUn anddy3Helx Mogenen ans reHepaummn 3d o6bekToB. OBCYANM TEXHMKM, NO3BONSOLWMNE [0OUTLCS W . .
SOTA kayecTBO reHepaLum n3obpaxeHuin B BbICOKOM pa3pelleHum, 6e3 nateHTHon anddysun. N pasdepem HosbI simulation-free Flow Matchina for Generafive Modelin
noaxop k 06yyeHunto ODE, BOOXHOBMEHHbIN AU dY3HbIMU MOgENSMU.
Bunoeo
28.04.2023 Het cemunapa
12.05.2023 Mwuxaun CamuH (CEO, AudD) Manifold
Al Alignment problem
Buoeo
He kaxeTcsi HenpeacTaBUMbIM, YTO B TEYEHUE CreayoLLEero AeCATUNETHSA, UCKYCCTBEHHbIW MHTENNEKT MOXET NPEB30NTH
cnoco6HoCTH Nniofden B 60NbLIMHCTBE BaxHbIX obnacTten. Cpeamn uccnepgosartenen, paboTatowmx Hag cosgaHmem obuero MW, ectb
pacTyllee oxuaaHue, 4to 6e3 ycunuin ans npegotspaLleHuns atoro, UM MoryT BelyuMTb 1 NpecneaoBaTh Lenu, HexenaHHble ¢
TOYKM 3pEeHUst NIoAEN, YTO MOXET NPMBECTU K KaTacTpoduyeckum nocnegcteusam. fecatku cotpygHukoB OpenAl, Anthropic n
DeepMind, paboTatomx Hag npobnemon, obbIMHO Ha3biBanu MHe Yucna oT 15 o 80 NpoueHTOB BEPOSATHOCTU, YTO YENOBEYECTBO
Byaet BykBanbHO YHUHYTOXEHO NCKYCCTBEHHBIM MHTENMEKTOM B brivkaniuve ABa Aecatunetus. A nocrapatrocb onvcarte 6a3oBble
NMPUYMHbI, MoYemMy npobnema ananHMeHTa — Kak caenartb Tak, YToObl Lienun 4oCcTaTouHOo npoasuHyToro W 6eino npyemnembimm —
CMOXHa, KaK BbIMMAAAT HEKOTOPble HE3aBUCHMbIE PUCKN U Kakne eCTb HanpaBreHUs: PeLLUEeHWUN.
02.06.2023 AnekcaHgpa Bonoxosa (PhD Student, Mila — Quebec Al institute, Université de Montréal) CrtaTtbu:
Generative flow networks GFlowNet Foundations
—: Flow - inf
Generative flow networks (GFlowNets) are amortized variational inference algorithms that are trained to sample from unnormalized Unifvina Generative Models with GFlowNets and
reward distributions over compositional objects. The key feature of these algorithms is their ability to generate a diverse set of B d
. ) L T C . beyond
high-reward objects, which is very useful for scientific discovery applications. Also, GFlowNets can accommodate both discrete and Ath £ contin nerative flow network
A theory of continuous generative Tlow networks

continuous properties of the objects. In this talk, I'll focus on explaining the algorithm and its mathematical foundations, its relation
to diffusion models, and show you some examples of its applications.

Generative Flow Networks for Discrete Probabilistic

Modeling

OceHHnn cemectp 2022 .



https://github.com/bayesgroup/bayesgroup.github.io/blob/master/bmml_sem/2023/Morozov_Novel%20View%20Synthesis%20with%20Diffusion%20Models.pdf
https://github.com/bayesgroup/bayesgroup.github.io/blob/master/bmml_sem/2023/Meschaninov_Simple%20Diffusion.pdf
https://github.com/bayesgroup/bayesgroup.github.io/blob/master/bmml_sem/2023/Bartosh_Deep_Bayes_Sem_Flow_Matching.pdf
https://arxiv.org/abs/2210.04628
https://arxiv.org/abs/2301.11093
https://arxiv.org/abs/2301.11093
https://arxiv.org/abs/2210.02747
https://www.youtube.com/watch?v=LotyGcRaQsg
https://manifold.markets/
https://www.youtube.com/watch?v=6PsANVjNt8E
https://arxiv.org/abs/2111.09266
https://arxiv.org/abs/2210.00580
https://arxiv.org/abs/2209.02606
https://arxiv.org/abs/2209.02606
https://arxiv.org/abs/2301.12594
https://arxiv.org/abs/2202.01361
https://arxiv.org/abs/2202.01361
https://www.notion.so/95434ef0e2d94c24aab90e69b30be9b3?pvs=21

HOaTta

Joknagyuk n tema

MaTepuanbl

16.09.2022

AnekcaHgp MaHoe, Januun Knpunenko, Anekcerni Kosanes (AIRI)
Discrete Disentangled Representations for Object-Centric Visual Tasks

Recently, the pre-quantizing image features into discrete latent variables has helped achieve remarkable results in image
modeling tasks. In this talk, we propose a method for using learnable discrete latent variables applied to object-centric tasks. Our
approach utilizes the idea of slot object representation and models non-overlapping sets of low-dimensional discrete variables,
sampling one vector from each to obtain the latent representation of the object. We empirically demonstrate that embeddings from
the learned discrete latent spaces have the disentanglement property. The model exploits a set prediction as a downstream task
and achieves the state-of-the-art results on the CLEVR dataset. We also apply it to the object discovery task and demonstrate
manipulation of individual objects in the scene with controllable image generation.

[nckpeTHble pacnyTaHHble NpeacTaBneHns Ans 06beKkTHO-OPUEHTMPOBAHHBIX BU3YarbHbIX 3aaad

B nocnepgHee BpeMs yaanock JOCTUYb 3HAYMTENbHbIX Pe3ynbTaToB B 3adavax MoAenvMpoBaHusa n3obpaxkeHuin ncnonb3ays
npeaBapuvTenibHOE KBaHTOBaHME NMPU3HAKOB M300paxeHus.

B pnoknage npepnaraetca MeToA, MCnonb3yoLlwmnii obyyaemble NaTeHTHblE AUCKPETHbIE NPeACTaBleHns AN peLleHns
06bEKTHO-OpPMEHTUPOBaHHBIX 3aday. [peanaraemMbli NOAXOA Pa3BUBAET UAE CIOTOBOrO NPEACTaBrNeHUsi OObEKTOB, MOAENUPYS
HenepeceKaloLLMecss MHOXKeCTBa HU3KOPa3MePHbIX ANCKPETHLIX NpeacTaBneHuii. Boibrpas ognH BEKTOP M3 KaXaoro MHoXecTBa
hopMupyeTcsi CKpbITOe NpeacTaBneHne oobekTa. [poBefeHHbIe 3KCNEePUMEHTbI AEMOHCTPUPYIOT, YTO BblyYeHHble
npeacTaBneHns B ANCKPETHBIX CKPbITbIX MPOCTPAHCTBAX ABMAOTCS pacnyTaHHbIMU. Takon noaxogd Obin NpUMEHEH K 3aaade
npeackasaHysa MHOXECTBA W Nokasan Nnyyunii pesynesraT Ha Habope AaHHbix CLEVR no cpaBHeHWIo ¢ HecneumanusnpoBaHHbIMU
mogenamu. Tak e, NpMMeHeHne 3Toro noaxoaa k 3agade obHapyxeHns 06beKToB Nokas3ano BO3MOXHOCTb YNpaBnsieMomn
reHepauum n3obpaxeHnin CLeHbl 3a CHET MaHUMyNMPOBAaHWS CKPbITbIMW NMPeACTaBNEHNSMUN OTAENbHLIX OOBLEKTOB.

[NpeseHTaums

Bupoeo

23.09.2022

Hwuknta Ctapogybues (MTMO), Bayecnas MewanuHos (HUNY BLU3), Huknta BoHagapues,
puropuin baptow (PhD Student at AMLab, UvA)
[NCKYyCCUOHHLIA ceMnHap o AN dy3HbIX MOAeNax

Ha cemyHapax Hallen rpynmnel Mbl y>Ke He pa3 obcyganv anddysHble MOAENW - OTHOCUTENBHO HOBbIN Kracc
reHepaTVBHbIX MOAENEW, akTUBHO HabupatoLWMin NONyNSAPHOCTb. B 3Ty NATHWLY Mbl BHOBb BEPHEMCS K 3TOW TEME.

OpHako B 3TOT pa3 ceMuHap NponaeT B AUCKYCCUOHHOM chopmaTe. ByaeT veTbipe foknagqmka, kKaxabli U3 KOTOpbIX
paccKaxeT MPO CBOK CTaTbio. Mbl MOrOBOPMM NPO reHepaLmio N306pakeHnin MO TEKCTOBLIM OMUCAHNAM, YCKOPEeHune
reHepauuy ¢ nomolubio FAHoB 1 anddysuto Ha ocHoBe BntopuHra (pasmbiTUS), a He CTaHAAPTHOrO 3aLlyMIIEHUS.

Tak kak hopmMaT ANCKYCCUOHHbIN, OyaeT 30opoBo, ecnv Nepes CEMMHAPOM Bbl MPOGEXNTECH MO CTaTbsIM U
NPUroToBUTE Kakue-To Bonpochi!

Mpe3eHTauum:
Starodubtsev GLIDE
E : Diffusi

Meshchaninov___Tackling_th nerative_Learni
ng_Trilemma_with_Denoising_Diffusion

Cratbu:

Editing with Text-Guided Diffusion Models

Tacki . . g Tii .
Denoising Diffusion GAI

Id Diffusion: Inverting Arbitrary Im
Transforms Without Noise
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https://github.com/bayesgroup/bayesgroup.github.io/blob/master/bmml_sem/2022/Bondartsev_Cold_Diffusion_23.09.22.pdf
https://github.com/bayesgroup/bayesgroup.github.io/blob/master/bmml_sem/2022/Meshchaninov_Tackling_the_Generative_Learning_Trilemma_with_Denoising_Diffusion_23.09.22.pdf
https://github.com/bayesgroup/bayesgroup.github.io/blob/master/bmml_sem/2022/Meshchaninov_Tackling_the_Generative_Learning_Trilemma_with_Denoising_Diffusion_23.09.22.pdf
https://arxiv.org/abs/2112.10741
https://arxiv.org/abs/2112.07804
https://arxiv.org/abs/2112.07804
https://arxiv.org/abs/2208.09392
https://arxiv.org/abs/2208.09392

Soft Diffusion: Score Matching for General
Corruptions

Blurring Diffusion Models

Bugeo
30.09.2022 HeTt cemunapa
07.10.2022 Mpuropun baptow (UvA), Aknm KoTtenbHukos (AHagekc, HAY BLUD) MpeseHTauuu:
MapkoBckuii GrtoppuHr + gudbdpyaunsa gnst TabnuYHbIX JaHHbIX
Bartosh_Blurring
370 NpoaomKeHne ANCKYCCUOHHOTO CEMMHapa, NOCBSLLEHHOro AMdYy3HbIM MOAENsM, KOTOPbIN cocTosncs 23ro . e
ceHTA6ps. OH ByaeT cocTosATb U3 OBYX YaCTeW. Bartosh Linear Diffusion Models
Mbl 3aKOHUYMM 0BCYXAaTb GIIIOPPUHT B ADPY3HBIX MOAENSX U HEMHOTO 0606LLMM 3TV Moaxofsl. [ToroBopyM o Tom, Cratbum:
Kak BOOOLLE 13 NMHENHbIX MoZernew paspyLueHns nHcpopmaumm (3awymneHne, GritoppuHr, AayHCKEWNUHE 1 Mp.) Generative Modelling With Inverse Heat
Jenatb MapKoBCKue npouecchl. Kak ¢ MOMOLLbIO 3TUX Mogenen oueHnBaThb NAOTHOCTb B TOYKE. Dissipation
paper: https://arxiv.org/abs/2206.13397
Takxke konnern n3 AHgekca pacckaxyT O CBOeW HeflaBHO BbileaLuen paboTte npo auddysnio ans TabnmuHbIx
OaHHbIX. Soft Diffusion: Score Matching for General
Corruptions
paper: https://arxiv.org/abs/2209.05442
Blurring Diffusion Models
paper: https://arxiv.org/abs/2209.05557
TabDDPM: Modelling Tabular Data with Diffusion
Models
paper: https://arxiv.org/abs/2209.15421
Buaoeo
14.10.2022 Cepren TpowwuH (HAY BLUJ) MpeseHTauunsa

Overview of control techniques for text and image models

3a nocnegHee BpeMs NosABUNock 6onblLuoe Yncno npeaobyyeHHbIX reHepaTUBHbLIX MOAENEN C TEKCTOBbLIM
ynpaenenuem (GPT-3, Dall-E, ...), Ha oby4yeHune KOTopbIX MOTPaTUN OFPOMHbIE pecypchl. XOUETCst MOHNMaTb, Kak
MOXHO 9(pHEKTNBHO UCMONB30BAaTh AAHHbIE MOAENW, YNPaBnATb NPOLECCOM reHepauum B YCroBUSAX
OorpaHM4eHHOCTY pecypcoB Ha foobyyeHune. [loknag 6ygeT nocesiweH 0630py METOAOB yrpaBneHns
reHepaTVBHbIMU MOAensamMn. B nepsoi YacTu Aoknaaa Mbl PaccMOTpUM MeToAbl 3ddeKkTBHOrO 400BYyYeHNs
npenobyyeHHbIX Mogenen Ansg TekcTos, obcyanm metofsl in-context obyyeHuns, energy-based ynpasnexus
reHepauuen Tekctos. Bo BTopon Yyactu goknaga mMbl paccMoTpuM cnocobbl ynpaenexns ans text-to-image
Mogenew, NoroBopuM Mpo peaakTMpoBaHne n3obpaxeHni, NepcoHanu3MpoBaHHYI0 reHepaLmio.

CraTtbu:

https://arxiv.org/abs/2208.01066
https://arxiv.org/abs/2205.05638

hitps://arxiv.org/abs/2202.11705
https://arxiv.org/abs/2208.01626
https://dreambooth.github.io/

Bugeo



https://arxiv.org/abs/2209.05442
https://arxiv.org/abs/2209.05442
https://arxiv.org/abs/2209.05557
https://youtu.be/2u8Cun8UGFI
https://bayesgroup.github.io/bmml_sem/2022/Bartosh_Blurring_Soft%20Diffusion_07.10.22.pdf
http://bayesgroup.github.io/bmml_sem/2022/Bartosh_Deep_Bayes_Sem_Linear_Diffusions_07.10.22.pdf
https://arxiv.org/abs/2206.13397
https://arxiv.org/abs/2209.05442
https://arxiv.org/abs/2209.05557
https://arxiv.org/abs/2209.15421
https://youtu.be/1H4aVvQntOE
https://github.com/bayesgroup/bayesgroup.github.io/blob/master/bmml_sem/2022/Troshin_Constrained_Generation_14.10.22.pdf
https://arxiv.org/abs/2208.01066
https://arxiv.org/abs/2205.05638
https://arxiv.org/abs/2202.11705
https://arxiv.org/abs/2208.01626
https://dreambooth.github.io/
https://youtu.be/rL3Dzck8llE

21.10.2022 Makcum KogpsiH (HWY BLUJ) [NpeseHTaumsa
Training Scale-Invariant Neural Networks on the Sphere Can Happen in Three Regimes
QTaTbFI
A fundamental property of deep learning normalization techniques, such as batch normalization, is making the
pre-normalization parameters scale invariant. The intrinsic domain of such parameters is the unit sphere, and Bugeo
therefore their gradient optimization dynamics can be represented via spherical optimization with varying effective
learning rate (ELR), which was studied previously. However, the varying ELR may obscure certain characteristics of
the intrinsic loss landscape structure. In this talk, we investigate the properties of training scale-invariant neural
networks directly on the sphere using a fixed ELR. We discover three regimes of such training depending on the
ELR value: convergence, chaotic equilibrium, and divergence. We study these regimes in detail both on a
theoretical examination of a toy example and on a thorough empirical analysis of real scale-invariant deep learning
models. Each regime has unique features and reflects specific properties of the intrinsic loss landscape, some of
which have strong parallels with previous research on both regular and scale-invariant neural networks training.
Finally, we demonstrate how the discovered regimes are reflected in conventional training of normalized networks
and how they can be leveraged to achieve better optima.
28.10.2022 HeTt cemunapa
04.11.2022 CraHucnas [dpobbileBckuii Buaeo
BOI'IpOCHO-OTBeTHaFI ceccud
11.11.2022 Wnbsa 3uraHwuH (Pusndeckun pakynstet MY um. M.B. JlomoHocoBa) Mpe3eHTauus
KsaHTOBasi mexaHuka
[MonesHble cebinku:
[oknag nonynonynspHO usnaraet OCHOBbI KBaHTOBOM MexaHukW. B pacckase pasbepem ee akcuomatuky. Pasbepem
hopManu3m YMCTbIX N CMeLLaHHbIX COCTOSIHUIA, pa3peLuM napagokce kota LpeguHrepa Ha ocHoBe SBMeHUS -MIONTY BCSi COBPEMEHHas Teopchuanka B
AeKorepeHumMn 1 paccMOTPUM, Kak MPOUCXOQUT Nepexos Mexay KBaHTOBOM M KIlacCcU4Yeckon cTaTucTukon. byaet Eﬁ”y'_-;? d”.yﬂﬂp”‘(’j“" B”pﬁz“ RF iftAPVA
N3NoXeHa COBPEMEHHas cucTemaTuka nHTepnperauui KBaHTOBOW MexaHuku. BeiBeaem npocTenwunin Bua e CE b DGR U X ' =
HepaBeHCcTB benna u paccmoTpum 3a 4to ganu Hobenesckyto npemuto. PaccmoTpum 3agady o kBaHTOBOW 6ombe 1 ~Camblt COBPEMEHHBIM KypC MO KBaHTOBOW
SKCMEPUMEHTBI C OTIIOXEHHbBIM BblGopoM. Takke ByayT oTBETbI Ha BONPOCHI CryLLaTenen. MEXaHUKe Ha PYCCKOM A3kIke(B paMK?X ero
pa3speLleHO MHOXECTBO NapagoKCoB):
https://teach-in.ru/course/density-matrix
Buaeo
18.11.2022 Tumodpen KOxakos (HUY BLUJ) [MpeseHTauus

Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets

B npowunom rogy nccnegosateny ns OpenAl npogeMoHCTpMpoBany UHTEPECHbLIN (heHOMEH, KOTOPbI OHW Ha3Banm
“grokking”. 3akntoyaeTcs OH B cneaytoLLemM: HEMpOCeTb Pe3Ko NepexoauT OT KayecTBa Cry4yalHoro yraablBaHus K
naeanbHOMY KavyecTBy, MPUYEM Cry4aeTcs 3TO CUMbHO MOCHE TOYKM 0BEPUTTUHTA. [pakTukm e 0BblYHO
ocTaHaBnuBaroT 0by4eHne ceTew Npy NepBoM Hameke Ha nepeobydeHne. B yem xe npuunHa Takoro adpdpekta, un
CKOIMbKO Ha caMOM Jerne HYXXHO y4nTb ceTu? Ha cemmHape obcyaum pesynbTbl psga nccregoBaTenbCkux rpynm,
YaCTMYHO NPONUBAIOLLMX CBET Ha AaHHbIE BOMPOCHI, @ TAKKE MNOAENMMCS HALIMMK IKCNepuMeHTamu n
pesynsratamu.

Cratbs



https://github.com/bayesgroup/bayesgroup.github.io/blob/master/bmml_sem/2022/Kodryan_Training_Scale_Invariant_Neural_Networks_on_the_Sphere_Can_Happen_21.10.22.pdf
https://arxiv.org/abs/2209.03695
https://youtu.be/ZCIa6HuawQY
https://youtu.be/kMXTkDE1urI
https://github.com/bayesgroup/bayesgroup.github.io/blob/master/bmml_sem/2022/Ziganshin_Quantum_Mechanics_17_11_22.pdf
https://disk.yandex.ru/i/2K5xRF_jftAPyA
https://teach-in.ru/course/density-matrix
https://teach-in.ru/course/density-matrix-part2
https://youtu.be/HCUZ0S6CqwM
https://github.com/bayesgroup/bayesgroup.github.io/blob/master/bmml_sem/2022/Yuzhakov_Grokking%20Generalization%20Beyond%20Overfitting%20on%20Small%20Algorithmic%20Datasets.pdf
https://arxiv.org/pdf/2201.02177.pdf

25.11.2022

AnekcaHgp Hosukos (DeepMind)
Discovering faster matrix multiplication algorithms with reinforcement learning

B naHHom paboTte Mbl NpuMeHUny MoanduLMpoBaHHyto nporpammy AlphaZero anst nomcka GbICTPbIX anropuTMoB
YMHOX€EHUSI MaTpuL, B CMMBOIbHOM Buge. Mbl hoKkycrpyemcs Ha novcke ObICTPbIX anropuTMOB YMHOXEHWUST MaTpuLL
HebonbLLOro pasmepa, Hanpumep, 2x2, a 3aTeM UCMNOoNb3yeM HaAeHHbIE anropuTMbl PeKypcuBHo. B pesyneraTte, B
paboTe Nony4mnochb YMEHbLUUTb YUCIIO CKANsAPHbIX YMHOXEHWI, KOTopoe TpebyeTcs AN YMHOXEHNUs MaTpuL
pasHbiX PasMepoB. YMHOXEHNS MaTpuL, — 310 BrunmHenHas onepauns, n (Kak nobyio NMHENHYI0 onepaumio MOXHO
npeacTaBuTb NPY NMOMOLLIM MaTpULIbl) ee MOXHO NPeACcTaBMTb NPU MOMOLLM TPEXMEPHOTO TeH3opa. HuskopaHroBble
pasnoXeHunsi 4aHHOTO TEH30pa COOTBETCTBYIOT anroputMam YMHOXEHUSA MaTpuL, a PaHr pa3noxeHus
COOTBETCTBYET YMCIY CKamnsipHbIX YMHOXeEHUIA. Taknum o6pa3om, 3agada reHepaumm anropuTMoB YMHOXKEHMS
MaTpuL, TpaHCOPMUPYETCS B IKBMBANEHTHYIO 3a4a4vy Novcka HU3KOPaHroBbIX Pa3fnoXeHnin (huKkcpoBaHHOroO
TeHsopa. Mbl 06yuunu AlphaZero nckatb 3T1 pasnoXeHus, NPUMEHUB Takue Nprvembl, Kak reHepaums
CUHTETMYECKNX AaHHbIX, 3KCMnyaTaums CUMMETPU 3aaadn, oby4eHne oQHOro areHTa packnagblBaTb HECKOMBbKO
pasHbIX TEH30POB OAHOBPEMEHHO, 1 UCMONb30BaTb HEVPOCETEBYIO apXUTEKTYPY, 3aTOYEHHYIO MO 0COBEHHOCTU
3ajauu.

Pesynerathl paboTbl onybnukoBaHbl B: Fawzi, Alhussein, et al. "Discovering faster matrix multiplication algorithms
with reinforcement learning." Nature 610.7930 (2022): 47-53.

[Npe3eHTauus
CraTbs

Bugeo

02.12.2022

Tunrnp Bagmaes (HNY BLUJ)
AnddysnoHHbIe MOgeny B NaTEHTHOM NPOCTPaHCTBe

3a nocnegxue napy net Anddy3MoHHbIE MOAENU NPOAEMOHCTPMPOBAIM OTIIMYHOE KAaYeCTBO reHepaLmu,
conoctaBmmoe ¢ sota-anroputmamu Ha ocHose GAN 1 VAE. OpHako 3avacTyto npouecc auddyanm NponcxoanT B
NPOCTPaHCTBE AaHHbIX, KOTOPble UMEIT B0nbLUYI0 pasmMepHOCTb. 3Ha4nT, BAOOABOK K UTEPATUBHOW CXeMe, Mbl
nony4yaem o4vYeHb ,D,OJ'IFVIVI npouecc reHepauun.

Ha cneucemuHape mbl nogpobHo pasbdepem mogenb Ha ocHoBe VAE u cont. DDPM. Latent Score Generative Model
ucnonb3yeT npouecc auddysmm B nateHTHOM npocTpaHcTee VAE, 4Tto ynpouiaet obyyerve ans DDPM, nockonbky
Tenepb DDPM HeoGxogumo MoaenupoBaTh He CIOXHOE pacnpeferneHme MHOrOMEpPHbIX AaHHbIX, a pacnpeneneHne
6nuskoe k npaepy B VAE. BTopon nntoc - CXoAHOe NPOCTPaHCTBO MOXET UMETb ONCKPETHYIO CTPYKTYpY. Score
Based GM Ha ocHoBe anddy3nm ¢ raycCoBCKMMM pacnpeneneHnsiMm He yMeT MOAENUPOBaThL AUCKPETHbIE
AaHHble. BTOpbiM Npumepom 1cnonb3oBaHns onddysnn B NaTeHTHbIX MEPEMEHHbIX, Mbl paccMoTpum Stable
Diffusion.

Cratba 1, 2

Buoeo

09.12.2022

Anbek Ananos (AIRI, HAY BLUJ)
Domain Adaptation of GANs

CoBpemeHHble mogenv FAHoB TpebyioT 6onbLUMX AaTaceToB BbICOKOrO KayecTBa ANns yCnewHoro obyyeHus, 4to
SIBMNSIETCS Cepbe3HbIM OrpaHMyeHnemM Ha npakTuke. Mbl paccMoTpuMM MeTobl AOMEHHOWN aganTaumm, KoTopble
no3BonsitoT 00yunTb MAH Ha goMeHax, KOTopble NpeACcTaBneHbl HEOOMNbLWMM Yncnom npumepoB. OCHOBHOM NOAXOA

[NpeseHTauus
Crartbu:

Training Generative Adversarial
Networks with Limited Data

StyleGAN-NADA: CLIP-Guided Domain



https://github.com/bayesgroup/bayesgroup.github.io/blob/master/bmml_sem/2022/Novikov%20et%20al._Discovering%20faster%20matrix%20multiplication%20algorithms%20with%20reinforcement%20learning.pdf
https://pubmed.ncbi.nlm.nih.gov/36198780/
https://youtu.be/znLybIpcaLQ
https://github.com/bayesgroup/bayesgroup.github.io/blob/master/bmml_sem/2022/Badmaev_Diffusion_models_in_latent_space_02_12_22.pdf
https://nvlabs.github.io/LSGM/
https://arxiv.org/abs/2112.10752
https://youtu.be/A_TQ1LV-i2c
https://github.com/bayesgroup/bayesgroup.github.io/blob/master/bmml_sem/2022/Alanov_DomainAdaptationofGANs_09.12.2022.pdf
https://arxiv.org/abs/2006.06676
https://arxiv.org/abs/2006.06676
https://arxiv.org/abs/2108.00946

B 9TOM 3aaye - 3T0 PanHTLIOHUHI Moaenu, obyyeHHOM Ha 6ornbLuon BbIGopKe, Ha HOBbIN AOMeH. B kayecTBe Takon
mMogenu Ml Byaem paccmatpuBaTth sota-mogens StyleGAN, obyyeHHbIn Ha gaTtacete nuy FFHQ.

B noknage Gyget coenaH 063op CyLecTByOWMX MeToAoB AOMeHHoM agantaummn StyleGAN. Janee 6yayT
npeacTaBneHbl HalW pe3yrnsTaThl N0 TOMY, Kak MOXXHO YMEHbBLUWTL Ha NMOPSAKN Yncrno oobyyYaemblx napameTpoB
npu panHTeloHnHre StyleGAN 1 kak 9TO NO3BONSET pellaTb 3a4advy MynbTU-AOMEHHOW aganTaumm, korga Mbl XOTUM
[000y4nTb MOAENb Cpa3y Ha HECKOIbKO JOMEHOB.

Bo BTOpON YacTu goknaga dyaeT npeanoxeH Nnogpo6HbIN aHann3 BaXKHOCTU KaXA0W KOMMOHEHTbI apXUTEKTYPbI
StyleGAN gns gomeHHON aganTaumm B 3aBUCUMOCTU OT CXOXECTU LieNneBoro AoMeHa C UCXoaHbIM. [lanee mbl
paccMoTpyM, Kak 3TOT aHanm3 No3BONsAET yNyyllnTb CyLLECTBYOLLME METOALI afanTaunm U OTKPbIBAET HOBbIE
MHTEPECHbIE CBOWCTBA 3TUX METOAOB.

Adaptation of Image Generators

H rDomainNet: Universal Domain

Adaptation for Generative Adversarial
Networks

StyleAlign: Analysis and Applications of
Aligned StyleGAN Models

Buneo

16.12.2022

Makcum PsionHmH (Angekc, HAY BLUJ)
Ot GPT-3 go ChatGPT: 06yyeHune A3bIkOBbIX MOAENEN Ha NHCTPYKLMSAX U YenoBeYeCKUX
oueHKax

B 2020 ropy uccnenosatenu n3 OpenAl obHapyXunu, 4To GonbLIne A3bIKOBbIE MOAENN MOXHO He foobyyaTb Ha
LieneBo 3aade: 4OCTAaTOMHO NofaTh B KA4ECTBE KOHTEKCTA HECKOMbKO NPUMEPOB A5 3TOM 3afayun ¢ OTBETaMU Ha
HWX, @ NHOTAA XBaTaeT 1 BOBCE TEKCTOBOW MHCTPYKLUK. [ocne aToro Hay4yHoe coobLLEeCTBO CTano akTBHO
pa3BuBaThb CNOCOObLI, NO3BOMSOLLME NOBLICUTH KAYECTBO PabOThl A3bIKOBLIX MOAENEN B Tako NOCTAHOBKE,
nony4ymBLLEl Ha3BaHue zero-shot/in-context learning. HepaBHuin penns ChatGPT nokasan, 4To aganTypoBaHHbIE K
in-context learning 1 BbINONMHEHNIO MHCTPYKLMIA S3bIKOBbIE MOAENW UMEIDT BObLLOE KONMMYECTBO NOTEHLUMANbHbIX
NPUNOXEHUA, B TOM YUCIE Takux, Ans KOTOpbIX cOop obyyatoLen BbIOOPKM paHee cumTancs Heobxoanmbim.

Ha cemnHape Mbl 06cyaum psig paboT, nanaratroLmx KroveBble NoAXoabl M HanpaBrneHus nccneaoBaHuii ans
ynydweHns paboTbl A3bIKOBbLIX Mogenen B nocTaHoBke in-context learning. OgHMM 13 Takux HanpaeneHun ABNaeTcs
ycTosiBLasica napagurma instruction finetuning: obyyasce Ha pasHoo6pa3Hbix Habopax 13 POpPMynMPOBOK 3aaad,
BXOAHbIX JAHHBIX U OTBETOB, S3bIKOBbIE MOAENN Ny4Lle CNeayoT MHCTPYKLUMAM gaxe ANnA HOBbIX 3agad. He
o6oaém BHUMaHUEM 1 naeto obydeHnsi C NOAKPENNEHNEM Ha OLIEHKaxX TEKCTOB AbMMU, NeEXallyto B OCHOBE
ChatGPT v npegwecTteoBaBLuel e InstructGPT.

Mpe3eHTauus

Cratbu:

Finetuned Language Models Are
Zero-Shot Learners

Multitask Prompted Training Enables
Zero-Shot Task Generalization

Training language models to follow
instructions with human feedback

Improving alignment of dialogue agents
via targeted human judgements

Scaling Instruction-Finetuned Lanquage
Models

Bugeo

BeceHHuin cemecTp 2022 1.

Darta

Joknagyuk n tema

MaTtepuanbi



https://arxiv.org/abs/2108.00946
https://arxiv.org/abs/2210.08884
https://arxiv.org/abs/2210.08884
https://arxiv.org/abs/2210.08884
https://arxiv.org/abs/2110.11323
https://arxiv.org/abs/2110.11323
https://youtu.be/2GfaUtp_8R8
https://arxiv.org/abs/2109.01652
https://arxiv.org/abs/2109.01652
https://arxiv.org/abs/2110.08207
https://arxiv.org/abs/2110.08207
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2209.14375
https://arxiv.org/abs/2209.14375
https://arxiv.org/abs/2210.11416
https://arxiv.org/abs/2210.11416
https://youtu.be/2JxcIy7AgFQ

25.02.2022 AnekcaHap Jlobawer, Ckontex [Npe3eHTauus
Formalism of quantum mechanics from the point of view of machine learning _
Modern Quantum Mechanics (nepsas
This talk will be devoted to an introduction to quantum mechanics from the point of view of machine learning. We maBa)
briefly review the main ideas of classical mechanics and related concepts from Hamiltonian Monte Carlo methods:
the Hamilton's equations and the principle of least action. After that, we introduce stochasticity into the Hamilton Buneo
equations and, using the Fokker-Planck equation for the probability distribution function, we arrive at the
Schrédinger equation. After introducing the basic axioms of quantum mechanics, we will discuss its main features,
such as the noncommutativity of observables, the uncertainty principle, and entanglement. Finally, we will review
the path integral formulation of quantum mechanics and see some analogies between the approximation of path
integrals and ensemble methods in deep learning.
04.03.2022 Cepren Wymckuin, PykoBoguTtens nabopaTopum KOrHUTUBHLIX apxmutektyp MOTA [peseHTauus
CeoboaHas aHeprus n UHTENNeKT
[oknap nocesLWEeH U3NOXEHWIO NpUHLUMNIa cBoboaHol sHeprum PprctoHa, kak MaTeMaTU4eCcKo OCHOBbLI TEOPUU Buoeo
MaLLWHHOTO 0BYYEHUsI U MaLLMHHOIO MHTennekTa. 3 nepBbix NMPMHUMNOB BbIBOAATCS OCHOBHbIE MOCTYNaThl Teopun
06y4yeHus ¢ nogkpenneHnemMm, saensoLlencs 6azoBon mogensto cunsHoro M. PaccmotpeHbl BapyaHTbl model-free un
model-based reinforcement learning.
11.03.2022 Diego Granziol, Huawei London Al Theory [Npe3eHTaums
A Random Matrix Theory approach to Deep Learning optimisation and generalisation
In this talk we consider a random matrix theory model for the mini-batch perturbation of the Hessian of the loss, Buneo
which leads to analytical scaling rules (linear and square root) for SGD and Adam as a function of batch size
respectively, which we show experimentally. We also present an analytical theory for the generalisation of
Stochastic Weight Averaging under the framework of a Gaussian process model for gradient perturbations. Our
theory shows the necessity of appropriate regularisation and large learning rates, noted in practice.
18.03.2022 TuHrnp bagmaes, MI'Y um. M.B. JlomoHocoBa [Npe3eHTauus
Denoising Diffusion Restoration Models
MHorve 3agayn no BOCCTaHOBMNEHNIO N306PaKEHMNIN MOXHO NPEeACTaBnUTb Kak JIMHENHbIE 06paTHble 3aaaqun. Cratba 1,2
HepaBHee cemMeNCTBO NOAXOQ0B K PELLEHUIO 3TUX Npobrem ncnonb3yet
CTOXacTU4EeCKMe anropuTMbl, KOTOPbIE CEMMITMPYIOT M3 anocTepruopHOro pacnpeneneHnsi. OgHako xopoLuve s
peLleHust 4YacTo TpebyroT 0byyYeHUs ¢ yunTenem, OpUEHTUPOBAHHOTO Ha KOHKPETHYIO 3adady, Ans MOAeNnMpoBaHus https://github.com/bmml|_sem/2022/Bad
anocTepuopHOro pacrnpeaeneHus, B To Bpems Kak unsupervised Metofbl 06bI4HO nonaratotca Ha HeadpdekTneHble | MAEV DDRM_DDPM_NCSN.pdf
utepaumoHHble metoabl. Mbl pasbepem paboty Denoising Diffusion Restoration Models, ocHoBaHHyt0 Ha
BapuvaLuoHHOM BbiBoAe 1 AN dYy3noHHbIX Mogensax. Mbl ybeammcs B yHuBepcansHoct DDRM gnsa nio6oin Bugeo
obpaTHoNM NuHerHon 3afgayu, pasbepem ahPEeKTUBHOE NOCTPOEHUE NNHENHBIX ONEPaTopoB ANSA 3ajayum
MOBLILLIEHNS pa3peLLeHusi, Korlopusauum, MackMpoBaHUS.
25.03.2022 Mnbs CuHunbLmnkoB 1 EBreHnn bobpoe [Npe3eHTauus

Mathematics of Multi-Antenna Transmission in 5G networks

Jlntepartypa:



https://github.com/bayesgroup/bayesgroup.github.io/blob/master/bmml_sem/2022/Lobashev_Formalism_pf_quantum_mechanics_from_the_point_of_view.pdf
https://kgut.ac.ir/useruploads/1505647831850hcd.pdf
https://youtu.be/zMWpr65_pBQ
https://github.com/bayesgroup/bayesgroup.github.io/blob/master/bmml_sem/2022/Shumsky_Svobodnaya%20energia%20i%20intellekt.pdf
https://youtu.be/OuzpkPW_llo
https://github.com/bayesgroup/bayesgroup.github.io/blob/master/bmml_sem/2022/Granziol_DNNs%20from%20Theory%20to%20SoTA%20Practice%20Optimisation%20and%20Generalisation.pdf
https://youtu.be/G0epmZh2E1w
https://github.com/bayesgroup/bayesgroup.github.io/blob/master/bmml_sem/2022/Badmaev_DDRM_DDPM_NCSN.pdf
https://arxiv.org/abs/2201.11793
https://arxiv.org/abs/2006.11239
https://github.com/bmml_sem/2022/Badmaev_DDRM_DDPM_NCSN.pdf
https://github.com/bmml_sem/2022/Badmaev_DDRM_DDPM_NCSN.pdf
https://youtu.be/t024MogwVHw
https://github.com/bayesgroup/bayesgroup.github.io/blob/master/bmml_sem/2022/Sinilshchikov%2C%20Bobrov_5G%20MIMO%20Mathematics.pdf

C KkaxablM HOBbIM CTaHAAPTOM Ha fanbHenllee pa3BuTMe CeTen COTOBOW CBA3W BCE CUNbHEE BrUSIOT
ncrnonb3yemMble B cCTEME MaTeMaTuyeckne anroputmbl. OKasbiBaeTcs, YTO NOCTpoeHne ahdeKTUBHON 6a3oBomn
CTaHUUM NATOro NoKoneHms He obxoamTcsa 6e3 peLleHns LWMPOKOro criekTpa 3afay NpUKnagHon MaTemMaTuku, Takmx
KaK HeBbIMNyKnas 1 KOMOUHaATOpHas ONTMMU3aLUst, CTaTUCTUYECKOE OLIEHNBaHUE M AaxXe MalUMHHOe obyyeHue.
Mpr4ém Ha HEKOTOpPbIE U3 HUX crnieumdunka 06nacT HaknaabiBaeT KpaHe XXECTKNE OrpaHUYeHUs Ha BPeEMSI
paboThkl, 4To TpebyeT , Hanpumep, pa3paboTkM OLHOBPEMEHHO ObICTPLIX 1 3PEEKTUBHBLIX METOAOB ONTUMM3aumu. B
Apyrux cny4asx HeobxoaMMo OLeHMBaTb psg NapaMeTpoB nepeaayun, onvpasch NMb Ha KOCBEHHbIE MPU3HAKW,
ONS Yero oTNMYHO NOAXOAAT

METO/bl MaLLUMHHOIO 0ByYeHMUs.

B pamkax gaHHOro ceMmHapa Mbl PAaCCMOTPUM pPasfnyHble MaTeMaTU4eckne 3agaym, BCTpeyaLmecs npum
nocTpoeHun 6a3oBoV CTaHLUM NATOrO MNOKOMNEHMSI: MHOroaHTEHHY0 nepeaady (massive multiple input multiple
output), onTmanbHbIV BeIGOP Nonb3oBaTenein (user-pairing) u aganTUBHYH NOACTPOVKY NapamMmeTpoB nepeaayv
(link-adaptation).

Bjérnson, Emil, Jakob Hoydis, and Luca
Sanguinetti. "Massive MIMO networks: Spectral,
energy, and hardware efficiency." Foundations
and Trends in Signal Processing 11.3-4 (2017):
154-655.

Tse, David, and Pramod Viswanath.
Fundamentals of wireless communication.
Cambridge university press, 2005.

Zaidi, Ali, et al. 5G Physical Layer: principles,

models and technology components. Academic
Press, 2018.

Buaeo

01.04.2022

Het cneucemnHapa

08.04.2022

Hukuta MNywun, WAL

Autoformer and Autoregressive Denoising Diffusion Models for Time Series Forecasting

B noknage npeacrasneH pasbop ABYX cTaTen NOCBSLWEHHbIX NpeackasaHuio BpeMeHHbIX psgos. B "Autoformer:
Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting”" (NIPS, 2021) ynop nenaetca
Ha Mcnonb3oBaHWe 3apekomMeHaoBaBLLMX cebs TpaHCHOPMEPOB Ans Npeacka3aHns BpeMEHHbIX PAAOB Ha Kak
MOXHO GonbluUee YMCIo Waros BNepéa, Ans Yero aBTopbl NPEANoXMNN HOBbI 3 MEKTUBHBIA (He KBaapaTUYHbIN MO
acMMnTOTMKE) BapuaHT Ha 3aMeHy self-attention 6noky n ncnonb3oBaHve pa3noxeHUs BPEMEHHOTO psiaa Ha TpeHa
1 Ce30HHOCTb BHYTpU Aekodepa. B "Autoregressive Denoising Diffusion Models for Multivariate Probabilistic Time
Series Forecasting" (ICML 2021), oCHOBHOW MOTUBALMI SABNSAETCA NONy4YeHne MOAenu s BePOSITHOCTHOIO
npenckasaHMsa MHOrOMEpPHbIX BPEMEHHbIX PSAOB, ANA TOro YTOObl MMETb BO3MOXHOCTb OLEHUTL
HeomnpeaenéHHOCTb NonyyYaeMblxX NpeAckasaHnii. ABTOpbI NpeanaratoT 3To cAenartb NyTém obycnasnmBaHns
anddyanoHHon mogenu Ha hidden state pekyppeHTHOW HEVPOHHOW ceTu.

1 HTaumsa

Cratba 1, CtaTtbsa 2

Buoeo

15.04.2022

MBaH LLekoToB, Samsung Al Center
Bilateral Denoising Diffusion Models for Fast and High-Quality Speech Synthesis

OcHoBHas npobrnema, ¢ KOTopow cTankusatoTca AMddy3MOoHHbIE MOAENN — 3TO MEANEHHAs CKOPOCTb
CAMNNMpPOBaHUS. B 0CHOBHOM, CyLLECTBYIOLLME NOAXOAbI, YCKOPSIOLME NPOLECCHI CAMMIUPOBaHNS, 3aBUCAT OT
OEeTEPMUHMPOBAHHOIO pacnmcaHus WymoB. Mpu 3TOM ero onTUMarnbHOCTb BapbUPYETCsl Ha pasnnyHbIX JaTaceTax.
B aTom poknage ocHoBHowm ynop byaeT caenaH Ha pa3tope mogenu ¢ ICLR 2022 “BDDM: Bilateral Denoising
Diffusion Models for Fast and High-Quality Speech Synthesis”, B koTOpoIt aBTOpbI 3Ha4YUTENBHO YCKOPSIIOT NPOLIECC
COMMNNIMpOBaHMs Gnarogaps penapameTpusaumm WyMoB 4118 NPSIMOro npolecca ¢ nomolbio schedule network.
Bnarogaps cesisu ¢ DDPM npoueaypa o6y4eHust score network octaetcsi HEM3MEHHOW, B TO BPEMSI Kak
npegckasaHue LWyma no3BonseT cTpouTb 6ornee kopoTkue Anddy3rMoHHbIE LENoYkM Ans uHdepeHca. B otnnyne ot
napannensHow pabotel Variational Diffusion Models, rae SNR vcnonb3yetcsa anst noise scheduling, npeackasaHune
LUyMa 3aBUCUT HE TOMbKO OT Luara BPEMEHW, HO U OT 3aLUyMIEHHOro CaMna B AaHHbI MOMEHT BPEMEHMU.
BbiBOASTCSA TeopeTuyeckme NPeanockinkv, KOTOpble AoKa3biBaoT KOPPEKTHOCTL NpoLeayp oby4yeHust u

Cratbda



https://youtu.be/YXkV1PIDo0E
https://github.com/bayesgroup/bayesgroup.github.io/blob/master/bmml_sem/2022/Gushchin_Autoformer%20and%20Autoregressive%20Denoising%20Diffusion%20Models%20for%20Time%20Series%20Forecasting.pdf
https://arxiv.org/abs/2106.13008
https://arxiv.org/abs/2101.12072
https://youtu.be/8ASpS53J-PQ
https://arxiv.org/pdf/2203.13508.pdf

camnnuposaHus BDDM, Takve kak:
- BEpPXHME rpaHunLbl Ha NPeacKa3sbiBaeMbI LLYM
- 9KBMBANEHTHOCTb Mexay 00y4YeHneM HKHen BapmaumoHHon oueHku ans DDPM 1 BDDM gnsa score network

- yHKUMS noTepb Ansa obyveHns schedule network npy gaHHoW onTumarnbsHoOM score network.

22.04.2022 Omutpuin Kypues, MY nm. M.B. JlTomoHocoBa [peseHTauuns
MLP apxutekTypa ang pewwenus 3agad CV n NLP
TpaHcdhopmepbl CTanu 0gHUM M3 CaMbIX BaXKHbIX apXUTEKTYPHBIX OTKPbITUIA B 0bnactu deep learning 1 nossonunu Bugeo
[00OUTbCSA MHOTMX NPOPLIBOB 3a NOcneaHne Heckonbko net B 3agadax NLP n CV. B gaHHoM foknage
NPEeACTaBNSOTCA NPOCTbIE apXUTEKTYPbl, OCHOBaHHbLIE HAa MHOrOCINoHOM nepuentpoHe, MLP-Mixer u gMLP. Onn
CTaBsAT Nnod CoOMHeHue HeobxoammMmocTb cros self-attention ans goctmkeHnst xopolen ToyHocTn. MLP cetn
nory4aroT KOHKYPEHTOCNOCOOHbIE pe3ynbTaThl B 3ajadax Krnaccudukaumm TEKCTOB U U300paXeHU, Npu 3ToM
3aTpatbl Ha pre-train u fine-tuning conoctaBumebl ¢ sota.
29.04.2022 Oner Oeweynun, HAY BLLUS, Ckontex MpeseHTaums
OunddepeHumnpymas peKoHCTPYKLMS TPEXMEPHBIX CLIEH NO CHUMKaM
B nocnepHue roapl Habupaet Bcé 6onbLue NonynsapHOCTY TeMa CMHTE3a (POTO CLIEH C HOBbIX PaKypCoOB Ha OCHOBE Bunoeo
yXe usBecTtHbix (novel view synthesis). Pesontoumto B aton obnactu npomsseno pewenune Neural Radience Fields
(NeRF). NoroBopum npo TO kak OHO YCTPOEHO, KaK ero yrnyyLuatT C MOMOLLbI 3PMEKTUBHBIX U KILLMPYEMbIX
penpe3eHTaLmni 1 Kak MOXHO YryYLUTb COMNIMPOBaHME B NMOACYETE MHTErpana Ans onpeaeneHns Lsera nukcens
n3o0paxkeHus.
06.05.2022 Angpen OxotuH, MY um. M.B. JlomoHocoBa [NpeseHTaums
MI/IHI/IMI/I3aLI,I/IF| QHEeprmn B Moagendx MN3unHra c nomMoLwbro HeI7IpOHHbIX ceTten
B npoT1BOMONOXHOCTL 3a4a4aM ONTUMMU3ALUM C HENPEPLIBHLIMY NEPEMEHHBIMU, MEPEMEHHbIE B 3aa4ax Buoeo
OVCKPETHON ONTMMM3aLMN NPUHUMAIOT TOMbKO AUCKPETHbIE 3HaYeHUsi. OOHOW 13 TakMX 3afay SBNSEeTCs NoUcK
MUHVMMYMa cyOMOoaynspHOro pyHKLMoHana aHeprun B moaenu MamHra. Mbl paccmMoTpyM NoaxoAbl NOCTPOEHNs
YHMBEpCarnbHbIX COMBEPOB 3TON 3a4a4n C NPYMEHEHUEM HEVPOHHbLIX ceTeln. [loroBopmm o npobnemax,
BO3HMKALLUMX B NOCTAHOBKAX, AONyCKaloLMX reHepauuto obyyatoLen BbIGopkK, a Takke o crnocobe obydeHuns
HEMPOHHbIX CETEN Ha CINOXHbIN AN ONTUMMU3aunM yHKLMOHAnN KadecTea.
13.05.2022 Hanuna JopowwnH, Huawei [MNpe3eHTaums

lNpegbickaXkeHne curHanos ycunutenemn

Yeunutenb MOLLHOCTU SIBIISIETCS BAXKHOW YacTbio 6a30BON CTaHUMM MObGunbHom ces3n 5G. Kpome
HemnocpeacTBEHHO YCUIEHUsI CUrHana, yeunuTerb reHepupyeT HexenaTenbHbIN LWyM, BbI3BaHHbIN HENMUHENHOCTHIO
B paboTe TpaH3nCcTOpoB. Ha BbixoAe yecunuTens nonyyaeTcs aNeKTpoMarHnuTHas BonHa 60sbLIoN MOLLHOCTH,
NO3TOMY OYMCTKA BbIXOAHOTO CUrHana LugpoBbIMM anropyutMamm He NPeAcTaBnseTcs BO3IMOXHON. BMecTo ounctkn
BbIXOOHOMO CUrHama ucnonb3yeTcs NOAXoA LMAPOBOro NpeabiCKaKeHWs, 3aKmnoYatoLnincs B NpeaBapuTenbHoOn
0o6paboTke curHana cneuunanbHon yHkUumuen. B cnyyae 4OCTaTOMHO TOYHOIO NPUBAVDKEHUS AaHHON DYHKLUK K
obpaTHON YHKUMN YCUNUTENst Takas TEXHONOIUsi MO3BOSSIET MOHN3NTb YPOBEHb LWyMa [0 NpUeMnemMbIx
rnokasarenem.

CamMbIMy NPOCTLIMM B peanu3aunmn 1 cambiMn pacnpoCTPaHEHHbIMU B iUTepaType ABNATCS NONMHOMUAnNbHbIE
mogenu. OHW NMHeNHbI No KoadduLMeHTam, NOSTOMY UX ONTUMU3aLMSA, Kak NPaBuIo, ABASETCS BbINyKNon
3agaden. OgHako, B criydae curHanos 5G nonuHomMuanbHble MOAENU MOTYT He JoTArMBaTb 40 Tpebyemon

Buoeo



https://github.com/bayesgroup/bayesgroup.github.io/blob/master/bmml_sem/2022/Kurtsev_MLP_Mixer_and_gMLP.pdf
https://youtu.be/qjvSetP74ug
https://github.com/bayesgroup/bayesgroup.github.io/blob/master/bmml_sem/2022/Desheulin_NeRF%20reintegration.pdf
https://youtu.be/gtiLfm7fQxM
https://github.com/bayesgroup/bayesgroup.github.io/blob/master/bmml_sem/2022/Okhotin_Ising%20model.pdf
https://youtu.be/VeK7L_OcW1o
https://en.wikipedia.org/wiki/Multidimensional_Digital_Pre-distortion
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5259211
https://github.com/bayesgroup/bayesgroup.github.io/blob/master/bmml_sem/2022/Doroshin_Digital%20Pre-Distortion.pdf
https://youtu.be/NIgr606aH2M

TOYHOCTW, NMMBO MOryT noTpeboBaTbCA NOMMHOMbI BbICOKOro nopsaka (6onbuue 10 ) n ot 6onbLIoro konvyectsa
BXOAHbIX oTcyéToB (6onblue 30). B kavecTBe 6onee BbipasuTenbHbIX Mogenen 06bIYHO paccMaTpyBaloTCst MOAENN
Tuna Wiener-Hammerstein (ctp. 11). ®aktudeckn mogens Wiener-Hammerstein sBnseTca HEVipOHHOW CETbio 13
[OBYX CIOEB: MEepBbI CIOW CBEPTOYHbIN, BTOPOW — MOMMHOMUAIbHbIN. Takast Moaenb yxxe nepectaéT ObiTb
TIMHENHOW Mo KoadhduumeHTam n TpedyeT npmenedeHns 6onee CroXHbIX METOAOB ONTUMU3ALIUN.
BbluncnuTenbHasi CoXHOCTb HEMPOHHBIX CETEW, Kak NpaBuno, nc4mcnseTcs B 6onee 4em COTHSMU ThICAY
YMHOXEHWUI 1 TaKOM e KonuyecTse crioxeHuin. OgHako, MHAycTpusi 6ecnpoBOAHON CBSI3W BbIABUIraeT JOBOSIbHO
XecTkme TpeboBaHNs K NPUMEHSIIOLLMMCSA MOAENAM, OrpaHnynaas BbluncneHns nopsgkom 1000 ymHOXeHWUI Ha
npsiMOM npoxoae Mogenu. [laHHas 0COBeHHOCTb 3acTaBnseT UCKaTb KOMMNAKTHbIE apXUTEKTYpbl MOgenen.

Bropas ocobeHHOCTb COCTOUT B HEOOXOAMMOCTM peanusauuy Mogenu B pukcrpoBaHHon apudmeTtnke. CTont
OTMETUTb HEOBXOAMMOCTb NOCTOSIHHO aAanTMPOBaTbh MOAESb K MEHSIIOLLENCS OKpYXatoLLen cpeae, TUny BXOQHOTO
curHana, nocTeneHHoMy U3Hocy yeunutens. Agantauus NPOUCXOAUT 3a CHET NMOCTOSIHHOIO 3axBara BbIXOAHOro
curHana c yeunutens. [pu aToM MeToa aganTtaummn Takon kak obpaTHoe pacnpocTpaHeHne OLIMBKM Takke OOMKeH
paboTtaTb B OUKCUPOBAHHOWN apudMETUKE.

20.05.2022

Anekcanap KopotuH, Ckontex, AlRI

Neural Optimal Transport

Solving optimal transport (OT) problems with neural networks has become widespread in machine learning. The
majority of existing methods compute the OT cost and use it as the loss function to update the generator in
generative models (Wasserstein GANSs). In this presentation, | will discuss the absolutely different and recently
appeared direction - methods to compute the OT plan (map) and use it as the generative model itself. Recent
advances in this field demonstrate that they provide comparable performance to WGANSs. At the same time, these
methods have a wide range of superior theoretical and practical properties.

The presentation will be mainly based on our recent pre-print "Neural Optimal Transport"
https://arxiv.org/abs/2201.12220. | am going to present a neural algorithm to compute OT plans (maps) for weak &
strong transport costs. For this, | will discuss important theoretical properties of the duality of OT problems that
make it possible to develop efficient practical learning algorithms. Besides, | will prove that neural networks actually
can approximate transport maps between probability distributions arbitrarily well. Practically, | will demonstrate the
performance of the algorithm on the problems of unpaired image-to-image style transfer and image
super-resolution.

[NpeseHTaLus

Related Work

Neural Optimal Transport
https://arxiv.org/pdf/2201.12220.pdf

Unpaired Image Super-Resolution with Optimal
Transport Maps

https://arxiv.org/pdf/2202.01116.pdf

Generative Modeling with Optimal Transport Maps
https://openreview.net/pdf?id=5JdLZg346Lw

Do Neural Optimal Transport Solvers Work? A
Continuous Wasserstein-2 Benchmark

a6127ff85640ec69691fb0f7cb1a2-Paper.pdf

Bunoeo
OceHHun cemectp 2021 .
Oata Odoknagyuvk n Tema MaTepuansl
17.09.2021 Hapexpna Ynpkosa, HAY BLUD Buaoeo

Neural Program Synthesis (MacTtb 1)

[Mpe3eHTaums



https://smartech.gatech.edu/bitstream/handle/1853/5184/ding_lei_200405_phd.pdf?sequence=1
https://drive.google.com/file/d/1ce-Ge7IaA3_K5DVwa5cRbdxO9yFMBvh1/view?usp=sharing
https://arxiv.org/pdf/2201.12220.pdf
https://arxiv.org/pdf/2202.01116.pdf
https://openreview.net/pdf?id=5JdLZg346Lw
https://proceedings.neurips.cc/paper/2021/file/7a6a6127ff85640ec69691fb0f7cb1a2-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/7a6a6127ff85640ec69691fb0f7cb1a2-Paper.pdf
https://youtu.be/OfDDaW7-N2I
https://youtu.be/fPcS9mEPcOw
https://bayesgroup.github.io/bmml_sem/2021/Chirkova_Neural%20Program%20Synthesis.pdf

AHHOTaumsa: AsbikoBble mogenu Hanogobue BERT n GPT-3 gocturnm BbICOKMX pe3ynbTaTtoB BO MHOMMX

NpUKNaaHbIX 3aAadax, BKo4ast MalUMHHbIV NepeBo/, reHepaLyio TekcTa 1 MHAPOPMALIMOHHBIV NOUCK, 1 yxe Bbiwn | Ctathd 1, 2, 3
3a npenenbl 06paboTku TekcTa. fletom 2021 roga komnanna OpenAl npeactaemna mogens Codex, Cnoco6Hy0 -
reHepvpoBaTh Ka4eCTBEHHbIV NPOrpaMMHbIA KOA MO ONUCAHUI0 HA ECTECTBEHHOM SAI3bIKE U KOHTEKCTY U BCTPOEHHYHO
B KayecTBe accucteHTa nporpammucta GitHub Copilot B pegaktop Visual Studio. Kak u GPT-3, mogenb Codex
6bina npegobyyeHa Ha orpoMHOM Habope AaHHbIX, B JAaHHOM Cllyvae CoAepalleM UCXOOHbIN Kod, U aanee
[ooby4yeHa Ha 3agadvy reHepauum Koga no TEKCTOBOMY OMNUCaHWIO.

24.09.2021 Cepren TpowwuH, HAY B3 Buoeo
Neural Program Synthesis (MacTtb 2)
AHHOTaums: Ha ceMmHape Mbl pacCMOTPMM OCOBEHHOCTM A3bIKOBbLIX MOAENEN AN 3ajavv reHepauum koga, B [peseHTauma
YacTHocTM noroBopum npo Codex, HO 3aTPOHUM U CMEXHbIE nccnenoBaHus. B noknage OyaeT yaeneHo BHUMaHune
aHanu3y owmnboK A3bIKOBbIX MOAENEeN, cnocobamM cemnnMpoBaHUS U3 HUX, PACCMOTPEHbI BApUaHTbI YIyyLleHUs Cratea 1,2, 3
Ka4yecTBa A3bIKOBbIX MOZEren: C NOMOLLb0 4000yYeHNs, B3anMoaenCcTBMSA C Nonb3oBartenem, u ap.

01.10.2021 Métp Mokpos, Ckontex, MOTU Bugeo
Large-Scale Wasserstein Gradient Flows
AbcTpakT: Wasserstein gradient flows provide a powerful means of understanding and solving many diffusion [peseHTauva
equations. Specifically, Fokker-Planck equations, which model the diffusion of probability measures, can be
understood as gradient descent over entropy functionals in Wasserstein space. This equivalence, introduced by [NpenpuHT
Jordan, Kinderlehrer and Otto, inspired the so-called JKO scheme to approximate these diffusion processes via an
implicit discretization of the gradient flow in Wasserstein space. Solving the optimization problem associated to Cratbsa i, 2, 3,4
each JKO step, however, presents serious computational challenges. We introduce a scalable method to
approximate Wasserstein gradient flows, targeted to machine learning applications. Our approach relies on
input-convex neural networks (ICNNs) to discretize the JKO steps, which can be optimized by stochastic gradient
descent. Unlike previous work, our method does not require domain discretization or particle simulation. As a
result, we can sample from the measure at each time step of the diffusion and compute its probability density. We
demonstrate our algorithm's performance by computing diffusions following the Fokker-Planck equation and apply it
to unnormalized density sampling as well as nonlinear filtering.

08.10.2021 Mpuropun baptow, JetBrains Research Bugeo
Diffusion models (4acTb1)
ABcTpakT: BepoaTHO, Bbl Y€ YTO-TO Crbllwany npo Anddy3Hble MOAENN U BUAENW NPOBOKALMOHHbIE HAa3BaHUS MpeseHTauuns
cratei Tuna "Diffusion Models Beat GANs on Image Synthesis". Qnddy3Hble Mogenm aTo OTHOCUTENBHO HOBbLIV
Krnacc mogeren, KOTopble NoKa3bIBaloT sota pesynbraThl B 3agadvax OLeHKV NNOTHOCTU pacnpegeneHns u
reHepauuy gaHHbIX. Ha HeKOTOpbIX 3afavax reHepaummn n3obpaKeHuin OHNM NOKa3bIBalT pe3ynbTaThbl NyYlle, Yem Cratba 1,2, 3,4
GAN'bI.
Mbl pa3bepeM ctaHgapTHble AMddy3Hble MOAENU 1 MOCMOTPUM Ha HeKoTopble Gonee nNo3aHue o606LeHus.
Morimem, kak 0byyaTb 3TU MOAENM, OLEHUBATL C MX MOMOLLLIO MOTHOCThL pacrnpeneneHmns, reHepMpoBaTh AaHHble
(anpuopHO 1 YCNOBHO) 1 BapbMpoBaTb 06bEM UCMOMNb3yeMbIX BbIMUCIIMTENBHBIX PECYPCOB BO BPEMS MHdEpPEHCa.

15.10.2021 BukTtop OraHecsaH, HAY BLIS Buaeo



https://arxiv.org/pdf/2107.03374.pdf
https://arxiv.org/pdf/2108.07732.pdf
https://arxiv.org/pdf/2105.09938.pdf
https://youtu.be/3T49dB6dG4g
http://bayesgroup.github.io/bmml_sem/2021/Troshin_Neural%20Program%20Synthesis%20(part%202).pdf
https://arxiv.org/pdf/2107.03374.pdf
https://arxiv.org/pdf/2108.07732.pdf
https://arxiv.org/pdf/2105.09938.pdf
https://youtu.be/64gsGNm1oms
https://bayesgroup.github.io/bmml_sem/2021/Mokrov_Large_Scale_Wasserstein_Gradient_Flows.pdf
https://arxiv.org/pdf/2106.00736.pdf
http://proceedings.mlr.press/v108/frogner20a/frogner20a.pdf
https://link.springer.com/article/10.1007/s13373-017-0101-1
https://epubs.siam.org/doi/abs/10.1137/S0036141096303359?journalCode=sjmaah
https://proceedings.mlr.press/v70/amos17b/amos17b.pdf
https://youtu.be/2Y2Qbsgnfiw
https://github.com/bayesgroup/bayesgroup.github.io/blob/master/bmml_sem/2021/Bartosh_Diffusion%20Models%20Part_1.pdf
https://arxiv.org/abs/1907.05600
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2102.09672
https://arxiv.org/abs/2105.05233
https://youtu.be/Lfv99IXTVuI

22.10.2021

Diffusion models (4actb 2) Cratbs
AGCTpaKT: Ha JaHHOM CEMMHape Mbl PaCCMOTPUM HenpepbiBHOE 0606LLeHNEe Moaenen, PacCMOTPEHHbIX Ha

npeabigyLeM ceMnHape ¢ NOMOLLbI0 CTOXacTU4eckux auddepeHumansHbIX ypaBHeHUA. Takoe 0606LLeHne

oKasanocbk o4eHb 3 EKTUBHBIM U MOOWUNO NpeabiayLiMe MOAENN Ha HECKONbKMNX AaTtaceTax. Mbl paccMOTpUM Kak

OHO BKMtoYaeT B cebsi cTapble Moaenu, No3BoMsieT co3aaBaTh HOBbIE U KaKkve pacluMpeHUs No3BONSET Aenatb

6narogapsi HenpepbIBHOCTU.

BukTop OraHecsaH, HAY BLIS Buoeo

Diffusion models (4actb 3)

29.10.2021

Efstratios Gavves, University of Amsterdam
The Machine Learning of Time and Dynamics ... with an Outlook towards the Sciences

A6CTpaKT: In the past decades, the impressive progress in machine learning and applications -like computer
vision- was mainly by assuming (or enforcing) that data is static and usually of spatial-only nature, that data is i.i.d,
that learning correlations suffices for high predictive accuracies. In the real world, however, data and processes are
typically (spatio-) temporal, dynamic, non-stationary, non-iid, causal. This leads to paradoxical situations for learning
algorithms. In this talk, | will first present my vision for a new type of learning that embraces temporality and
dynamics. | will then discuss recent work that connects complexity in deep stochastic models, like hierarchical
VAEs, with phase transitions, pointing perhaps to a link to statistical physics. | will continue with discussing how
simple ways of introducing roto-translation equivariance can greatly improve standard neural relational inference in
modelling dynamics of complex interacting dynamical systems. Last, | will present our latest attempts in scaling up
causal discovery by at least two orders of magnitude compared to the recent literature. | will close with drawing a
connection between machine learning and the sciences, whose interface -l believe- is deeply temporal and
dynamical, and will inspire the great next breakthroughs.

[NpeseHTaums

Buoeo

05.11.2021

HeT cemuHapa (npasgHUYHbIN OeHb)

12.11.2021

Mwuxann ®urypHos, DeepMind

Highly accurate protein structure prediction with AlphaFold

Predicting a protein’s structure from its primary sequence has been a grand challenge in biology for the past 50
years, holding the promise to bridge the gap between the pace of genomics discovery and resulting structural
characterization. In this talk, we will describe work at DeepMind to develop AlphaFold, a new deep learning-based
system for structure prediction that achieves high accuracy across a wide range of targets. We demonstrated our
system in the 14th biennial Critical Assessment of Protein Structure Prediction (CASP14) across a wide range of
difficult targets, where the assessors judged our predictions to be at an accuracy “competitive with experiment” for
approximately 2/3rds of proteins. The talk will focus on the underlying machine learning ideas, while also touching
on the implications for biological research.

[Npe3eHTauus

Criatbd

Buoeo

19.11.2021

HeTt cemunnapa



https://arxiv.org/abs/2011.13456
https://youtu.be/CAuNtgCWNWg
https://github.com/bayesgroup/bayesgroup.github.io/blob/master/bmml_sem/2021/Gavves_ML%20of%20Time%20and%20Dynamics%20with%20Emphasis%20on%20Sciences.pdf
https://youtu.be/bjrgyztev3Q
https://github.com/bayesgroup/bayesgroup.github.io/blob/master/bmml_sem/2021/Figurnov_Alphafold.pdf
https://www.nature.com/articles/s41586-021-03819-2
https://youtu.be/hOtH5AAUWGA

26.11.2021 Bagum Tutos, MOTU [MpeseHTauus
Controlling GANs Latent Space
Modern GAN architectures generate highly realistic images in a variety of domains. Much recent works have lNonesHble CCbINKu:
focused on understanding how its latent space is connected with generated image semantic. It is discovered that Common ideas on latent space
there exist meaningful latent manipulations that allow to semantically edit image. Many proposed methods include manipulations:
supervision from pretrained models which is a strong limitation. This weakness could be eliminated by unsupervised .
P pretra : 9 y P https://arxiv.org/abs/1907.10786
methods that have their own disadvantages. ) _
In this talk we will describe the main directions (supervised, unsupervised, text-guided) and current state-of-the-art | K€Y Paper on unsupervised approach:
methods of semantic image manipulation through GAN latent space. https://arxiv.org/abs/2002.03754
StyleCLIP: Text-Driven Manipulation of
StyleGAN Imagery:
https://arxiv.org/pdf/2103.17249
Buaeo
03.12.2021 Prof. Mikhail (Misha) Belkin, University of California, San Diego Buaeo
From classical statistics to modern deep learning
Recent empirical successes of deep learning have exposed significant gaps in our
fundamental understanding of learning and optimization mechanisms.
Modern best practices for model selection are in direct contradiction to the methodologies
suggested by classical analyses. Similarly, the efficiency of SGD-based local methods
used in training modern models, appeared at odds with the standard intuitions on optimization.
| will present evidence, empirical and mathematical, that necessitates
revisiting classical statistical notions, such as over-fitting. | will continue to discuss the emerging
understanding of generalization, and, in particular, the "double descent" risk curve, which extends
the classical U-shaped generalization curve beyond the point of interpolation.
While our understanding has significantly grown in the last few years, a key piece of the puzzle remains -- how does
optimization align with statistics to form the complete mathematical picture of modern ML?
10.12.2021 HeTt cemunnapa
17.12.2021 Poman CyBsopos, Advanced Image Manipulation Lab @ Samsung Al Center Moscow Crates 1, 2
Resolution-robust Large Mask Inpainting with Fourier Convolutions (and a brief survey of
image inpainting) Buneo

I will present our recent paper - Resolution-robust Large Mask Inpainting with Fourier Convolutions - which was
accepted to WACV'22. Image inpainting is the problem of re-generating the missing areas in images. While
significant progress has been achieved in the field since adoption of deep generative networks in approximately
2016, there is still a large room for improvement. In the paper we present a new system - LaMa - which addresses
some of the most noticeable limitations of the existing approaches. LaMa is able to re-generate repetitive and
structured backgrounds (but not limited to) and can do it in high resolution, while being trained using only 256x256



https://github.com/bayesgroup/bayesgroup.github.io/blob/master/bmml_sem/2021/Titov_Ganlatent.pdf
https://youtu.be/5lEJw4VagcA
https://youtu.be/sZarAEc-fPQ
https://arxiv.org/abs/2109.07161
https://saic-mdal.github.io/lama-project/
https://youtu.be/r2wKsKlaXJU

images. This is possible thanks to the fast Fourier convolutions in the generator, a high receptive field perceptual
loss and large training masks. | will also briefly review related work and discuss how LaMa compares to state of the
art approaches.

BeceHHuin cemecTp 2021 1.

Stochastic gradient estimation for discrete variables

Training models with discrete latent variables remains a challenging task because of difficulties in
accurately estimating the gradients. To address this problem, one can use reparameterizable relaxations
(e.g. Gumbel-Softmax), which usually give a low-variance estimate. However, this leads to biased
gradients and puts additional constraints on the model. Alternatively, estimators built on score-function
methods are unbiased, more general, but require a careful design of variance reduction techniques. In
this talk we will discuss a family of recently proposed methods for categorical variables that make use of
variable augmentation, REINFORCE and Rao-Blackwellization. We will also cover the analysis of the

HOata Odoknagyuk n Tema MaTepuanbl
26.02.2021 Anekcen Haymos, HAY BLUS [NpeseHTauus
Cny4ariHble MaTpuLbl: TEOPUSA Y MPUNOXKEHNS
Teopus criydanHbIX MaTpUL, U METO[bI, UCMOMb3yeMble NPY NCCIEA0BaHNUN CyYalHbIX MaTpuu, urpaloT | Bugeo
BaXXHYI0 pOnb B PasfUyHbIX pasgenax TeopeTuyecKkon 1 npuknagHon matematunku. CnydvanHole
MaTpuLibl BO3HUKNN M3 NPUMOXKEHUIA, CHaYana B aHanuse AaHHbIX, a No3Xe B Ka4eCTBe CTaTUCTUYECKNX
Mogenen B KBAHTOBOW MeXaHuKe, BbIYUCNIUTENBHOW MaTeMaTtuke, (oMHaHCOBOW UHXEHepUn, Teopun
nHdopmaumm, MalmMHHOM 0BydeHun n apyrux obnactax. B nocnegHvwe aBaguath net npomsoLuen
HacTosALWwmMn 6ym B pasBnTUM TEOPUN Cry4anHblX MaTpuu. bbiny nonyyveHbl NPpopbIBHbIE pesynbraThl. B
CBOEM JoKrnage 9 pacckaxy 06 OCHOBHbIX 3aKOHaxX, BO3HMKAOLWUX B NOBEAEHWUN CNEKTPa Cry4anHbiX
MaTpuL, a TaKkKe O HEKOTOPbLIX NPUNoXeHusax. [loknag 4acTM4HO OCHOBAH HA MOMX COBMECTHbIX
paboTtax ¢ ®puapuxom 'étue n AnekcaHapom TUXOMUPOBLIM.
05.03.2021 Jenunc Pakutnn, HAY BLUS [Npe3eHTauus

Cratbs 1,2, 3,4



https://github.com/bayesgroup/bayesgroup.github.io/blob/master/bmml_sem/2021/Naumov_Random%20Matrices%20Theory%20and%20Applications.pdf
https://youtu.be/KGhaKh1Of-4
https://bayesgroup.github.io/bmml_sem/2021/Rakitin_Stochastic%20gradient%20estimation%20for%20discrete%20variables.pdf
https://arxiv.org/abs/1905.01413
https://openreview.net/pdf?id=lcs9Dg0F0g5
https://openreview.net/pdf?id=r1lgTGL5DE
https://arxiv.org/abs/2010.10436

REINFORCE estimator with a leave-one-out baseline, which was shown to be effective despite its
simplicity.

12.03.2021 AnekcaHap MpuwmH, SAIC Moscow [MpeseHTauus
Meta-learning in neural networks
B noknage Gyget pacckasaHo 0 MeTa-06ydeHun B rny6okom obyveHnm [1]. B Hayane mbl paccMoTpum Craten 1, 2, 3, 4
BbICOKOYPOBHEBYHO KJ'IaCCMCbVIKaLlM}O COBpPEMEHHbIX anropnTMoB METa-OGyLIeHVIﬂ. B YaCTHOCTU, Npo TO, 4YTO
06yl4aeTc;|, KakK 06yqaeTc9| M C Kakown Lenbto. ,D,anee Mbl Gonee I'IOJJ,p06H0 OCTaHOBMMCA Ha MeTa-O6yLIeHVIVI B
obyyeHuu ¢ nogkpenneHuem (RL) n paccmMoTpum KnioyeBble pasnuyums NnogxoaoB B 3Ton obnactu. B koHue mbl
paccMOTPUM HECKONBbKO KOHKPETHBIX MPMMEPOB NPUMEHEHUS [2-4], HaUMHasA OT NpocTelLero obyyeHus Harpagbl 1
3aKaH4mBasa MeTa-0byyeHvem cammx RL anropntmos.
19.03.2021 Mwuxann Apxunos [MpeseHTaums
Complete Likelihood Objective for Latent Variable Models
Existing probabilistic approaches to learning deep latent variable models rely on marginal likelihood Cratbu: _ . ,
bjective, while optimization of complete likelihood (CL) is left for fully observed cases. In this work, we | Soanowski P, Joulin A. Unsupervised learning by
objective, i pl ) P . . y ) o ) ’ predicting noise //International Conference on Machine
show how to optimize CL in the latent variable setting. We treat a sample from prior distribution as a set | Learning. - PMLR, 2017. - C. 517-526.
of target latent variables with unknown permutation. This step allows to replece approximate inference
with combinatorial optimization. In contrast to variational approaches, CoLike does not experience Patrini G. et al. Sinkhom autoencoders //Uncertainty in
. . . Avrtificial Intelligence. — PMLR, 2020. — C. 733-743.
posterior collapse and learns more informative latents. Furthermore, due to absence of an encoder
CoLike does not need special techniques for learning discrete latent variable models. Finally, we show Hsu D., Shi K., Sun X. Linear regression without
that CoLike bridges optimal transport and probabilistic frameworks. correspondence //arXiv preprint arXiv:1705.07048. —
2017.
26.03.2021 Esrenuit Monukos, Ecole polytechnique fédérale de Lausanne [MpeseHTaums
Former affiliation: DeepPavlov.ai, Moscow Institute of Physics and Technology
Tensor Programs-1 Cratbn 1, 2
We shall discuss a formalism of Tensor programs that allows one to express neural network computation (e.g.
forward and backward passes) for a wide class of neural nets. The formalism is equipped with a theorem (the
Master theorem) that reasons about the distributions of random variables of the program in the limit of infinite width.
Several previous results about infinite width nets: i.e. convergence to a Gaussian process at initialization and
convergence of a neural tangent kernel to a deterministic variable, can be deduced as simple corollaries of the
Master theorem.
02.04.2021 MonnHa KnupuyeHko [NpeseHTauus

Continual learning in neural networks: on catastrophic forgetting and beyond

Learning new tasks continually without forgetting on a constantly changing data distribution is essential for
real-world problems but is challenging for modern deep learning. Deep learning models suffer from catastrophic
forgetting: when presented with a sequence of tasks, deep neural networks can successfully learn the new tasks,
but the performance on the old tasks degrades.

In this talk, | will present an overview of the continual learning algorithms including well-established methods as well
as recent state-of-the-art approaches. We will talk about several continual learning scenarios (task-, class-, and
domain-incremental learning), review the most common approaches in alleviating forgetting and discuss other

CraTbum:

Kirkpatrick, James, et al. "Overcoming catastrophic
forgetting in neural networks." Proceedings of the
national academy of sciences 114.13 (2017):
3521-3526.

Parisi, German |., et al. "Continual lifelong learning with
neural networks: A review." Neural Networks 113 (2019):



https://bayesgroup.github.io/bmml_sem/2021/Grishin_MetaLearning.pdf
https://arxiv.org/abs/2004.05439
https://arxiv.org/pdf/1804.06459.pdf
https://arxiv.org/pdf/2007.08433.pdf
https://arxiv.org/abs/2007.08794
https://bayesgroup.github.io/bmml_sem/2021/Arkhipov_CoLike_Presentation.pdf
https://bayesgroup.github.io/bmml_sem/2021/Golikov_Tensor_Programs.pdf
https://arxiv.org/abs/1910.12478
https://arxiv.org/abs/2006.14548
https://bayesgroup.github.io/bmml_sem/2021/Kirichenko_Continual-learning.pdf

challenges in the field beyond catastrophic forgetting (including forward & backward transfer, learning on
continuously drifting data and continual learning of unsupervised tasks).

54-71.

Hadsell, Raia, et al. "Embracing Change: Continual
Learning in Deep Neural Networks." Trends in Cognitive
Sciences (2020).

Hsu, Yen-Chang, et al. "Re-evaluating continual learning
scenarios: A categorization and case for strong
baselines." arXiv preprint arXiv:1810.12488 (2018).

Van de Ven, Gido M., and Andreas S. Tolias. "Three
scenarios for continual learning." arXiv preprint
arXiv:1904.07734 (2019).

Buoeo
09.04.2021 Esrenuin Monukos,Ecole polytechnique fédérale de Lausanne [MpeseHTauus
Former affiliation: DeepPavlov.ai, Moscow Institute of Physics and Technology
Tensor Programs-2 Buoeo
16.04.2021 EsreHuit Eropos [IpeseHTauus
Learning differential equations that are easy to solve
Cratbs
Mogenb Neural ODE conocrtaBnsieT HabntogaembiMy AaHHBIMU BEKTOPHOE Mnore. BHe okpecTHocTel obyyatoLuen
BbIOOPKM MOAenb MMeeT npon3son. EcTtecTBeHHbI cnocob 6opbbbl € 3TUM HEQOCTATKOM MPYMEHeHWe Kakon-nmbo
Buaoeo
perynsipusaummn ans Bbibopa peluexusi. B goknage paccmatpusaetcst npeanoxerHHas (Jacob Kelly et al, 2020)
naes naMepeHuns “npocToTbl” peLleHns ¢ NOMOLLLIO HOPMbI K-1-1 Npon3BOAHONM NpaBoi YacTh N CBA3AHHOW C 3TOMN
naeemn TeXHUYECKNA UHCTPYMEHTapUNA.
23.04.2021 Anbek AnaHos, Oner MeaHoB (SAIC Moscow) [MpeseHTauus
Audio Synthesis and Bandwidth Extension
Cratba 1,2, 3,4
AbcTpakT: B goknage 6yaeT pacckasaHo O 3agaye reHepaumy 3Byka C NOMOLLbIO HEMPOCETEN, U B HACTHOCTU Mbl
paccMoTpyM 3agady yBenMyeHusi paspeLleHns 3Byka C NMoMOLLbIO YCIOBHBIX reHepaTuBHbIX Mogenen. B Havane mbl Buneo
cAenaem KpaTtkoe BBeAeHue B obnactb 06paboTku curHanos. [anbLue pacCMOTpUM CTaHAapTHbIe reHepaTuBHble
MOZENMN Ans 3ByKa, OCHOBAHHbIE HAa HEMPOCETAX, N NocneaHne AOCTUXEHMS B 3Ton obnactu. B KoHLe nocMoTpum,
Kak paboTaroT 3T1 MOAENMN Ha KOHKPETHbIX AaTaceTax.
30.04.2021 Angpen YepHos, HAY BLUS [peseHTaums

Minibatch acceptance test for Metropolis-Hastings

AbcTpakT: [nsa BeinonHeHus Metropolis-Hastings Tecta Heo6xogumo Mcnonb3oBaTh BC BbIGOPKY, YTO CAEPXKMBaET
MacwrtabuposaHue metogoB MCMC Ha 3agaum ¢ 6onbunmy gaHHbIMU. B noknage paccmatpusaetcs naes (Daniel
Selta et al, 2017), no3sonstowias nposectu MH Tect no 6at4y, He ncnonb3ys Bcl BbIOOpKy. OCHOBHOE BHUMaHWNe
OyOeT CKOHLEHTPUPOBAHO Ha HeJocTaTkax NpPeafioeHHOro Metoaa u 6yayT npeanoxeHbl cnocobbl yrnyylieHus
[AaHHOro nogxopda.

Cratbs



https://youtu.be/qhLuj2km5gE
https://bayesgroup.github.io/bmml_sem/2021/Golikov_Tensor_programs_slides_2.pdf
https://youtu.be/AQ-JCTxWU9M
https://github.com/bayesgroup/bayesgroup.github.io/blob/master/bmml_sem/2021/Egorov_RegODE.pdf
https://arxiv.org/pdf/2007.04504.pdf
https://youtu.be/2W-wrXBc7oo
https://github.com/bayesgroup/bayesgroup.github.io/blob/master/bmml_sem/2021/Alanov_Ivanov_Audio%20Synthesis%20and%20Bandwidth%20Extension.pdf
https://arxiv.org/abs/1609.03499
https://arxiv.org/abs/1811.00002
https://arxiv.org/abs/1802.04208
https://arxiv.org/abs/1910.06711
https://youtu.be/PV6oJRQqT-U
https://github.com/bayesgroup/bayesgroup.github.io/blob/master/bmml_sem/2021/Chernov_MiniBatch%20Monte%20Carlo%20simulation.pdf
https://arxiv.org/abs/1610.06848

07.05.2021 Maeen Namaunos, New York University [Npe3eHTauus
What Are Bayesian Neural Network Posteriors Really Like?
Bugeo
14.05.2021 Aptém UpinmH, MY, Samsung Al Center [MpeseHTauus
Imitation Learning from Observations
Cratbn 1, 2, 3,4, 5
Bo MHorux 3agja4vax B 06yqu|/||/| C nogKpensieHneM Kno4eByro ponb Urpaet NpoeKkTupoBaHne d)yHKLI,VIVI Harpagbl.
OpHako, Ana MHOrMX 3afay ropasgo fnerye npeaocTaBnTb AEMOHCTpaLmMn Tpebyemoro noseaeHus. 3agady Buoeo
O6y‘-IeHI/I$| areHTa C 3KCrnepTHbIX ,El,eMOHCTpaLLVIIZ, B KOTOPbIX HE coaepXaTtcA AGVICTBVIH, peLwaroT C NOMOLLbIO
MMMTaUMOHHOro obyyenust ¢ HabnogeHun. B goknage 6yayT paccMoTpeHbl METOAbI ANt UMUTAUMOHHOIO 06yYeHust
C HabntoaeHun, a Takke NPeanoXeH MeTod, OCHOBAHHbIA HA ONTUMM3aLMM TOYEYHOW B3aMMHON MHGOPMaLUN.
21.05.2021 ®épnop Jlebeab, MI'Y [NpeseHTaums
OnddepeHumpoBaHne Yyepes peLleHne onTMMU3naUnoHHbIX 3aaay Anst HAaCTPOWKN
runepnapamMeTpos Cratbn 1, 2, 3
B 6onbluMHCTBE MoAernen MalMHHOrO oby4YeHus NpUCYTCTBYIOT Tak HasblBaeMble runep-napameTpsl. B otnuuuve ot
napamMeTpoB, KOTOpble HAaCcTpanBaroTCA Ha 06yqarou.|,yro Bbl60pKy, 3TN rnnep-napameTpbl I'IOJJ,GVIpaIOTCH Taknm
obpa3som, 4ToObl Moaernb, HacTpoeHHasa Ha obyyaroLyto BbIGOPKY, Bena cebst Hanny4ywmm obpa3om Ha TECTOBOM
W1 BanuMaaunoHHON BeliGopke.
B Takom criyyae HacTpovika runep-napameTpoB 06bIYHO BbINONHAETCA nepebopom no ceTke. Takow noaxoa,
0OfHaKo, HeNnPYMEHNM Npu BOMbLLOM KONMYECTBE rMnep-napaMmeTpoB B CUMY NPOKNSATUS Pa3MEPHOCTU.
B paMKax gaHHOro Aoknaaa 6y,u,yT AeTtanbHO pacCMOTpEHbI ABa MeToA4a BblHUCNEHUA rpaaAneHTOB No
rmnep-napameTrpam AN rpagMeHTHON oNnTUMM3aummn NOCNeaHUX.
OceHHun cemectp 2020 .
OaTta Jdoknagyuk u Tema MaTepuansi
18.09.2020 VMBaH Hazapos, ADASE Skoltech [MpeseHTauus

Bayesian Sparsification Methods for Deep Complex-valued Networks

Hoknap nocesiweH o6o06weHunto Bap-[ponayTta ons KOMNneKcHbIX HerpoceTen. byaet kpaTtko
paccKa3aHo NPo OTMANYUS KOMMIEKCHBIX OT OBbIYHbIX HEMPOCETEN, NPEACTABMNEHbI CPAaBHEHUS C
BellleCcTBeHHbIM Bap-[lponayToM 1 npvBeaeHbl pe3ynbraThl CXXaTus rmy0boKon CeTkn B 3agade
aHHOoTauMM My3bIK/

Cratbga 1

Buoeo



https://github.com/bayesgroup/bayesgroup.github.io/blob/master/bmml_sem/2021/Izmailov_What%20Are%20Bayesian%20Neural%20Network%20Posteriors%20Really%20Like.pdf
https://youtu.be/VnCEBOiWi3o
https://github.com/bayesgroup/bayesgroup.github.io/blob/master/bmml_sem/2021/Tsypin_ILfO_with_PMI.pdf
https://arxiv.org/abs/1805.01954
https://arxiv.org/abs/1805.07914
https://arxiv.org/abs/1807.06158
https://arxiv.org/pdf/1806.01267.pdf
https://arxiv.org/pdf/1807.03748.pdf
https://youtu.be/OiS7uT7OusY
https://github.com/bayesgroup/bayesgroup.github.io/blob/master/bmml_sem/2021/Lebed_OPT_Diff.pdf
https://arxiv.org/abs/1502.03492
https://arxiv.org/abs/1611.02163
https://arxiv.org/abs/1804.05098
https://bayesgroup.github.io/bmml_sem/2020/Nazarov_Bayesian_Sparsification_of_%20Deep_Complex-valued_networks.pdf
https://proceedings.icml.cc/paper/2020/hash/7c05147f3029c97ce26c0cb0b2469fca
https://youtu.be/n7vgBJkzhWk

25.09.2020

Het cneucemMunHapa

02.10.2020 Epmek Kanywes, Skoltech, ADASE group [NpeseHTauus
Random Fourier Features based on Quadratures and their use for a) density estimation b)
SLAM (Simultaneous Localization and Mapping for Robotics) based on GP model Cratbsa
[oknap GygeT NocBsiLLEeH annpoKCMMaLUnn SSAPOBbIX (PYHKLIMSI C MOMOLLBIO CITyYanHbIX Npu3HakoB. byaet
pacckasaHo Npo NpUMEHEHWE KBaapaTypHbIX NPaBun ANS reHepauun cryyarHblx NPU3HaKOB, a Takke Buaeo
Oygert paccMOTPEHbI NPUMEPbLI MPUMEHEHUS CITyYalHbIX MPU3HAKOB B 3a4a4e OLEHKM NIIOTHOCTU U B
3aa4e OHOBPEMEHHO rokanusaumm 1 NOCTPOEHNUs KapThbl

09.10.2020 Kupunn CtpymuHckun, HAY BLIS [Npe3eHTauus
O606LweHne 'ymbenb-codpTmMakc Tpuka
Gumbel Softmax Trick npeanoxun acbeKTUBHbIA 1 MPOCTOI B peanuaaunn metoa obydenuns ry6okux | C1atbd 1
MoZenen ¢ kKaTeropuanbHbIMU CKPbITbIMU NepeMeHHbIMU. OgHako ero Bpemsi paboThbl IMHENHO MO Cratba 2
pa3Mepy HOCUTENsi CKPLITOM NepemMeHHOM. [03TOMY, eCiu CKpbITasi nepeMeHHas cootseTcTayeT aepesy | CTaTba 3
pa3bopa BXOAHOIo NPeasioXeHNs Un NepecTaHoOBKE 31IEMEHTOB BXOAHOW NOCNEn0BaTENIbHOCTH,
Gumbel Softmax Trick okasbiBaeTcs HEMPMMEHMM Ha NpakTuke. B goknage peyb NOMAET O psae Buneo
HegaBHO NpeanoXXeHHbIX NOAX0A0B Arst 0606LLEeHNs MeToaa Ha criyYai CTPYKTYPHbIX CKPbIThIX
nepemMeHHbIX

16.10.2020 EkatepuHa Jlobauesa, HAY BLUD [MpeseHTauus
On Power Laws in Deep Ensembles
AHCaMbnun HENPOHHbLIX CETEN LUMPOKO MPUMEHSIOTCS Ha NpakTuKe, 0COBEHHO ANa 3a4aY, B KOTOPbIX Cratbs
Ba)KHa YCTOMYMBAs OLEHKa HeonpeaeneHHoCcTM Mogenu. B goknage Mbl NOCMOTPUM Kak BedeT cebs
KauecTBO aHcamGns B TepMuHax NLL/CNLL kak dbyHKUMS! OT KONM4YECTBa ceTeil B aHcambne, pasmepa | DUAE0
3TUX ceTel 1 obLLero Ymcna napameTpoB B mogeny. Mbl yBuaMM, YTO BO MHOMMX CIy4asix Ka4eCcTBO
BefeT cebsl kak CTeNEHHON 3aKOH, YTO camo no cebe NbonbITHO, MIC NO3BOMSET NpeackasbiBaTh
BO3MOXHYIO NpubaBKy B KA4eCTBE NPU yBENMYEHNN MoAenei. Takke Mbl paCCMOTPMM criydai
hUKCMPOBaHHOIO GHOAKETa MO NAMSATU U NMOMMEM Kak fydlle ero pacnpeaensaTtb - 6paTtb Mano 6onbLmx
ceTel UM MHOTO MarneHbKUX - U Kak 3TO pacnpeneneHne npeackasbiBaTth A KOHKPETHbIX 3a4a4 ¢
MOMOLLbIO OBHaPYXXEHHbIX CTEMNEHHbIX 3aKOHOB

23.10.2020 EsreHui Nonukos, DeepPavlov.ai, Neural Networks and Deep Learning lab., MIPT [NpeseHTauus

Infinitely wide nets

Many problems in theoretical understanding of neural nets come from the fact that it is hard to reason
about their training dynamics. In particular, one cannot generally guarantee global convergence of
gradient descent --- a fact typically observed for realistic networks

and data. Moreover, all generalization bounds that do not take the training dynamics into account turn
out to be vacuous.

Buoeo



http://bayesgroup.github.io/bmml_sem/2020/Kapushev_Random%20Fourier%20Features%20based%20on%20Quadratures.pdf
https://arxiv.org/abs/1802.03832
https://youtu.be/li3tRMpPTJQ
https://bayesgroup.github.io/bmml_sem/2020/Struminsky_Generalizations%20of%20Gumbel%20Softmax%20Trick.pdf
https://arxiv.org/abs/2006.08063
https://arxiv.org/abs/1802.08665
https://arxiv.org/abs/1807.09875
https://youtu.be/mbcfqCQvcOk
https://bayesgroup.github.io/bmml_sem/2020/Lobacheva_Power%20Laws.pdf
https://arxiv.org/abs/2007.08483
https://youtu.be/lPku_0tq0Ho
https://deeppavlov.ai/
https://bayesgroup.github.io/bmml_sem/2020/Golikov_Infinitely%20Wide%20Nets.pdf
https://youtu.be/e38uSuFoMyA

Fortunately, the training dynamics of neural nets substantially simplifies in the limit of infinite width. One
of the limit, the NTK limit, is driven by a constant kernel which can be estimated via Monte-Carlo. We
shall discuss how this limit can be used to obtain optimization and generalization guarantees for
sufficiently wide networks. Another limit, the mean-field limit, leads to a quantitatively different limit
model.

The reason why we have two different limits is the difference in hyperparameter scaling with width. We
shall show how different hyperparameter scalings result in different limit models, and discuss which limit
model should be a better proxy for realistic finite-width nets.

30.10.2020

Brnagnmup CypauH
AcTpoHOMUS

Buoeo

06.11.2020

Omntpun Konutkos

General Probabilistic Surface Optimization

Probabilistic inference, such as density (ratio) estimation, is a fundamental and highly important problem
that needs to be solved in many different domains including robotics and computer science. Recently, a
lot of research was done to solve it by producing various objective functions optimized over neural
network (NN) models. Such Deep Learning (DL) based approaches include unnormalized and energy
models, as well as critics of Generative Adversarial Networks, where DL has shown top approximation
performance. In this research we contribute a novel algorithm family, which generalizes all above, and
allows us to infer different statistical modalities (e.g. data likelihood and ratio between densities) from
data samples. The proposed unsupervised technique, named Probabilistic Surface Optimization (PSO),
views a model as a flexible surface which can be pushed according to loss-specific virtual stochastic
forces, where a dynamical equilibrium is achieved when the pointwise forces on the surface become
equal. Concretely, the surface is pushed up and down at points sampled from two different distributions,
with overall up and down forces becoming functions of these two distribution densities and of force
intensity magnitudes defined by the loss of a particular PSO instance. Upon convergence, the force
equilibrium associated with the Euler-Lagrange equation of the loss enforces an optimized model to be
equal to various statistical functions, such as data density, depending on the used magnitude functions.
Furthermore, this dynamical-statistical equilibrium is extremely intuitive and useful, providing many
implications and possible usages in probabilistic inference. We connect PSO to numerous existing
statistical works which are also PSO instances, and derive new PSO-based inference methods as
demonstration of PSO exceptional usability. Additionally, we investigate the impact of Neural Tangent
Kernel (NTK) on PSO equilibrium. Our study of NTK dynamics during the learning process emphasizes
the importance of the model kernel adaptation to the specific target function for a good learning
approximation.

[Mpe3eHTaums
Cratbg 1;

CraTtbga 2;
Cratba 3;

Bugeo

13.11.2020

Hagexga Ympkoea, HAY BLUS

Adapting Natural Language Processing to Source Code Processing:

Handling Syntactic Structure and Identifiers

Initially developed for natural language processing, Transformers and RNNs are now widely used for
source code processing, due to the format similarity between source code and text. In contrast to natural
language, source code is strictly structured, i. e. follows the syntax of the programming language.

[NpeseHTaLms

Cratbga 1;
Cratbsa 2;
Cratbsa 3;



https://youtu.be/Wn2E-J2NR5g
https://bayesgroup.github.io/bmml_sem/2020/Kopitkov_General%20Probabilistic%20Surface%20Optimization.pdf
https://arxiv.org/pdf/1903.10567.pdf
https://arxiv.org/pdf/1910.08720.pdf
https://arxiv.org/pdf/1807.10728.pdf
https://youtu.be/V2hPKO2Ptw4
https://bayesgroup.github.io/bmml_sem/2020/Chirkova_Adapting%20Natural%20Language%20Processing%20to%20Source%20Code%20Processing%20Handling%20Syntactic%20Structure%20and%20Identifiers.pdf
https://arxiv.org/abs/2010.07987
https://arxiv.org/abs/2010.12663
https://arxiv.org/abs/2010.12693

Another important property of source code is invariance to renaming user-defined identifiers. | will tell
you about our research on utilizing both mentioned properties in Transformer and recurrent
architectures. | will first describe our empirical study on the capabilities of Transformers to utilize
syntactic information, including the comparison of several recently proposed tree-processing
Transformer mechanisms on three code processing tasks (code completion, function naming, and bug
fixing), and testing Transformers in a so-called anonymized setting, in which all variables are replaced
with unique placeholders. Secondly, we will discuss the practical applicability of the mentioned
anonymized setting. Thirdly, | will present our dynamic embedding architecture for processing
anonymized variables in the RNNs.

Buoeo

20.11.2020 3awwuTa Knpunna Hekntogosa
Tema: banecoBckuit noaxoa B rMyOMHHOM 0ByYeHuK: ynyylweHme QUCKPUMUHATUBHBIX U
reHepaTtnBHbIX Mo,u,ene|7|
Ccbinka npurnatwleHus
https://zoom.us/j/97098090066
WaoeHTudukaTop KoHpepeHLmmn
970 9809 0066
27.11.2020 Makcum KogpsH, HAY BLUD [Npe3eHTaums
Double Descent, flat minima, and SGD
The Double Descent (DD) phenomenon has recently appeared as a particularly intriguing finding in the Deep Crarba 1;
Learning community. While most works tackle the famous model-wise DD (test risk vs. model size) from both Cratbd 2;
empirical and theoretical points of view, much less attention is paid to the no less mystifying epoch-wise DD effect Cratbga 3;
(test risk vs. number of training epochs). Another interesting observation, gaining momentum in the most recent
studies, is the conventional "flat minima" argument: the wider the minimum the better it generalizes. In this talk, we Buoeo
will try to link the epoch-wise Double Descent with model dynamics on the loss surface: the model enjoys the
second test risk descent exactly when it traverses from the firstly found sharp unstable regions to flat
well-generalizing minima. We will also regard the implicit regularization of Stochastic Gradient Descent (SGD),
aiding neural networks to converge into such wide "uniform" optima.
04.12.2020 Aptem MNageuknin, HAY BLLUSG [Mpe3eHTaums
Differentiation through solutions to optimization problems
In this talk we will discuss general methodology for embedding solutions to parametrized constrained convex Cratbg 1;
optimization as layers for deep neural networks (DNNs). Particular examples include but not limited to parametrized | crgrLq 2
Quadratic Programs (QP) as well Disciplined Parametrized Programming (DPP), framework which allows bypassing ﬁf
error-prone process of manual convertation of optimization problems to canonical forms that greatly accelerates LTarbd o,
prototyping and application to DNNs.
Buneo
18.12.2020 AnekcaHap KopotuH, Skolkovo Institute of Science and Technology [IpeseHTauuns

Wasserstein-2 Generative Networks

Cratbs 1;



https://youtu.be/DpFGfeaaZQg
https://zoom.us/j/97098090066
https://github.com/bayesgroup/bayesgroup.github.io/blob/master/bmml_sem/2020/Kodryan_Double%20Descent%2C%20flat%20minima%2C%20and%20SGD.pdf
https://arxiv.org/abs/1912.02292
https://arxiv.org/abs/1609.04836
https://openreview.net/pdf?id=rq_Qr0c1Hyo
https://youtu.be/eHWgrg7fF1Q
https://github.com/bayesgroup/bayesgroup.github.io/blob/master/bmml_sem/2020/Gadetsky_Differentiation%20through%20solutions%20to%20optimization%20problems.pdf
https://arxiv.org/abs/1804.05098
https://arxiv.org/abs/1703.00443
https://arxiv.org/abs/1910.12430
https://youtu.be/D5waWOasVK4
https://github.com/bayesgroup/bayesgroup.github.io/blob/master/bmml_sem/2020/Korotin_W2GN.pdf
https://arxiv.org/abs/1909.13082

We propose a novel end-to-end non-minimax algorithm for training optimal transport mappings for the quadratic Cratba 2;

cost (Wasserstein-2 distance). The algorithm uses input convex neural networks and a cycle-consistency CraTbs 3;
regularization to approximate Wasserstein-2 distance. In contrast to popular entropic and quadratic regularizers, Cratbs 4:
cycle-consistency does not introduce bias and scales well to high dimensions. From the theoretical side, we
estimate the properties of the generative mapping fitted by our algorithm. From the practical side, we evaluate our Bugeo
algorithm on a wide range of tasks: image-to-image color transfer, latent space optimal transport, image-to-image
style transfer, and domain adaptation.
BeceHHnit cemectp 2020 .
HOaTta Odoknagyuvk u Tema MaTtepuansl
28.02.2020 | AnekcaHgp JlbikoB, Samsung Al Center Moscow, Research Scientist Calibration tests in multi-class classification:
Model calibration fotive Lok
In many real-world applications we would like the probabilities that the model outputs (e.g. class probabilities in On Calibration of Modern Neural Networks
classification) to be correct in some sense (e.g. to match the actual probabilities of class occurrence). This property of | —
models is called calibration. In this talk | will first do a introduction to various aspects of calibration: definitions of Trainable Calibration Measures for Neural
calibration errors, estimators of these errors, calibration of neural networks. Then | will talk about developments that Networks from Kernel Mean Embeddings
occured in understanding of calibration in 2019 in depth. | want to focus on unbiased calibration estimators and
hypothesis testing for calibration in particular. If we have time after that, we may talk about calibration of regression YnomsHyTble B AOKNaze cTatby:
and differentiable calibration losses in neural network training. Beyond temperature scaling: Obtaining
well-calibrated multiclass probabilities with
Dirichlet calibration
Learn-By-Calibrating: Using Calibration as a
Training Objective
Greedy Policy Search: A Simple Baseline
for Learnable Test-Time Augmentation
Pitfalls of In-Domain Uncertainty Estimation
and Ensembling in Deep Learning
[peseHTaLms
Buaeo
06.03.2020 | Oenuc Pakutnn, HAY BLUS Buaoeo

Neural Program Synthesis

[peseHTaums



https://arxiv.org/abs/1908.10962
https://arxiv.org/abs/1711.02283
https://arxiv.org/abs/1902.07197
https://youtu.be/X4jtmAIEDJg
https://arxiv.org/abs/1910.11385
https://arxiv.org/abs/1910.11385
https://arxiv.org/abs/1706.04599
http://proceedings.mlr.press/v80/kumar18a.html
http://proceedings.mlr.press/v80/kumar18a.html
https://dirichletcal.github.io/documents/neurips2019/video/3-minute-dirichlet-v3.webm
https://dirichletcal.github.io/documents/neurips2019/video/3-minute-dirichlet-v3.webm
https://dirichletcal.github.io/documents/neurips2019/video/3-minute-dirichlet-v3.webm
https://arxiv.org/abs/1910.14175
https://arxiv.org/abs/1910.14175
https://arxiv.org/abs/2002.09103
https://arxiv.org/abs/2002.09103
https://arxiv.org/abs/2002.06470
https://arxiv.org/abs/2002.06470
https://bayesgroup.github.io/bmml_sem/2020/Lyzhov_Model%20Calibration.pdf
https://www.youtube.com/watch?v=Gcx7pMdvQ_k
https://www.youtube.com/watch?v=E-vH8_QPzpc
https://bayesgroup.github.io/bmml_sem/2020/Rakitin_Neural%20Program%20Synthesis.pdf

The problem of program learning consists of generating a computer program consistent with some specification.
Contemporary studies showed that using neural program synthesis approach for solving this type of task can result in
a more robust and less data dependent algorithm comparing to the classical methods. Moreover, adding a program
synthesis module as a building block of another neural-based algorithm can provide it with prior structural knowledge
and make its performance more interpretable. In this talk | will make an introduction to this approach provided with
some examples of usage. Main part of the speech will be in covering 2 recent papers that successfully combine
neural program synthesis with deep representation learning in application to visual question answering problem.

Cratba 1 ;
Cratba 2

13.03.2020

AHapen ManuHuH, AHgekc

Uncertainty in Structured Prediction

Uncertainty estimation is important for ensuring safety and robustness of Al systems, especially for high-risk
applications. While much progress has recently been made in this area, most research has focused on un-structured
prediction, such as image classification and regression tasks. However, while task-specific forms of confidence score
estimation have been investigated by the speech and machine translation communities, limited work has investigated
general uncertainty estimation approaches for structured prediction. Thus, this work aims to investigate uncertainty
estimation for structured prediction tasks within a single unified and interpretable probabilistic ensemble-based
framework. We consider uncertainty estimation for sequence data at the token-level and complete sequence-level,
provide interpretations for, and applications of, various measures of uncertainty and discuss the challenges
associated with obtaining them. This work also explores the practical challenges associated with obtaining
uncertainty estimates for structured predictions tasks and provides baselines for token-level error detection,
sequence-level prediction rejection, and sequence-level out-of-domain input detection using ensembles of
auto-regressive transformer models trained on the WMT'14 English-French and WMT'17 English-German translation
and LibriSpeech speech recognition datasets.

Buoeo

[Npe3eHTauus

Cratbd

20.03.2020

EkatepuHa JloGayeBa, Hay4HbIN COTpyAHUK Nabopatopum komnaHum CamcyHr-HAY BLUO
BERT and his friends (oTMeHeH)

27.03.2020

AnekcaHapa BonoxoBsa, ctaxép-uccrnegosatens naboparopun komnaHun CamcyHr-HAY BLUS

Neural Stochastic Differential Equations

Neural SDE pacwmpsiet mogene neural ODE ¢ nomoLubio BBEOEHUSA CTOXaCTUYHOCTM B CUCTEMY
anddepeHumnanbHbix ypaBHeHU. Ha cemmHape Mbl 06cyanm, kak 1 3adem gobaBnsTb CTOXacTUYHOCTb B neural
ODE v ans peleHns Kakux npyknagHbiX 3agad 310 MOXeT ObITb MonesHo. B npouecce o6CcyxaeHnsa paccMoTpum
noaxopbl, NpeanoXeHHble B creayrowmx ctateax: 1, 2, 3, 4

Cchbinka anga yyactus B BugeokoHdepeHummn Zoom: https://zoom.us/j/759154498

Cratbu: 1, 2, 3,

-~

03.04.2020

AnekcaHgp ®puunep, Samsung Al Center Moscow, Research Scientist
Quantization of neural networks

Buoeo

[NpeseHTauus



https://arxiv.org/abs/1810.02338
https://arxiv.org/abs/1904.12584
https://www.youtube.com/watch?v=-jhvEus_1kM
http://bayesgroup.github.io/bmml_sem/2020/Malinin_HSE_Structured_Uncertainty_Lecture-4.pdf
https://arxiv.org/pdf/2002.07650.pdf
https://arxiv.org/abs/1905.10403
https://arxiv.org/abs/2001.01328
https://arxiv.org/abs/1906.02355
https://arxiv.org/abs/2002.09779
https://zoom.us/j/759154498
https://bayesgroup.github.io/bmml_sem/2020/Volokhova_NeuralSDE.pdf
https://arxiv.org/abs/1905.10403
https://arxiv.org/abs/2001.01328
https://arxiv.org/abs/1906.02355
https://arxiv.org/abs/2002.09779
https://youtu.be/bVYiZ5Uipak
http://bayesgroup.github.io/bmml_sem/2020/Fritzler_Quantization%20of%20neural%20networks.pdf

AHHoTauus: KBaHTU3aums ceten - 3To NPOLECC UX NPEACTaBNEHUS C MOMOLLIbIO YMCEN C HU3KOW TOYHOCTbIO. Takoe
npencraBneHne HeodxoaMMo Anst yMeHbLUeHUs1 OObEMa NamsiTh, HEOOXOAMMOrO ANsi XpaHEHUs! BECOB, a Takxke Ansi
NpUMEHeHNs ceTen Ha cneLumanbHbIX npoueccopax noa HassaHueM Neural Processor Unit. Mbl noroBoprm 0 ToM, Kak
MOXHO YXe 00y4YeHHyI0 ceTb NPeacTaBUTb B TaKOM BUAE, a Takke, Kak 0byuYnTb Takyto CETb C HyMs C
ucnonb3oBaHnem Pytorch

Cratbn 1, 2, 3

KoHdepeHLus

10.04.2020 | Makcum Kouypos, Samsung Al Center Moscow, Research Scientist Bugeo

Hyperbolic Deep Learning

Hyperbolic Deep Learning gained attention due to its ability to work with and represent hierarchical relations. [peseHTaumns

However, we do not yet have enough tools to work in non-Euclidean space. Several works present proof of concept

results on various tasks: word embeddings, text classification, node classification, link prediction, and others. Craten 1,2, 3,4,5,6

Methods discussed include Hyperbolic GloVe, GRU, VAE, graph embeddings, and graph neural networks. These

works introduce new concepts and link Euclidean models to their Hyperbolic extensions. While having fairly simple

baselines, they provide some evidence where Hyperbolic geometry might be more suitable.

During the talk, we'll try to answer the following essential question: when do we need Hyperbolic geometry in deep

learning?

17.04.2020 | EkatepuHa JlobGayeBa, Hay4HbIM COTPYAHMK nabopaTtopum komnanmm CamcyHr-HAUY BLUS Buaeo

BERT: model, analysis and modifications

B coBpemeHHoM NLP npu pelieHun MHOrmx 3agad ncrnonb3yrTcst KOHTEKCTyarnbHble amMbeaanHr, npegobyyeHHble [NpesenTauns

Ha bonbLom 0Obeme Hepa3MeyeHHbIX AaHHbIX. B gaHHOM Joknage Mbl MOroBOpMM O TOM, YTO Takoe

KOHTEKCTyarbHble aMbeaanHrn, n obcyaum nogpobHo Hanbonee 6a3oByto 1 YacTo Ucnonb3yemyto mogens - BERT. OcHoBHble cTaTbu:

Mkbl NOCMOTPUM Ha HEKOTOPbIE BapyaHThbl aHanuaa Toro, YTo NMPOUCXOANT BHYTPU 3TOM MOLENW, a Takke BERT: )

nosHakoMumcs ¢ ee 6onee nosgHumMn mogndukaumammu: RoBERTa, ALBERT u gpyrumn. https:/arxiv.org/pdf/1810.04805.pdf
BERTology:
https://arxiv.org/pdf/2002.12327.pdf
Analysis of BERT:

https://arxiv.org/pdf/1909.00512.pdf
https://arxiv.ora/pdf/1908.08593v2.
df
https://arxiv.orq/pdf/1906.04341v1.p
df
https://arxiv.org/pdf/1908.04211.pdf
RoBERTa:

https://arxiv.org/abs/1907.11692
ALBERT:

https://arxiv.org/pdf/1909.11942.pdf



https://arxiv.org/abs/1806.08342
https://arxiv.org/abs/1712.05877
https://arxiv.org/abs/1906.04721
https://zoom.us/j/746010083
https://youtu.be/AoD_DUlMlAQ
http://bayesgroup.github.io/bmml_sem/2020/Kochurov_Hyperbolic%20Deep%20Learning.pdf
http://hyperbolicdeeplearning.com/
https://arxiv.org/abs/1705.08039
https://arxiv.org/abs/1804.03329
https://arxiv.org/abs/1810.06546
https://openreview.net/forum?id=HJxeWnCcF7
https://arxiv.org/abs/1901.06033
https://youtu.be/JO-RJRCkLvM
https://github.com/bayesgroup/bayesgroup.github.io/blob/master/bmml_sem/2020/Lobacheva_BERT.pdf
https://arxiv.org/pdf/1810.04805.pdf
https://arxiv.org/pdf/2002.12327.pdf
https://arxiv.org/pdf/1909.00512.pdf
https://arxiv.org/pdf/1908.08593v2.pdf
https://arxiv.org/pdf/1908.08593v2.pdf
https://arxiv.org/pdf/1906.04341v1.pdf
https://arxiv.org/pdf/1906.04341v1.pdf
https://arxiv.org/pdf/1908.04211.pdf
https://arxiv.org/abs/1907.11692
https://arxiv.org/pdf/1909.11942.pdf

24.04.2020 | EkartepuHa JlobayeBa, Hay4HbI COTPYAHUK nabopaTtopumn komnaHmm CamcyHr-HAY BLIS Buaeo
BERT: model, analysis and modifications (MacTtb 2)
[peseHTauus
01.05.2020 | Buktop OraHecsiH, MNaaLwnin Hay4YHbI COTPYAHUK nabopatopum komnadmm CamcyHr-HAY BLUS Buaoeo
Neural Stochastic Differential Equations part 2
Beuay Toro, 4to B Mogensx Neural SDE n Neural ODE BBoasTCS HenpepbIBHbIE MO BPEMEHU CTPYKTYpbI [peseHTaumns
(amddepeHumansHble ypaBHEHUS), B NocneaHee Bpems BbIXOAAT paboTbl, KOTOpbIe NPUMEHSIOT 3TU MOAENU K
BpEMEHHbIM psgaM. Ha gaHHOM cemuHape Mbl Hanbonee nogpobHO ocTaHOBUMCS Ha paboTte Cratea i, 2,3
https://arxiv.org/pdf/2001.01328.pdf. B Heln co3naH aHanor agxonHT metoga ans Neural SDE, KoTopbI CUNbHO
SKOHOMWT NaMsATb Npu 06yyeHun. Takke pacCMOTPUM Kakve 3a4auu NbiTalTCcs peLlatb ¢ MOMOLLbI0 JaHHOW MOZEenu.
08.05.2020 | AHapen ATaHoB, MraALINA HAYYHbIM COTPYAHUK nabopatopum komnaHum CamcyHr-HAY BLUS Buaeo
Contrastive Self-Supervised Learning for Image Representations
Ha ogHOM 13 npeablayLLMX JOKNafaoB Mbl pasbupanu meton obyueHunst npeacTaBneHui cnos Anst 3agad NLP 6e3 [peseHTauns
pa3veTku. B gaHHOM goknage mMbl noroBopum o self-supervised TexHnkax npenobyyeHnst Ans KapTMHOK. XoTs Takne
METOAbI CYLLECTBYIOT aBHO, BCe OHM paboTtanu xyxe Yyem npefobyyeHune Ha NorHOCThI0 pa3MEYEHHOM JaTaceTe CPC: _
lamgeNet. 3a nocneaHwii rog GbINO NPeANoXeHO HECKOMbKO METOOB OCHOBaHHbIX Ha pa3HbiX Bapuauusix contrastive ﬂWﬂW@
loss’a, koTopble paBGoTaloT TaKkke UMK Ny4lle Yem npenobyyeHre ¢ paameTkoi. Mbl nogpo6HO OCTaHOBUMCS Ha ABYX Shitr’:qpéi_/g\_rmv.orq/pdfm807.03748.pdf
metogax: CPC (Contrasitve Prediction Codin g) u SimCLR (Simple Framework for Contrastive Learning). htt s://ar-xiv.or Iodf/2002.05709 . pdf
[MonesHble pecypcsbl:
https://lilianweng.github.io/lil-log/201
9/11/10/self-supervised-learning.ht
ml
https://qithub.com/jason718/aweso
me-self-supervised-learning
Ewe mogenu:
MoCo:
https://arxiv.org/pdf/1911.05722.pdf
PIRL:
https://arxiv.org/pdf/1912.01991.pdf
15.05.2020 | Buktop AHyw, cTaxép-uccnegoparens nabopatopum komnaHnm CamcyHr-HAY BLUS Buoeo

Training of binary neural networks

[MpeseHTauus



https://youtu.be/5o8gTP-7xwg
https://bayesgroup.github.io/bmml_sem/2020/Lobacheva_BERT_part2.pdf
https://arxiv.org/pdf/2001.01328.pdf
https://youtu.be/wk7fL8uM7P4
https://github.com/bayesgroup/bayesgroup.github.io/blob/master/bmml_sem/2020/Oganesyan_Neural%20SDE-2.pdf
https://arxiv.org/pdf/2001.01328.pdf
https://arxiv.org/pdf/1907.03907.pdf
https://arxiv.org/pdf/1610.09513.pdf
https://youtu.be/y8pgdXdYPwU
https://github.com/bayesgroup/bayesgroup.github.io/blob/master/bmml_sem/2020/Atanov_Self-Supervised%20Learning.pdf
https://arxiv.org/pdf/1905.09272.pdf
https://arxiv.org/pdf/1807.03748.pdf
https://arxiv.org/pdf/2002.05709.pdf
https://lilianweng.github.io/lil-log/2019/11/10/self-supervised-learning.html
https://lilianweng.github.io/lil-log/2019/11/10/self-supervised-learning.html
https://lilianweng.github.io/lil-log/2019/11/10/self-supervised-learning.html
https://github.com/jason718/awesome-self-supervised-learning
https://github.com/jason718/awesome-self-supervised-learning
https://arxiv.org/pdf/1911.05722.pdf
https://arxiv.org/pdf/1912.01991.pdf
https://youtu.be/lXFSAdCCVeY
https://bayesgroup.github.io/bmml_sem/2020/Yanush_TrainingSBNN.pdf

Ha ogHom 13 npegplayLmx 4oknagoB obcyxaanach KBaHTU3aUUS CETEN — CHMDKEHWE TOMHOCTM NpeacTaBneHni
BECOB W/vnun akTMBaumn. B naHHom goknage 6yayt ob6cyxaaTbest BUHapHbIE CETU, B KOTOPbIX BECA U akTUBaLUK
MOryT UMETb NKLLb ABa 3HayeHua — +1 n - 1. Tarke ByayT pasobpaHbl paznnyHbie MeToabl 0ByYeHUs
CTOXacCTMYEeCKNX BUHAPHBIX CETEN, B KOTOPbIX BECA U aKTUBaLUKN ABMSIOTCA CNyYanHbiMy BennymHamu. Mel nogpo6Ho
paccMoTpMM HOBbIM MeTog, o6o6LuatoLmMin nonynapHble NOAXOAb! U AAKOLNA M TeopeTu4eckoe o60CHOBaHME.
Tarke OygyT pacCMOTPEHbl MPUMEHEHMS 3TOr0 MeToAda K 00yyYeHuto 6ariecoBCkUX DMHAPHbBIX CETEMN.

Jlntepatypa:

1) https://arxiv.org/abs/1603.05279
2) https://arxiv.org/abs/1602.02830
3) https://arxiv.org/abs/1812.01965

29.05.2020

AnekcaHgp JlbpkoB, Samsung Al Center Moscow, Research Scientist

Planning in Deep Reinforcement Learning

Model-based deep reinforcement learning (RL) is seeing renewed interest because of promises of sample-efficiency
(using less environment interactions for learning) and transferability (environment model could be reused for different
tasks). The word "planning”, understood broadly, refers to ways of using an environment model to improve agent
training. In this talk | will

1) cover some classical planning theory and talk about pros and cons of different ways of planning,

2) talk about planning in deep RL and deconstruct MuZero - one of the most sample-efficient and highest-performing
approaches to planning in complex environments with discrete timesteps and actions,

[MpeseHTaums

Sutton-Barto RL textbook chapter 8
http://incompleteideas.net/book/RLb
00k2020.pdf

MuZero
https://arxiv.org/abs/1911.08265

Bu
3) discuss related work and compare MuZero with competing approaches. ENAE0
OceHHun cemectp 2019 .
Hata Hdoknagyvk n Tema MaTtepwnansl

13.09.2019 | Aptém Cobones, Samsung Al Center Moscow, Research Scientist [MpeseHTauus;
On Mutual Information Estimation Bugeo
Mutual Information is an important information-theoretic concept that captures an intuitive idea of the amount of information
shared between two random variables. Mutual Information has been used extensively in numerous Machine Learning
problems and should be of great interest for every ML researcher.
In practice, however, accurately estimating the Mutual Information is a non-trivial task. Recently, it has been shown that many
general estimators fail to produce reasonable estimates unless an exponential number of samples is taken. We will discuss
this result with its manifestation in several widely used estimators, and then consider new estimators that sidestep the core
issue.

20.09.2019 | Ceprewn TpowwuH, HAY BLUD [MpeseHTauus;

Deep Equilibrium Models

Cratba 1, 2, 3, 4;



https://arxiv.org/abs/1603.05279
https://arxiv.org/abs/1602.02830
https://arxiv.org/abs/1812.01965
https://github.com/bayesgroup/bayesgroup.github.io/blob/master/bmml_sem/2020/Lyzhov_Planning%20in%20Deep%20RL.pdf
http://incompleteideas.net/book/RLbook2020.pdf
http://incompleteideas.net/book/RLbook2020.pdf
https://arxiv.org/abs/1911.08265
https://youtu.be/qKY9H6QvmEE
https://slides.com/asobolev/on-mutual-information-estimation#/
https://www.youtube.com/watch?v=QE36xa8NqPA
https://bayesgroup.github.io/bmml_sem/2019/Troshin_DEQ.pdf
https://arxiv.org/pdf/1810.06682.pdf
https://arxiv.org/pdf/1807.03819.pdf
https://arxiv.org/pdf/1908.06315.pdf
https://arxiv.org/pdf/1909.01377.pdf

Very deep neural networks can require a lot of memory to be stored for the backpropagation. We will consider a recently
proposed approach for modelling sequential data: the deep equilibrium model (DEQ). It can be observed that for some deep
models layers' outputs tend to converge to a fixed point with the increase of the network's depth. The DEQ approach directly
finds these equilibrium points via root-finding. We will see how to analytically backpropagate through the equilibrium point
using implicit differentiation which proves to be very memory efficient.

Buoeo

27.09.2019 | Makcum KogpsiH, ctaxep-uccnegosarens nadopatopumn komnaHun CamcyHr-HAY BLUD [peseHTauus;
Invariant Risk Minimization
Cratbs ;
This talk is dedicated to the correlation-versus-causation dilemma. Minimizing training error leads machines into recklessly
absorbing all the correlations found in training data. Understanding which patterns are actually useful (causal) is important if Bror-nocT;
we want our models to generalize to new test distributions. It seems that there exists an intimate link between invariance and B
causation useful for generalization. We will consider the concept of Invariant Risk Minimization (as opposed to Empirical Risk =44E0
Minimization) — a novel learning paradigm that estimates nonlinear, invariant, causal predictors from multiple training
environments, to enable out-of-distribution generalization. We will also provide an information-theoretic view on the topic.
04.10.2019 | EBrenun Nonukos, nccneposaterns nabopatopmm HEMPOHHBLIX CUCTEM U rry6okoro obyyeHns MOTU [Mpe3eHTauus;
Why do neural nets learn and generalize?
Cratbsa 1,
As was noted in [Belkin et al., 2019], neural nets are usually used in the so-called "interpolating regime". In this regime our Cratbsa 2,
architecture is large enough to have an ability to fit the training data perfectly, as opposed to "classical regime", where our Cratbs 3,
model is constrained to balance between learning and generalization. Craths 4
Two questions arise immediately: Crare 5
1) Why does (stochastic) gradient descent - a local optimization method - find a configuration that fits the data perfectly?
2) Why does (stochastic) gradient descent choose a configuration that generalize well, across all configurations that fit the Bugeo
training data?
Although the first question is close to being fully answered, the second one remains mostly opened. In our talk we will review
some of the recent results concerning both of them.
11.10.2019 | EBreHun Eropos, ctygeHT Ckontexa [MpeseHTaUus;

The Implicit Metropolis-Hastings Algorithm

Recent works propose using the discriminator of a GAN to filter out unrealistic samples of the generator. We
generalize these ideas by introducing the implicit Metropolis-Hastings algorithm. For any implicit probabilistic
model and a target distribution represented by a set of samples, implicit Metropolis-Hastings operates by learning
a discriminator to estimate the density-ratio and then generating a chain of samples. Since the approximation of
density ratio introduces an error on every step of the chain, it is crucial to analyze the stationary distribution of
such chain. For that purpose, we present a theoretical result stating that the discriminator loss upper bounds the
total variation distance between the target distribution and the stationary distribution. Finally, we validate the
proposed algorithm both for independent and Markov proposals on CIFAR-10 and CelebA datasets.

Cratbg



https://www.youtube.com/watch?v=9HDTmxcoxmU
https://bayesgroup.github.io/bmml_sem/2019/Kodryan_Invariant%20Risk%20Minimization.pdf
https://arxiv.org/abs/1907.02893
https://www.inference.vc/invariant-risk-minimization/
https://www.youtube.com/watch?v=iBlCpJmaBh0
https://bayesgroup.github.io/bmml_sem/2019/Golikov_Why%20Do%20Neural%20Nets%20Learn%20and%20Generalize.pdf
https://arxiv.org/abs/1812.11118
https://arxiv.org/abs/1702.08580
https://ieeexplore.ieee.org/document/410380
https://openreview.net/forum?id=S1eK3i09YQ
https://arxiv.org/abs/1902.04742
https://youtu.be/718brRMILyc
https://bayesgroup.github.io/bmml_sem/2019/Egorov_IMH.pdf
https://arxiv.org/abs/1906.03644

18.10.2019

AHapen ManuHuH, cTapwnin uccnegosarernb, Yandex Research
Reverse KL-Divergence training of Prior Networks

Ensemble approaches for uncertainty estimation have recently been applied to the tasks of misclassification detection,
out-of-distribution input detection and adversarial attack detection. Prior Networks have been proposed as an approach to
efficiently emulate an ensemble of models for classification by parameterising a Dirichlet prior distribution over output
distributions. These models have been shown to outperform alternative ensemble approaches, such as Monte-Carlo
Dropout, on the task of out-of-distribution input detection. However, scaling Prior Networks to complex datasets with many
classes is difficult using the training criteria originally proposed. This paper makes two contributions. First, we show that the
appropriate training criterion for Prior Networks is the reverse KL-divergence between Dirichlet distributions. This addresses
issues in the nature of the training data target distributions, enabling prior networks to be successfully trained on
classification tasks with 200 classes, as well as improving out-of-distribution detection performance. Second, taking
advantage of this new training criterion, this paper investigates using Prior Networks to detect adversarial attacks. It is shown
that the construction of successful adaptive whitebox attacks, which affect the prediction and evade detection, against Prior
Networks trained on CIFAR-10 and CIFAR-100 takes a greater amount of computational effort than against standard neural
networks, adversarially trained neural networks and dropout-defended networks.

[Mpe3eHTauus;

Cr1atbsa o Prior Networks:;

Cratbs (byget

npencrasneHa Ha NeurlPS) ;

Bugeo

25.10.2019

Angpen Nleonngos (PUAH, MOTU)
da3zoBble nepexoabl B 6aieCoBCKOM OLEeHNBaHUN

B noknane obcyxaaeTtcs aHanm3 has3oBbix NepexooB B 6alecoBCKOM OLEHUMBAHUM C UCMOMNb30BaHWEM METOAOB
cTaTucTudeckon uankn. OCHOBHOE BHUMaHWe yaensieTcs aHanuay asoBoro nepexoaa nerkoe-TpyaHoe oLeHWBaHWe
(easy-hard inference), conpoBoxaatoLLerocsi BO3HMKHOBEHNEM (ha3bl cTekna (glass phase).

01.11.2019

Anbek AnaHos, Samsung Al Center Moscow, Research Engineer
Implicit A-Jeffreys Autoencoders: Taking the Best of Both Worlds

We propose a new form of an autoencoding model which incorporates the best properties of variational autoencoders (VAE)
and generative adversarial networks (GAN). It is known that GAN can produce very realistic samples while VAE does not
suffer from mode collapsing problem. Our model optimizes A-Jeffreys divergence between the model distribution and the true
data distribution. We show that it takes the best properties of VAE and GAN objectives. It consists of two parts. One of these
parts can be optimized by using the standard adversarial training, and the second one is the very objective of the VAE model.
However, the straightforward way of substituting the VAE loss does not work well if we use an explicit likelihood such as
Gaussian or Laplace which have limited flexibility in high dimensions and are unnatural for modelling images in the space of
pixels. To tackle this problem we propose a novel approach to train the VAE model with an implicit likelihood by an
adversarially trained discriminator. In an extensive set of experiments on CIFAR-10 and Tinylmagent datasets, we show that
our model achieves the state-of-the-art trade-off between generation and reconstruction quality and demonstrate how we can
balance between mode-seeking and mass-covering behaviour of our model by adjusting the weight A in our objective.

Buaeo;

Cratbs;

[Npe3eHTauus

08.11.2019

He npoBogum cemuHap

15.11.2019

Apcenun Awyxa, PhD Candidate at Bayesian Methods Research Group & Samsung Al

Cratba 1;



https://bayesgroup.github.io/bmml_sem/2019/Malinin_Reverse%20KL-Divergence%20Training%20of%20Prior%20Networks%20Improved%20Uncertainty%20and%20Adversarial%20Robustness.pdf
https://arxiv.org/pdf/1802.10501.pdf
https://arxiv.org/pdf/1905.13472.pdf
https://arxiv.org/pdf/1905.13472.pdf
https://www.youtube.com/watch?v=Xuo4F-IL0Fc
https://youtu.be/FRB_F2Q-mWs
https://openreview.net/forum?id=Syxc1yrKvr
https://bayesgroup.github.io/bmml_sem/2019/Alanov_IJAE.pdf
https://arxiv.org/abs/1906.02530

The state of uncertainty

Uncertainty estimation and ensembling methods go hand-in-hand. Uncertainty estimation is one of the main benchmarks for
assessment of ensembling performance. At the same time, deep learning ensembles have provided state-of-the-art results in
uncertainty estimation. In the talk, we will consider the most popular metrics for in-domain uncertainty estimates and its
pitfalls and fixes. We will discuss the results of a broad study of different ensembling techniques, and introduce the deep
ensemble equivalent---a new metric that allows us to compare the result of ensembling between different architectures and
datasets. We will see that many sophisticated ensembling techniques are equivalent to an ensemble of very few
independently trained networks. Depending on available time we will cover the study of out-of-domain uncertainty by
Ovadia2019.

[Mpe3eHTauus;

Buaoeo

22.11.2019 | Anekcangp ®peir, Researcher at NORMENT (Norwegian Centre for Mental Disorders Research), University of [MpeseHTauus;
Oslo, Norway
Mathematical models of the genetic architecture in complex human disorders Bugeo;
Modern studies on genetics of complex human disorders collect large samples, often exceeding N=10"6 individuals and nMTepaT.ypa:
A . ; : : : . . . . [1] Al-MiXeR (most
M=1077 genetic variants, posing challenging mathematical problems, such as solving a system of linear equations with huge | rtant detail in th
NxM design matrix. In this presentation we will describe the Gaussian Mixture model (MiXeR [1], [2]) and three approaches Impp ant aetails are.m ©
‘ S I . ) . ) . . . Online Methods section)
or estimating its probability density function using (1) random sampling, (2) Fourier convolution, and (3) moment-preserving o1C trait MiXeR t
approximations. Further, we discuss our optimization protocol, based on direct maximization of the likelihood function using [ ] 'Iitosst- (;alt i IAE .(rT:ﬁS
differential evolution and Nelder-Mead algorithms. Finally, we derive posterior estimates for some quantities of interest. If Impol an te arls atrehln ©
time allows we may also discuss related work [3] based on Mixed Linear Models, REML (Restricted Maximum Likelihood) s;pé)ﬁe_mer][ aBry no_e ere )
and Variational iteration for Bayesian linear regression with Gaussian mixture prior. [ ] w
mixed-model analysis
increases association
power in large cohorts
(Nature Genetics, 2015)
29.11.2019 | Exatepuna WynbmaH Buneo
06.12.2019 | He npoBogum cemuHap
13.12.2019 | He npoBoaum cemuHap
20.12.2019 [ MonuHa KupnyeHko u MNasen Uamannos, New York University [ HTaLNS;
Scalable Bayesian inference in low-dimensional subspaces
Cratbsa 1;
Bayesian methods can provide full-predictive distributions and well-calibrated uncertainties in modern deep learning. c 5
Tartbga 2;

However, scaling Bayesian inference techniques to deep neural networks (DNNs) is challenging due to the high

Bugoeo



https://arxiv.org/abs/1906.02530
https://bayesgroup.github.io/bmml_sem/2019/Ashukha_BayesianSeminarTalk.pdf
https://youtu.be/lNIoJmi2tO8
https://www.biorxiv.org/content/biorxiv/early/2019/09/16/772202.full.pdf
https://www.nature.com/articles/s41467-019-10310-0
https://www.nature.com/articles/ng.3190#s1
https://bayesgroup.github.io/bmml_sem/2019/Frei_Genetics.pdf
https://youtu.be/t-LtwviH4zY
https://www.biorxiv.org/content/biorxiv/early/2019/09/16/772202.full.pdf
https://www.nature.com/articles/s41467-019-10310-0
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-019-10310-0/MediaObjects/41467_2019_10310_MOESM1_ESM.pdf
https://www.nature.com/articles/ng.3190#s1
https://www.nature.com/articles/ng.3190#s1
https://www.nature.com/articles/ng.3190#s1
https://www.nature.com/articles/ng.3190#s1
https://www.youtube.com/watch?v=AcWXKvcvkSo&feature=youtu.be
https://bayesgroup.github.io/bmml_sem/2019/Kirichenko%26Izmailov_Output.pdf
https://arxiv.org/abs/1907.07504
https://arxiv.org/abs/1811.07006
https://youtu.be/2ViJ9ncnl7U

dimensionality of the parameter space. In this talk, we will discuss two recent papers on scalable Bayesian inference which
share a similar high-level idea: performing approximate inference in low-dimensional subspaces of DNNs parameter space.
In Subspace Inference for Bayesian Deep Learning [1], we propose to exploit the geometry of DNN training objectives to
construct low-dimensional subspaces that contain diverse sets of models. In these subspaces, we are able to apply a wide
range of advanced approximate inference methods, such as elliptical slice sampling and variational inference, that struggle in
the full parameter space. We show that Bayesian model averaging over the induced posterior in these subspaces leads to
strong performance in terms of accuracy and uncertainty quantification on regression and image classification tasks.

In Projected BNNs [2], the authors propose a variational inference framework for Bayesian neural networks that (1) encodes
complex distributions in high-dimensional parameter space with representations in a low-dimensional latent space, and (2)
performs inference efficiently on the low-dimensional representations.

BeceHHuin cemecTp 2019 1.

Oata Jdoknaguyuvk u Tema MaTepuansl
15.02.2019 | Tumyp Napunos, Samsung Al Center Moscow, Engineer [MpeseHTauus;
SWAG: Approximate Bayesian Inference Using SGD Trajectory
Cratbs;
We propose SWA-Gaussian (SWAG), a simple, scalable, and general purpose approach for uncertainty representation and
calibration in deep learning. Stochastic Weight Averaging (SWA), which computes the first moment of stochastic gradient Buneo
descent (SGD) iterates with a modified learning rate schedule, has recently been shown to improve generalization in deep
learning. With SWAG, we fit a Gaussian using the SWA solution as the first moment and a low rank plus diagonal covariance
also derived from the SGD iterates, forming an approximate posterior distribution over neural network weights; we then
sample from this Gaussian distribution to perform Bayesian model averaging. We empirically find that SWAG approximates
the shape of the true posterior, in accordance with results describing the stationary distribution of SGD iterates. Moreover, we
demonstrate that SWAG performs well on a wide variety of computer vision tasks, including out of sample detection,
calibration, and transfer learning, in comparison to many popular alternatives including MC dropout, KFAC Laplace, and
temperature scaling.
22.02.2019 | Buktop OraHecsiH, MOTU, MIHCTUTYT BbICLLEN HEPBHOW AEATENBHOCTH I'I HTauus;
Neural Ordinary Differential Equations
CraTtbs;
This talk is based on the first part of the paper "Neural ordinary differential equations”. Authors introduce a concept of
residual networks with continuous-depth, what they consider as ordinary differential equations (ODEs). Correspondingly, Buneo

inputs of neural networks are considered as an initial state of ODEs, and outputs as a solution obtained by ODE solver. One



https://bayesgroup.github.io/bmml_sem/2019/Garipov_SWAG.pdf
https://arxiv.org/abs/1902.02476
https://youtu.be/yHG0gyOBDIw
https://bayesgroup.github.io/bmml_sem/2019/Oganesyan_NODE.pdf
https://arxiv.org/abs/1806.07366
https://youtu.be/hXhkhb1ayhw

of the main advantages of such approach is the constant memory cost with respect to the model depth. However, training of
such networks requires introduction of adjoint function (standard technique from optimal control theory). One of the curious
points is that solving of ODEs for the adjoint function can be considered as continuous analog of backpropagation.

01.03.2019 | AnekcaHgpa Bonoxosa, MO®TU, WAL [NpeseHTaums;
Continuous Normalizing Flows
Cratba 1;
My presentation will be a continuation of Victor’s talk about Neural ODE. I'll explain how this idea can be applied to Cratba 2;
normalizing flows, making them more flexible and computable. Furthermore, we will talk about FFJORD — an unbiased
stochastic estimator of the likelihood based on continuous normalizing flows. As authors of the paper state, this approach Buneo
allows creating reversible generative models with completely unrestricted architectures.
15.03.2019 | Makcum KysHeuos, Ckontex, Insilico Medicine
A Tensor Ring Induced Prior for Generative Models
Generative models produce realistic objects in many domains, including text, image, video, and audio synthesis. Most
popular models — Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs) — usually employ a
standard Gaussian distribution as a prior. Previous works show that richer family of prior distributions may help to avoid the
mode collapse problem in GANs and to improve the evidence lower bound in VAEs. We propose a new family of prior
distributions — Tensor Ring Induced Prior (TRIP) — that packs an exponential number of Gaussians into a high-dimensional
lattice with a relatively small number of parameters. We show that these priors improve Frechet Inception Distance for GANs
and Evidence Lower Bound for VAEs. We also study generative models with TRIP in the conditional generation setup with
missing conditions. Altogether, we propose a novel plug-and-play framework for generative models that can be utilized in any
GAN and VAE-like architectures.
22.03.2019 | Aptém Cobones, Samsung Al Center Moscow, Research Scientist [MpeseHTauus;
Importance Weighted Hierarchical Variational Inference
Crartbs;
Variational Inference is a powerful tool in the Bayesian modeling toolkit, however, its effectiveness is determined by the
expressivity of the utilized variational distributions in terms of their ability to match the true posterior distribution. Recently, Buoeo
there's been a lot of work on employing neural networks as powerful sample generators, but the need for a tractable density
is a major limitation. In talk | will suggest a novel method based on a multisample variational bound that generalizes many
previous works, most importantly, Hierarchical Variational Models and Semi-Implicit Variational Inference. The bound allows
us learn more expressive approximate posteriors, and can be combined with many prior results.
29.03.2019 | Buktop PyaHeB, ctaxep-uccriegoBartens nabopatopumn komnaHum CamcyHr-HAY BLUD, [MpeseHTauus;

MI'Y um. M.B. JlomoHocoBa
Sparse Bayesian Variational Learning with Matrix Normal Distributions

The application of variational Bayesian methods to neural networks has been limited by the choice of the posterior
approximation family. One could use a simple family like a normal distribution with independent variables, but that results in a
low quality of the approximation and optimization issues. In the paper we propose to use Matrix Normal distribution (MN) for
variational approximation family. While being more flexible, this family supports efficient reparameterization and Riemannian

CraTtbs;

Buoeo



https://bayesgroup.github.io/bmml_sem/2019/Volokhova_CNF.pdf
https://arxiv.org/abs/1806.07366
https://arxiv.org/abs/1810.01367
https://youtu.be/_ALdCSSVYkw
https://slides.com/asobolev/importance-weighted-hierarchical-variational-inference
http://bayesiandeeplearning.org/2018/papers/36.pdf
https://youtu.be/pdSu7XfGhHw
https://bayesgroup.github.io/bmml_sem/2019/Rudnev_Sparse%20Variational%20Learning%20with%20Matrix%20Normal%20Distributions.pdf
https://bayesgroup.github.io/bmml_sem/2019/Rudnev_Sparse%20Variational%20Learning%20with%20Matrix%20Normal%20Distributions_paper.pdf
https://youtu.be/4uxsM87-sCg

optimization procedures. We apply this family for Bayesian neural networks sparsification through Automatic Relevance
Determination (Kharitonov et al., 2018). We show that MN family here outperforms simpler fully-factorized Gaussians,
especially for the case of group sparsification, while remaining as computationally efficient as the latter. We also analyze
application of MN distribution for inference in Variational Auto-Encoder model.

05.04.2019 | Anyap TackbiHoB, MI'Y nm. M.B. JlomoHocoBa [MpeseHTauus;
Introduction to riemannian optimization and its application on matrix manifolds
Jlutepatypa (Optimization
Riemannian optimization is a new point of view is offered for the solution of constrained optimization problems. Some Algorithms on Matrix
classical optimization techniques on Euclidean space are generalized to Riemannian manifolds. This talk consist of two parts: Manifolds);
1) basic notions of differential geometry, 2) optimization algorithms on matrix manifolds.
Buaeo
12.04.2019 | AHapew JleoHngos, JoKTop (hus.-maT. Hayk, PUAH, MOTU Buneo
CnunHoBbIe CTEKMA - OCHOBLI TEOPUN
B noknage obcyxaarTcs OCHOBbI COBPEMEHHOIO TEOPETUYECKOIO OMUCAHUS CBOWCTB CMIMHOBBLIX CTEKON
(MarHeTuKOB CO criyyaviHbIMK B3aMMmogencTemamn). BaxxHoe 3HavyeHne Teopmm CNMHOBBLIX CTEKON ANA
3agad computer science CBs3aHO C TEM, YTO CTaTUCTUYECKas PM3MKa CMIMHOBLIX CTEKON SIBMSIETCS
YHUBepCarnbHON MeTachopor ANS COXHbIX ONTUMU3aLMOHHBIX 3a4a4, B KOTOPbIX LeneBas yHKUMS
nmeet 6oMbLUOE KONUYecTBO BNM3KMX No BeNnYnHe MakcuMyMmoB.
19.04.2019 | Januvn MonbikoBckun, Insilico Medicine [Mpe3eHTauus;
The Kanerva Machine
Cratba 1;
The talk will cover the recently proposed Kanerva Machine—a model that employs associative memory, in contrast to a
slot-based memory. Kanerva Machine views memory as a random variable and can make Bayesian inference of its content. Cratba 2;
With a chosen parameterization of memory, authors could do fast iterative writing using the Bayes formula. In the talk, we will
also see further development of this model in learning attractor dynamics, useful for applications like denoising. Bugeo
26.04.2019 | Apcenuin KysHeuos, Samsung Al Center Moscow, Engineer MMpe3eHTauus;

Reinforcement learning for POMDP via Variational inference and Particle filtering

Control in a Partially Observable Markov Decision Processes (POMDPSs) relies on the sequence of observations that carry
only partial information about underlying Markov state. One way to integrate the observation sequence into fixed size
representation is Bayesian filtering.

This talk will cover variational sequential filtering and it's application to reinforcement learning in POMDP via maximising the
variational lower bound on the log marginal likelihood of observations, rewards, and surrogate optimality variables.

Cratba 1;
Cratba 2;
Cratbsa 3;

Cratbga 4



https://github.com/bayesgroup/bayesgroup.github.io/blob/master/bmml_sem/2019/Taskynov_Intro%20to%20riemannian%20optimization.pdf
http://www.eeci-institute.eu/GSC2011/Photos-EECI/EECI-GSC-2011-M5/book_AMS.pdf
http://www.eeci-institute.eu/GSC2011/Photos-EECI/EECI-GSC-2011-M5/book_AMS.pdf
http://www.eeci-institute.eu/GSC2011/Photos-EECI/EECI-GSC-2011-M5/book_AMS.pdf
https://youtu.be/_3qNwHbxUnU
https://youtu.be/OSetFqNtLRI
https://bayesgroup.github.io/bmml_sem/2019/Polykovsky_The_Kanerva_Machine.pdf
https://arxiv.org/abs/1804.01756
https://arxiv.org/abs/1811.09556
https://youtu.be/ZFqVZX6vaU0
https://github.com/bayesgroup/bayesgroup.github.io/blob/master/bmml_sem/2019/KuznetsovA_ROBiT.pdf
https://arxiv.org/pdf/1705.10306.pdf
https://arxiv.org/pdf/1705.11140.pdf
https://arxiv.org/pdf/1806.02426.pdf
https://arxiv.org/pdf/1805.00909.pdf

17.05.2019

Masen Temupues, PhD Student, Research Intern; Skoltech, Centre for Hydrocarbon Recovery
Reinforcement Learning as Probabilistic Inference

[Mpe3eHTauus:;

Cratbsa 1;

For the past few years, RL has shown huge progress in solving simulated tasks, such as Go, Dota, Atari and Starcraft. Craths 2-
Though RL still is not broadly applicable for physical agents, such as robots, due to the huge sample complexity and local _—
optimality of learned policies. C )

i . . ) Tarbsa 3;
One way to improve standard RL is to enforce policies to be as random as possible.
We will show that it might be achieved via a probabilistic look on the problem. Inference in Markov process augmented with Craths 4
optimality variables can be shown to be equivalent to the so-called Maximum Entropy RL framework. T
We will look on a variational inference procedure within our graphical model and will derive soft analogues of Q and V value
functions (known from the standard RL approach), which can be used in soft versions of Q-learning and Actor-Critic
algorithms able to produce diverse and multimodal policies.
The probabilistic framework opens doors for very new algorithms and ideas such as hierarchical policies, which are also will
be discussed.

OceHHnn cemecTtp 2018 .
Hdata Jdoknaguuk n tema MaTtepunansl
14.09.2018 | OmuTtpun MonuaHoB, AIC Samsung Research, Senior Engineer; Hay4HbIi cOTpyaHUK JTabopaTtopumn KomMnaHmm MMpe3eHTauus;
CamcyHr-HY BLUD
Variational inference with implicit distributions Jlntepatypa:
arxivi; arxiv2; arxiv3;
Conventional variational inference problems are defined by the likelihood function, the prior distribution and the parametric
approximate posterior, which are all usually explicit: we can sample from them, reparameterize them and compute their Buaeo
density. As soon as one component becomes implicit (we can't compute the density), the variational inference becomes
intractable. In this talk | will review several approaches that allow us to perform variational inference with implicit distributions.
The use of implicit variational inference provides many exciting benefits from fitting an arbitrarily flexible implicit posterior to
likelihood-free variational inference.
21.09.2018 | Nasen LWseuunkos, AIC Samsung Research, Senior Engineer [Npe3eHTauus;

Variational Sequential Monte Carlo

Many reliable algorithms exist for sequential Bayesian inference in simple settings, such as time series with discrete latent
states (tackled by HMM) or models with latent linear-Gaussian dynamics (tackled by Kalman filter). In practice, however, the

JIntepatypa:
arxiv1; arxiv2; arxiv3;
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https://arxiv.org/abs/1702.08235
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https://www.youtube.com/watch?v=ihoucyu_WTA&feature=youtu.be
http://bayesgroup.github.io/bmml_sem/2018/Shvechikov_Variational_Sequential_Monte_Carlo.pdf
https://arxiv.org/abs/1705.09279
https://arxiv.org/abs/1705.11140
https://arxiv.org/abs/1705.10306

sequences we most often face have complex, nonlinear, non-Gaussian dependencies and are high-dimensional. How to
perform an accurate inference in such a setting? The question has been investigated for about thirty years and has given rise
to a variety of sophisticated approximate approaches (such as Extended Kalman Filter and Gaussian-sum filter). The true
breakthrough in the field was made by introducing the concept of Particle Filter (PF) in the mid-90s. The concept underlying
the PF — Sequential Monte Carlo (SMC) — made it possible to significantly extend the scope of “solvable” tasks in computer
vision, financial econometrics, target tracking, robotics, geosciences, system biology, and many other fields. In the talk, we
will get acquainted with the basics of SMC and learn about its recent applications for deep generative modeling that get us
closer to fast, scalable and accurate Bayesian inference in both sequential and non-sequential settings.

Buoeo

28.09.2018 | NaHuun Monbikoseckui, Insilico Medicine [peseHTauug;
Deep Learning for Drug Discovery
Jlutepatypa (no Temam):
Neural networks and other machine learning models have recently been applied to many biological problems, including drug | QRtimization;
discovery. In this field, different kinds of generative models were applied to generate novel molecular structures in forms of Conditional 1, 2; _
strings and graphs. Along with the general toolbox of neural networks, multiple novel ideas were introduced to build Reinforcement Learning 1, 2, 3;
generators of molecules, including models working with data represented as graphs. In my talk, | will give an overview of the | Strings 1, 2;
drug discovery pipeline and how machine learning can be applied on each step. | will also cover many novel ideas and tricks | Graphs 1, 2, 3;
used in this field, that can be extended to other domains. 3D;
Buaeo
05.10.2018 | Kupunn Heknogos, Machine Learning Engineer, AIC Samsung Research; Hay4HbIli coTpyaHuk JlabopaTtopum | [peseHTauums;
komnaHun CamcyHr-HAY BLUIS
Optimization of proposal distribution for the Metropolis-Hastings algorithm Cratbs;
In this paper we propose to view the acceptance rate of the Metropolis-Hastings algorithm as a universal objective for Buaeo
learning to sample from target distribution -- given either as a set of samples or in the form of unnormalized density. This
point of view unifies the goals of such approaches as Markov Chain Monte Carlo (MCMC), Generative Adversarial Networks
(GANSs), variational inference. To reveal the connection we derive the lower bound on the acceptance rate and treat it as the
objective for learning explicit and implicit samplers. The form of the lower bound allows for doubly stochastic gradient
optimization in case the target distribution factorizes (i.e. over data points). We empirically validate our approach on Bayesian
inference for neural networks and generative models for images.
TL;DR: Learning to sample via lower bounding the acceptance rate of the Metropolis-Hastings algorithm
12.10.2018 | AHgpewn ATaHoB, cTaxep-uccriegoBartens Jlabopatopun komnaHun CamcyHr-HAY BLUD, marnctp PKH HAY BLUD | [NpeseHTauuns;

Deep Weight Prior

Bayesian inference is known to provide a general framework for incorporating prior knowledge or specific properties into
machine learning models via carefully choosing a prior distribution. In this work, we propose a new type of prior distributions
for convolutional neural networks, deep weight prior, that in contrast to previously published techniques, favors empirically
estimated structure of convolutional filters e.g., spatial correlations of weights. We define deep weight prior as an implicit
distribution and propose a method for variational inference with such type of implicit priors. In experiments, we show that
deep weight priors can improve the performance of Bayesian neural networks on several problems when training data is
limited. Also, we found that initialization of weights of conventional convolutional networks with samples from deep weight

Cratbs;

Buoeo



https://youtu.be/Z2DvWv1vh40
https://bayesgroup.github.io/bmml_sem/2018/Polykovskiy_Deep%20Learning%20for%20Drug%20Discovery.pdf
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https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.8b00839
https://chemrxiv.org/articles/ORGANIC_1_pdf/5309668
https://pubs.acs.org/doi/10.1021/acs.jcim.7b00690
https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.7b01137
https://arxiv.org/pdf/1703.01925.pdf
https://arxiv.org/abs/1802.08786
http://proceedings.mlr.press/v70/gilmer17a.html
http://proceedings.mlr.press/v80/jin18a.html
https://arxiv.org/abs/1805.11973
https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.7b01134
https://youtu.be/Xf2uI4S9IMo
http://bayesgroup.github.io/bmml_sem/2018/Neklyudov_MH_learning_proposal.pdf
https://openreview.net/forum?id=Hkg313AcFX
https://youtu.be/0PUHrRWsItc
https://bayesgroup.github.io/bmml_sem/2018/Atanov_Deep%20Weight%20Prior.pdf
https://openreview.net/forum?id=ByGuynAct7
https://youtu.be/yA8k_da_co0

prior leads to faster training

19.10.2018 | Banepwuin XapuToHOB, MITAALLNI HAyYHbIA COTPYAHUK JlabopaTtopmm komnanum CamcyHr-HWY BLUS, acnnpaHT MMpe3eHTauus;
®KH HLY BLUD
(Doubly) Semi-Implicit Variational Inference Cratba 1;
Cratbsa 2;
This is a follow-up to the first talk of this year in which | will tell you more about variational inference with implicit distributions.
This time, we will assume that the approximate posterior and the prior can be both expressed as an intractable infinite Buaeo
mixture of some analytic density with a highly flexible implicit mixing distribution. It turns out, this formulation allows one to
perform both variational inference and variational learning and gives a sandwich bound on the ELBO which is asymptotically
exact. At the end of the talk, | will tell you a bit about the use cases for (doubly) semi-implicit variational inference and
learning and our experimental results.
26.10.2018 | Kupunn CtpymuHckmin, acnupadt PKH HAY BLUS, ctaxep-uccneposartens LieHTpa rmybuHHOro obyyeHuns n [MpeseHTauus;
OarecoBckux metogos HAY BLLUO
Quantifying Learning Guarantees for Convex but Inconsistent Surrogates, to appear at NIPS 2018 Cratba 1;
We study consistency properties of machine learning methods based on minimizing convex surrogates. We extend the Bugeo
recent framework of Osokin et al. [CtaTbs 1] for quantitative analysis of the consistency properties to the case of inconsistent
surrogates. Our key technical contribution consists in the new lower bound on the calibration function for the quadratic
surrogate, which is non-trivial (not always zero) for inconsistent cases. The new bound allows to quantify the level of
inconsistency of the setting and shows how learning with inconsistent surrogates can have guarantees on sample complexity
and optimization difficulty. We apply our theory in two concrete cases: multi-class classification with the tree-structured loss
and ranking with the mean average precision loss. The results show the approximation-computation trade-offs caused by
inconsistent surrogates and their potential benefits.
02.11.2018 | BukTop AHyww, cTaxep-uccnenosatens Jlabopatopum komnaHmm CamcyHr-HAY BLUO [MpeseHTauus;
Hamiltonian Monte-Carlo for Orthogonal Matrices
Cratbsa 1, 2, 3;
We consider the problem of sampling from posterior distributions for Bayesian models where some parameters are restricted
to be orthogonal matrices. Such matrices are sometimes used in neural networks models for reasons of regularization and Buaeo
stabilization of training procedures, and also can parameterize matrices of bounded rank, positive-definite matrices and
others. We propose a new sampling scheme that is based on Hamiltonian Monte Carlo (HMC) approach and ideas of
Riemannian optimization for a set of orthogonal matrices. The method is theoretically justified by proof of symplecticity for the
proposed iteration. In experiments we show that the new scheme is more sample-efficient comparing to conventional HMC
with explicit orthogonal parameterization. We also provide promising results of Bayesian ensembling for orthogonal neural
networks and low-rank matrix factorization.
09.11.2018 | Jlekumsa npo lNepsyto MupoByto BOHY :-) Bugeo
16.11.2018 | Naeen Temupyes, PhD Student, Research Intern; Skoltech, Centre for Hydrocarbon Recovery [MpeseHTauus;

Predicting Oil Movement in a Development System using Deep Latent Dynamics Models.
We present a novel technique for assessing the dynamics of multiphase fluid flow in the oil reservoir. We demonstrate an
efficient workflow for handling the 3D reservoir simulation data in a way which is orders of magnitude faster than the

Cratba 1, 2;



https://bayesgroup.github.io/bmml_sem/2018/Kharitonov_DSIVI_Slides_Handout.pdf
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https://bayesgroup.github.io/bmml_sem/2018/Temirchev_Metamodelling.pdf
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https://www.onepetro.org/conference-paper/SPE-191593-18RPTC-MS

conventional routine. The workflow (we call it "Metamodel") is based on projecting the dynamical system into nonlinear
subspace where the dynamics is captured by deep recurrent neural network. Compared to basic reduced order modelling
approaches our projecting technique involves usage of variational autoencoder model instead of linear ones. We show that
being trained on multiple results of the conventional reservoir modelling, the Metamodel does not compromise the accuracy
of the reservoir dynamics reconstruction in a significant way. It allows forecasting not only the flow rates from the wells but
also the dynamics of the distribution of pressure and fluid saturations within the reservoir. The results open a new perspective
in the optimization of oilfield development as the scenario screening could be accelerated sufficiently.

During the talk, | will introduce you to the classical POD-Galerkin approach to reduce the computational cost of modelling
multi-phase flows through a porous medium, to the recently published reduced order model based on POD and Deep
Residual RNNs and to the Metamodelling technique proposed by us.

No background on oil field development routine is needed - | will make a small intro to the task.

Buoeo

23.11.2018 | Diego Granziol, researcher, Oxford-Man Institute of Quantitative Finance [MpeseHTauus;
Title 1:Maximum Entropy and learning the spectra of massive graphs. Bugeo
Abstract 1: The method of maximum entropy with its origin in statistical mechanics and information theory has found many
uses in machine learning and has formed a natural prior for Bayesians. We consider the convergence of the moments the
spectral density to the underlying stochastic process using the machinery of random matrix theory. We show that the method
of maximum entropy forms a natural basis for measuring the divergence between graphs and that kernel smoothing
techniques are information destroying.
Title 2: Learning the Spectra of Deep Neural networks with application to learning the learning rate and the momentum
Abstract 2: We develop a methodology that allows us to analyse and visualise the loss surface of networks with millions or
tens of millions of parameters. By considering the network spectrum evolution and the convergence of GD with Momentum
on a convex quadratic, along with some random matrix theory, we introduce a method for learning the learning rate and
momentum in deep nets.
30.11.2018 | Anbek AnaHos, AIC Samsung Research, Machine Learning Engineer [IpeseHTauus:
Pairwise Augmented GANs with Adversarial Reconstruction Loss
AxHoTtauus: We consider a problem of training bidirectional GANs. We propose a novel autoencoding model called Pairwise Crartbs;
Augmented GANs. We train a generator and an encoder jointly and in an adversarial manner. The generator network learns
to sample realistic objects. In turn, the encoder network at the same time is trained to map the true data distribution to the Buaeo
prior in latent space. To ensure good reconstructions, we introduce an augmented adversarial reconstruction loss. Here we
train a discriminator to distinguish two types of pairs: an object with its augmentation and the one with its reconstruction. We
show that such adversarial loss compares objects based on the content rather than on the exact match. We experimentally
demonstrate that our model generates samples and reconstructions of quality competitive with state-of-the-art on datasets
MNIST, CIFAR10, CelebA and achieves good quantitative results on CIFAR10.
07.12.2018 | NIPS
14.12.2018 | Anekcangp LLleByeHko, cTtaxep-nccnegosarens Jlabopatopum komnaHmm CamcyHr-HAY BLLIO [MpeseHTauus;

Scaling Matters in Deep Structured-Prediction Models
Deep structured-prediction energy-based models combine the expressive power of learned representations and the
possibility of embedding knowledge about the task at hand into the system. A common way to learn parameters of such

Buoeo
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models consists in a multistage procedure where different combinations of components are trained at different stages. The
joint end-to-end training of the whole system is then done as the last fine-tuning stage. This multistage approach is
time-consuming and cumbersome as it requires multiple runs until convergence and multiple rounds of hyperparameter
tuning. From this point of view, it is beneficial to start the joint training procedure from the beginning, however, such
approaches often unexpectedly fail and deliver results worse than the multistage ones. In this paper, we hypothesize that one
reason for joint training of deep energy-based models to fail consists in the incorrect relative normalization of different
components in the energy function. We propose online and offline scaling algorithms that fix the joint training and
demonstrate their efficacy on three different tasks.

21.12.2018

3aveTr

28.12.2018

BeceHHun cemecTp 2018 r.

OaTta Odoknagyuvk un Tema MaTepuansl
16.02.2018 | Pa3bop craren ICLR-2018 cnanabl_HoBuKKoOB,
cnangbl PogomaHos,
AnekcaHgp Hosukos, acnupant MBM PAH cnanabl_Kemaen
Distributional Policy Gradients
AHTOH PogomaHoB, acnnpaHt ®KH HAY BLUD
On the Convergence of Adam and Beyond
KOpun Kemaes, marnctp ®KH HNY BLUS, CkonTtex
Compressing Word Embeddings via Deep Compositional Code Learning
02.03.2018 | AHgpen AtaHos, ctyaeHT ®KH HAY BLLS npeseHTaums
Stochastic Batch Normalization BMOEO
In this work, we investigate Batch Normalization technique and propose its probabilistic interpretation. We propose a probabilistic
model and show that Batch Normalization maximazes the lower bound of its marginalized log-likelihood. Then, according to the new
probabilistic model, we design an algorithm which acts consistently during train and test. However, inference becomes
computationally inefficient. To reduce memory and computational cost, we propose Stochastic Batch Normalization -- an efficient
approximation of proper inference procedure. This method provides us with a scalable uncertainty estimation technique.
16.03.2018 | Aliaksandr Hubin (University of Oslo) npeseHTaumns

Deep Bayesian regression models

Regression models are addressed for inference and prediction in a wide range of applications providing a powerful scientific tool for
the researchers and analysts coming from different fields. In most of these fields more and more sources of data are becoming
available introducing a variety of hypothetical explanatory variables for these models to be considered. Model averaging induced by

Bngeo
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different combinations of these variables becomes extremely important for both good inference and prediction. Not less important,
however, seems to be the quality of the set of explanatory variables to select from. It is often the case that linear relations between
the explanatory variables and the response are not sufficient for the high quality inference or predictions. Introducing non-linearities
and complex functional interactions based on the original explanatory variables can often significantly improve both predictive and
inferential performance of the models. The non-linearities can be handled by deep learning models. These models, however, are
often very difficult to specify and tune. Additionally they can often experience over-fitting issues. Random effects are also not
incorporated in the existing deep learning approaches. In this paper we introduce a class of deep Bayesian regression models with
latent Gaussian variables generalizing the classes of GLM, GLMM, ANN, CART, logic regressions and fractional polynomials into a
powerful and flexible Bayesian framework. We then suggest algorithmic approaches for fitting them. In the experimental section we
test some computational properties of the algorithm and show how deep Bayesian regression models can be used for inference and
predictions in various applications.

23.03.2018

Tumyp Fapunos, BMK MIY, ®KH HLY BLLS

Loss Surfaces, fast ensembling and weight averaging of DNNs

The loss functions of DNNs are complex and their geometric properties are not well understood. We show that the optima of these
complex loss functions are in fact connected by a simple curve over which training and test accuracy are nearly constant. We
introduce a training procedure to discover these high-accuracy pathways between modes. Inspired by this new geometric insight, we
propose a new ensembling method entitled Fast Geometric Ensembling (FGE). Using FGE we can train high-performing ensembles
in the time required to train a single model. Visualizing loss surfaces containing networks from FGE ensembles we noticed that the
simple averaging of points from these ensembles leads to better generalization than conventional training. We proposed a method of
neural network training that is called SWA and leads to wider local optima. Using SWA we achieve notable improvement in test
accuracy over conventional SGD training on a range of state-of-the-art residual networks, PyramidNets, DenseNets, and
Shake-Shake networks on CIFAR-10, CIFAR-100, and ImageNet.

npeseHTaums;
arxiv; arxiv2

BUaeo

30.03.2018

EsrenHnn HukuwuH, marnctp KH HAY BLUD, CkonTex

Hierarchical methods for Reinforcement Learning

Hierarchical Reinforcement Learning aims to operate in terms of macro-actions or high-level goals. Motivation behind this is the
following: if we are given meaningful goals or macro-actions, it will accelerate learning, increase interpretability of policy and grant
faster exploration. Originally, it was proposed to design macro-actions or goals manually, so the most challenging part of today’s
HRL research is learning options purely from interaction with environment. In this talk, we will discuss classic approaches for HRL,
when some elements of policy were provided by human, as well as recently proposed methods for HRL without any prior knowledge
of environment.

npeseHTaums; arxiv;
arxiv2 Bugeo

06.04.2018

Maeen Leeunkos, acnnpaHt PKH HAY BLUD

Learning in Partially Observable Markov Decision Processes

Probably, you have already been tired of news headlines of the kind “Artificial Intelligence has defeated humankind!”, actually
implying that some specific algorithm has been tuned to beat the top human performer in a game X. Such algorithms, though
interesting by themselves, are not viable in a real life (for example, see the post
https://medium.com/@karpathy/alphago-in-context-c47718cb95a5 for analyzing AlphaGo's applicability outside of Go).

The real world is far more complex than the games with full information. At the very least, the world has the fundamental property of
being Partially Observable. Thus it is essential for an intelligent agent of Future to be able to act optimally under very restrictive
conditions of concealed information.

In this talk, | will explain why learning in partially observable environments is so hard and what are some of the approaches to deal
with it.

npe3eHTaund sngeo
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13.04.2018

ApceHuit Ayxa
Multi-agent reinforcement learning

Reinforcement Learning has become wide and important topic of machine learning research. Despite great success was achieved
in single-agent environments, multi-agent problem setting is not studied well. Multiagent environments require not just ability to learn
several agents simultaneously, but also to communicate and cooperate in order to find individual strategies beyond out of
selfishness in order to achieve a high joined reward. In Fridays talk we will address two topics: a) Sequential Social Dilemmas that
allow you to study cooperation [1] and to learn agents to cooperate [2] in multiagent-environments b) Nonstationarity issues, namely,
how to avoid nonstationarity in multiagent environments [3, 4].

[1] Multi-agent Reinforcement Learning in Sequential Social Dilemmas https://arxiv.org/abs/1702.03037

[2] Inequity aversion resolves intertemporal social dilemmas https://arxiv.org/abs/1803.08884

[3] Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments https://arxiv.org/abs/1706.02275
[4] Stabilising Experience Replay for Deep Multi-Agent Reinforcement Learning https://arxiv.org/abs/1702.08887

npeseHTauna Buaeo

20.04.2018 | Anekcanap lNnopckuin, UMM PAH npes3eHTaums Buageo
New critical and collective phenomena in random networks and graphs
| will discuss new critical and collective phenomena found recently for the different ensembles of exponential networks. In particular
the network clusterization transition induced by 3-cycles as well as the phase transitions induced by the triads which amount to
synchronization and bipartiteness will be explained for the multilayer networks.
The phenomena of the spontaneous symmetry breaking in the multilayer networks will be demonstrated. | shall describe the possible
application of generalized Schelling model for the social dynamics.
27.04.2018 | Penetuumsa BeictynneHmn Ha Data Fest CbepbaHka
04.05.2018 | Oner NeaHoB, marnctp BMK MI'Y
Universal Conditional Machine npeseHTaums BUIeo
Variational Autoencoder (VAE) is one of the most popular generative models nowadays. Despite the fact that VAE allows generating
objects and compting approximate probabilistic density function for given objects, it lacks the ability to be conditioned on the arbitrary
subset of the object features. We proposed the generalization of VAE called Universal Conditional Machine (UCM) to overcome this
issue. In this talk we will discuss this model and its relations with other conditional generative models.
11.05.2018 | Amutpun MonyaHoB, Hay4HbI coTpygHuk ®KH HUY BLUS npeseHTaumsi BUaeo
Variance Networks
During this talk, | will introduce variance networks, a model that stores the learned information in the variances of the network
weights.
Surprisingly, no information gets stored in the expectations of the weights, therefore if we replace these weights with their
expectations, we would obtain a random guess quality prediction.
We will discuss how and why this model works, and will see how it naturally arises in several types of Bayesian Neural Networks.
Then we will discuss a hueristic that uses the loss curvature to determine which random variables can be replaced with their
expected values, and see that only a small fraction of weights is needed for ensembling.
The success of this model raises several counter-intuitive implications for the training and application of Deep Learning models.
18.05.2018 | HeT cneucemuHapa
25.05.2018 | HeT cneucemuHapa
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ANBNIMOBLIbI - HA OCEHb
MonbikoBckun - Ha koHeL oceHn: Deep Learning for Drug Discovery
Henunc BenomecTtHbin, Ckontex (MCMC) - Ha oceHb, nnaH

OceHHun cemectp 2017 .

HOata

Odoknagyvk n Tema

MaTepuansbl

08.09.17

AHTOH OcokuH, poueHT PKH BLUS

On Structured Prediction Theory with Calibrated Convex Surrogate Losses

We provide novel theoretical insights on structured prediction in the context of efficient convex surrogate loss minimization with
consistency guarantees. For any task loss, we construct a convex surrogate that can be optimized via stochastic gradient descent and
we prove tight bounds on the so-called "calibration function" relating the excess surrogate risk to the actual risk. In contrast to prior
related work, we carefully monitor the effect of the exponential number of classes in the learning guarantees as well as on the
optimization complexity. As an interesting consequence, we formalize the intuition that some task losses make learning harder than
others, and that the classical 0-1 loss is ill-suited for structured prediction.

Joint work with Francis Bach and Simon Lacoste-Julien

arxiv, cnanabl, BUOeO

15.09.17

llya Tolstikhin, Research Scientist, Max Planck institute for Intelligent Systems

AdaGAN: Boosting Generative Models

Generative Adversarial Networks (GAN) are an effective method for training generative models of complex data such as natural
images. However, they are notoriously hard to train and often suffer from the problem of missing modes where the model is not able to
produce examples in certain regions of the space. In this talk | will present an iterative procedure, called Adaptive GAN (AdaGAN),
where at every step we add a new component into a mixture model by running a GAN algorithm on a reweighted training sample. This
procedure is inspired by boosting algorithms, where many potentially weak individual predictors are greedily aggregated to form a
strong composite predictor. Based on the approximation bounds for general f-divergences we derive sufficient conditions for this
iterative procedure to converge to the true data distribution at an exponential rate.

arxiv, cnangbl, BUOeo

22.09.17

CemuHapa He byget

29.09.17

Kvpunn Hekntogos, acnupant ®KH BLUD

Structured Bayesian Pruning via Log-Normal Multiplicative Noise

Dropout-based regularization methods can be regarded as injecting random noise with pre-defined magnitude to different parts of the
neural network during training. It was recently shown that Bayesian dropout procedure not only improves generalization but also leads
to extremely sparse neural architectures by automatically setting the individual noise magnitude per weight. However, this sparsity can
hardly be used for acceleration since it is unstructured. In the paper, we propose a new Bayesian model that takes into account the
computational structure of neural networks and provides structured sparsity, e.g. removes neurons and/or convolutional channels in
CNNs. To do this, we inject noise to the neurons outputs while keeping the weights unregularized. We established the probabilistic

arxiv, crnanabl, BUoeo



https://arxiv.org/abs/1703.02403
http://bayesgroup.github.io/bmml_sem/2017/bayesGroupMeeting_20170908.pdf
https://youtu.be/dO1MDt5KCvU
https://arxiv.org/pdf/1701.02386.pdf
https://bayesgroup.github.io/bmml_sem/2017/tolst17vetrovsem_adagan.pdf
https://youtu.be/9VtPt33MKK0
https://arxiv.org/abs/1705.07283
http://bayesgroup.github.io/bmml_sem/2017/log_norm_pres.pdf
https://www.youtube.com/watch?v=SjYKP8BFhgw

model with a proper truncated log-uniform prior over the noise and truncated log-normal variational approximation that ensures that
the KL-term in the evidence lower bound is computed in closed-form. The model leads to structured sparsity by removing elements
with a low SNR from the computation graph and provides significant acceleration on a number of deep neural architectures. The
model is very easy to implement as it only corresponds to the addition of one dropout-like layer in computation graph.

06.10.17 | OmuTpuin KponoTos, Hay4HbIn coTpyaHuk, BMK MY arxiv, cnangpl, BUOeo
Tensor Train Decomposition for Fast Learning in Large Scale Gaussian Process Models
Gaussian Process models is a popular Bayesian approach for solving different machine learning problems, including regression,
classification and structured prediction. Training full GP model scales cubically with training set size thus preventing efficient learning
in case of large datasets. For this case an inducing inputs approach is usually used that scales linearly with training set size and
cubically with number of inducing inputs. Empirical evaluation shows that ability to work with quite a small number of inducing inputs
leads to poor performance of GP models in case of large number of features. In this talk, we discuss a learning procedure for GP
models that allows using much larger number of inducing inputs. This procedure can be interpreted as a fast variational inference
scheme with several approximations made for variational distribution. One of them uses Tensor Train format — a popular approach for
compact storing and fast operating with multidimensional tensors.

13.10.17 | Naftali Tishbi, Professor, The Hebrew University of Jerusalem crnavabl, BUOEO - C
Information Theory of Deep Learning npegblayLero
Reirfercement-tearning-undertrformation-Constraints Aoknaga B AHaekce
https://arxiv.org/abs/1703.00810
CneucemuHap nporaéT B 3ane JKcTpononuc

20.10.17 | CemuHapa He Bynet

27.10.17 | Aptém Cobones, Al Engineer at Luka Inc. cnavabl, BUAEO
Stochastic Computation Graphs (parts 0, 1 and 2)

Deep Neural Networks are known to be very powerful function approximators. Combining DNNs with probabilistic modeling with latent
variables has proven to be bilaterally beneficial: one could enrich deep models with stochastic control, train generative models,
perform approximate inference, navigate RL agents in uncertain environments.
The goal of this talk is to familiarize the audience with the latest advancements in the area. It is assumed the audience has some
familiarity with the problem, hence basic concepts will be introduced only briefly to set up the notation. Then we'll move on to the core
problem of stochasticity in computational graphs: backpropagation through randomness. We'll discuss general approach and its
weaknesses, special cases for continuous and discrete random variables.
03.11.17 | Aptém Cobones, Al Engineer at Luka Inc. cnanabl, BUOeo

Stochastic Computation Graphs (part 3).



https://arxiv.org/pdf/1710.07324.pdf
https://bayesgroup.github.io/bmml_sem/2017/TT-GP.pdf
https://www.youtube.com/watch?v=CrSFne4h3Pk
https://arxiv.org/abs/1503.02406
https://arxiv.org/abs/1703.00810
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https://www.youtube.com/watch?v=hkRBoiaplEE

10.11.17

ApTeM ApTeMOB, pykoBoauTesrib KOMNaHUn «KOrHUTUBHbIE CUCTEMbI»

Informational Neurobayesian Approach to Neural Networks Training. Opportunities and Prospects

A study of the classification problem in context of information theory is presented in the paper. Current research in that field is focused
on optimisation and bayesian approach. Although that gives satisfying results, they require a vast amount of data and computations to
train on. Authors propose a new concept named Informational Neurobayesian Approach (INA), which allows to solve the same
problems, but requires significantly less training data as well as computational power. Experiments were conducted to compare its
performance with the traditional one and the results showed that capacity of the INA is quite promising.
https://arxiv.org/abs/1710.07264

crnanabl

17.11.17

Anekcern YMHOB, MnagLlUmi Hay4YHbIn coTpyaHmuk ®KH BLLS

Bayesian Methods in Generative Adversarial Networks

Generative Adversarial Networks (GAN) is an effective and actively developing approach for building generative models. GANs still
have many unresolved problems, such as being unstable and hard to train, and the mode-collapse problem (missing modes of the
distribution and producing non-diverse samples).

In my talk | will present you two GAN architectures (BayesianGAN and AlphaGAN) that suggest ways of solving these problems using
Bayesian methods. BayesianGAN paper presents the architecture for probability inference for generator parameters, and then uses a
distribution over networks rather than one network (which improves the samples diversity). AlphaGAN paper merges the Variational
AutoEncoder (VAE) with GAN in order to use the benefits of both architectures

cnanabl, BUOeo

241117

Makcum KpeToB, Hay4HbIN COTPYOHUK NabopaTopunm HENMPOHHBLIX ceTen 1 rmybokoro obydeHns MOTA

Using stochastic computational graphs formalism for optimization of sequence-to-sequence model

Variety of machine learning problems can be formulated as an optimization task for some (surrogate) loss function. Calculation of loss
function can be viewed in terms of stochastic computational graphs (SCG). We use this formalism to analyze a problem of optimization
of famous sequence-to-sequence model with attention and propose reformulation of the task. Examples are given for machine
translation (MT). Our work provides a unified view on different optimization approaches for sequence-to-sequence models and could
help researchers in developing new network architectures with embedded stochastic nodes. https://arxiv.org/abs/1711.07724

Differentiable lower bound for expected BLEU score

In natural language processing tasks performance of the models is often measured with some non-differentiable metric, such as BLEU
score. To use efficient gradient-based methods for optimization, it is a common workaround to optimize some surrogate loss function.
This approach is effective if optimization of such loss also results in improving target metric. The corresponding problem is referred to
as loss-evaluation mismatch. In the present work we propose a method for calculation of differentiable lower bound of expected BLEU
score that does not involve computationally expensive sampling procedure such as the one required when using REINFORCE rule
from reinforcement learning (RL) framework. Derived lower bound is tight in the sense that for degenerate distributions of candidate
text it coincides with exact BLEU score, thus it is fair to refer to this lower bound as "differentiable BLEU score".
https://arxiv.org/abs/1712.04708

cnavibl, BUOEO

01.12.17

Vladimir Kolmogorov, Professor, IST Austria

Valued Constraint Satisfaction Problems

| will consider the Valued Constraint Satisfaction Problem (VCSP), whose goal is to minimize a sum of local terms where each term
comes from a fixed set of functions (called a "language") over a fixed discrete domain. | will present recent results characterizing
languages that can be solved using the basic LP relaxation. This includes languages consisting of submodular functions, as well as
their generalizations. One of such generalizations is k-submodular functions. In the second part of the talk | will present an application

BMAEO (NOXOXUN

poknazn B BUIO)

BMOEO0 N cnanapl
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of such functions in computer vision. ]
Based on joint work with Igor Gridchyn, Andrei Krokhin, Michal Rolinek, Johann Thapper and Stanislav Zivny:

http://pub.ist.ac.at/~vnk/papers/BLP-JOURNAL.html
http://pub.ist.ac.at/~vnk/papers/VCSP.html

http://pub.ist.ac.at/~vnk/papers/POTTS.htm

CneucemMunHap NponaéeT B 3ane SKCTPONosMc COBMECTHO C CEMUHApOM AHaekca:
https://events.yandex.ru/events/science-seminars/1-dec-2017/

08.12.17

CneucemunHapa He 6yaet (NIPS)

BeceHHun cemectp 2017 T.

B BeceHHeM cemecTpe 2017 r. cneucemunHap npoxoaut B LUAL no naTHMUaM, Ha4ano B 18-45.
[na nony4yeHns nponycka 3apaHee Hanuwmte hamunmio, ums n otyectso Muxauny durypHoy (michael@figurnov.ru). Asbik cneuceMmmHapa —
aHIMNNCKNIA.

Paccbinika cneucemuHapa, Buoeo, CTpaHuua cnelcemuHapa Ha machinelearning.ru (apxvB AOKNaa0B

rayCCOBCKMe Mogenn ana KoHcomnaaunnm gaHHbIX N3 pa3HbIX NICTOYHUKOB
3afava KoHconuaaumuy OaHHbIX U3 pasHbIX UCTOYHUKOB SBMSAETCSA OAHOM U3 OCHOBHbLIX B MPUMOXEHUAX UHAYCTPUANbHON MHXEHEPUN:
HanpuMep, Npv NOCTPOEHUM MoAEeNein U MeTo0B MoucKka B MHDOPMALIMOHHBIX CETAX MOXXHO UCMONb30BaTh Kak HadexHyo MHdopMaLuio o

HOata Jdoknagyuvk u Tema MaTtepuansl

03.02.17 | OmuTpuin Betpos, Onbra Ckopoxogosa, Cesatocnas AKOBULLNH BUOEO
Apabo-n3pansnbCckme BOMHbI

10.02.17 | Anekcangp HoBukoB, Hay4HbI coTpyaHuk ®KH BLUD cnavgbl, BU4eo
Normalization propagation
There are lots of different normalization techniques in deep learning community: Batch Normalization, Instance Normalization, Weight
Normalization, and Normalization Propagation, and one cannot train a network with say 50 layers without one form of normalization or
another. In this talk, | will discuss why we need to normalize something in neural networks, cover differences between normalization
techniques. | will specifically focus on Normalization Propagation, which claims to work as well as Batch Normalization, but do not
estimate any statistics from the data and thus can be beneficial from theoretical point of view and can handle batch size 1 scenario.
https://arxiv.org/abs/1603.01431

17.02.17 | EBreHun bypHaes, npodeccop Ckontexa cnavgel 1 cnanael 2,

BUOEO
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https://www.youtube.com/watch?v=9r4x-QogVwU
https://arxiv.org/abs/1603.01431
http://bayesgroup.github.io/bmml_sem/2017/dnn-normalization.pdf
https://youtu.be/-fpBFHti5ZE
http://bayesgroup.github.io/bmml_sem/2017/Burnaev_Motivation.pdf
https://bayesgroup.github.io/bmml_sem/2017/Burnaev_Main_Presentation.pdf

NPeAnoYTEHNSIX MONb30BaTeNs, Tak U MEHEE HaAeXHY (KOCBEHHYH) MHPOPMaLIMKO O TOM, HACKOSMbKO MOXOXW T€ UITN UHbIE UHTEPHET-CaNTbI
Ha MHTEPHET-CalTbl, BbiAENeHHbIE NOMb30BaTeNEM; NPY NOCTPOEHNM CyppPOraTHbIX MOAENEN 3a4acTyro AOCTYMHbI HE TONBbKO BbICOKOTOYHbIE
OaHHble HAaTYpPHOro PU3NYECKOTO SKCMEPUMEHTA, HO N MEHEE TOYHbIE AaHHbIE KOMMbIOTEPHBLIX CUMYNALNA, MOLENUPYIOLLMX TOT XKEe Cambli
dursnyeckun eHOMEH.

B poknage npegnonaraetca pacckasaTtb 0 Noaxo4e K KOHconuaaunm AaHHbIX U3 pasHblIX MCTOYHMKOB, MCMOMb3YOLEM PErpeccuto Ha OCHoOBe
Pa3HOTOYHbIX rayCCOBCKMX NpoLeccoB. byayT npeactaBneHbl CTporne pesynsratbl O MUHUMAKCHOW OLUMOKE MHTEPMONSALMN Pa3HOTOUHbIX
OaHHbIX W NMOKa3aHo, Kak 3TW pe3ynbTaTbhl MOXXHO UCMOb30BaTh B MPUKNAAHOM anropuTme A5is NOCTPOEeHUs ONTUMarnbHOro AnsarHa
9KCMEepPMEHTOB.

3.03.17

Mwuxaun XanbmaH, maructp ®KH BLUD

Neural Conversational Models

People are interested in building a human-like chatbot since the beginning of the computer era. The recent advances in deep learning and
generative modelling allow us to make chatbots that learn directly from data, thus eliminating the need for programming thousands of
hand-crafted rules and templated responses. This approach is not only cheaper, but also much more scalable. However, the problem is far
from being solved.

In this talk | will give an overview of the most commonly used models for building neural conversational agents such as seq2seq, HRED and
their extensions. Their opportunities and limitations will be discussed.

crnangel, Bnaeo

10.03.17

Muxann ®urypHoB, Hay4HbI coTpyaHuk ®KH BLUS

Spatially Adaptive Computation Time for Residual Networks

We present a deep learning architecture based on Residual Networks that dynamically adjusts the number of executed layers for regions of
an image. This architecture is end-to-end trainable, deterministic, and problem-agnostic. It uses two key components: (1) adaptive
computation time mechanism; (2) perforated convolutional layer. We present experimental results on ImageNet classification and COCO
object detection datasets demonstrating that this architecture improves the computational efficiency of Residual Networks, especially for the
higher-resolution images. Then, we demonstrate that the computation time per region correlates well with the human eye fixation positions.
Finally, we discuss several ways to extend the presented work.

https://arxiv.or 1612.02297

crnanabl, BUOEO

17.03.17

AnekcaHap YncTsakos, JTabopatopusa Kacnepckoro
O6y4eHne npencraBneHnin onsi NoBegeHYeCKMX SIOroB U AeTEKTUPOBaHNE BPeLOHOCHON aKTUBHOCTU Ha UX

OCHOBe

Hoknapg 6yneT cocTtoATb U3 ABYX YacTeu:

B nepeow nonoeBuHe goknaga 6yaeT npeacraBneH HOBbIM NOAXOA ANst NOCTPOEHMS NPU3HAKOBOIO ONMUCAHNUS NOrMpyeMbIX OAaHHbIX.
Mpennaraembii NOAXOA OCHOBAH Ha NOCTPOEHUU NMOBEAEHYECKOro rpada cneunansHoro Buaa, yCTon4mMBoro K BapmaumsmM B NOBEAEHWN
norvpyemoro obwekTta, u gansHenwem adppekTMBHOM Npeobpa3oBaHUM MNOTYYEHHOIO rpada B BEKTOP BELLECTBEHHbLIX YMCEN, OMUCHIBAOLLNIA
Habnogaemble B nore WabnoHel noBegeHns (CIarbs).

Bropas nonoBuHa goknaga 6yaet noceslleHa 0COBEHHOCTSM 3a4aqm 06HapyKeHWS BPEAOHOCHbIX EWCTBUI B 110re CUCTEMHbIX COObITUNA.
Mbl yBugum Kakvme npobnemMbl BO3HUKAKOT Ha MpakTyke Npuy Krnaccndukaunm N3MeHsIoLWerocs Bo BpeMeHn obbekTa (Takoro kak CUCTEMHbIN
1or); paccMOTpMM noaxodbl, no3sonstoLme obyyars knaccudumkartop, pellarLwmii faHHble NPobnembl; U NONy4YMM yaobHbI MexaHM3m Ansg
aBTOMaTn4eckoro obecnevyeHns MHTEPNPETMPYEMOCTM BEPAMKTA MOAENU 1 Ansa adekTMBHOIO ncnpaBneHms NoXHbIX cpabaTbiBaHW
0By4eHHOro gerekropa.

cnangbl, BUOEO

24.03.17

Maeen dunoHoB, AHgpen JlaBpeHTbeB, ApTtem BopoHLoB; JlaGopaTtopusa Kacnepckoro
Multivariate Industrial Time Series with Cyber-Attack Simulation: Fault Detection Using an LSTM
(Aoknag Ha pyccKoMm si3blke)

crnangbl, BUAEO



https://bayesgroup.github.io/bmml_sem/2017/beamer.pdf
https://arxiv.org/abs/1612.02297
https://docs.google.com/presentation/d/1UIrtgESUav7q6IKSgWhP0hkhCkQ97w7GKBU0ZyGQxPg/edit?usp=sharing
https://youtu.be/xp5lLiA-hA8
https://openreview.net/pdf?id=BJ_X2yHFe
https://bayesgroup.github.io/bmml_sem/2017/Filonov.Lavrentyev.Vorontsov.pdf
https://youtu.be/iCQTiTgqzYg

One area that strongly requires a technique for multivariate time series analysis is cyber-security for industrial processes. Deep packet
inspection (DPI) tool monitors network protocols and provides visibility of sensor and command values inside technological signals
represented as a multivariate time series.

We adopted an approach based on an LSTM neural network to monitor and detect faults in industrial multivariate time series data. To
validate the approach we created a Modelica model of part of a real gasoil plant. By introducing hacks into the logic of the Modelica model,
we were able to generate both the roots and causes of fault behaviour in the plant. Having a self-consistent data set with labelled faults, we
used an LSTM architecture with a forecasting error threshold to obtain precision and recall quality metrics. The dependency of the quality
metric on the threshold level is considered. An appropriate mechanism such as "one handle" was introduced for filtering faults that are
outside of the plant operator field of interest.

https://arxiv.org/abs/1612.06676

31.03.17

ApceHun Awyxa, maructp MOTU

Variational Dropout Sparsifies Deep Neural Networks

Variational dropout is a recent method to learn optimal dropout rates for a neural network in a Bayesian way. During my talk, | will tell about
my work with Dmitry Molchanov and Dmitry Vetrov. We extend Variational Dropout to the case when dropout rates are unbounded.
Interestingly, it leads to extremely sparse solutions both in fully-connected and convolutional layers. This effect is similar to automatic
relevance determination effect in empirical Bayes but has some advantages. Finally, we will discuss future research ways in the area of
variational dropout.

https://arxiv.org/abs/1701.05369

crnangpl, Buaeo

07.04.17

Tumyp Mapuvnos, ctygeHt BMK MI'Y

Successor Representation for Reinforcement Learning
Many reinforcement learning algorithms are based on estimation of value functions.
There are two widely used approaches to learning value functions:
e model-based algorithms;
e  model-free algorithms.
However, there is an alternative approach based on the successor representations (SR).
The main concept of SR-based algorithms is the estimation of value functions by learning
expected representation of states that will be encountered in future.
In this talk | will give an overview of the SR idea and the very interesting way to combine it with deep learning.

https://arxiv.org/pdf/1606.02396.pdf

cnangpl, Buageo 1,
Buaeo 2

14.04.17

Maurizio Fillippone, Assistant Professor, EURECOM

Practical and Scalable Inference for Deep Gaussian Processes

The study of complex phenomena through the analysis of data often requires us to make assumptions about the underlying dynamics.

In modern applications, for many systems of interest we are facing the challenge of doing so when very little is known about their mechanistic
description.

Even when a mechanistic description is available, simulating such systems is so computationally expensive that we cannot use it effectively.
Probabilistic models based on Deep Gaussian Processes (DGPs) offer attractive tools to tackle these challenges in a principled way and to
allow for a sound quantification of uncertainty.

However, inference for DGPs poses huge computational challenges that arguably hinder their wide adoption.

In this talk, | will present our contribution to the development of practical and scalable inference for DGPs, which can exploit distributed and
GPU computing.

In particular, | will introduce a novel formulation of DGPs based on random features that we infer using stochastic variational inference.
Through a series of experiments, | will illustrate how our proposal enables scalable deep probabilistic nonparametric modeling and
significantly advances the state-of-the-art on inference methods for DGPs.

crnanabl, BUOeO
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21.04.17

BukTop AHyw, 3 kypc "Learnable optimization strategies using recurrent neural networks"
Hwuknta PomaHog, 5 kypc "Normalization Propagation for Deep Neural Networks"

Hagexxga Ympkosa, 5 kypc "Variational Dropout for Recurrent Neural Networks"

Oner MBeaHog, 5 kypc "Missing Features Imputation using Conditional Variational Autoencoders"

Bunaeo

28.04.17

Tumyp MNapunos, 4 kypc "TeH30pM30BaHHbIE HENPOHHLIE ceTn"
Maeen Namaunnos, 4 kypc "Anroputmbl 06y4eHUs rayCCoBCKMX npoLeccoB Ans 6onbnx 06beMoB AaHHbIX"
Oanuun MNonbikosckui, 4 Kypc "MexaHn3Mbl BHUMAHUA B HEMPOHHbLIX ceTax"

Ben Temupyes, 6 K nonb3oBaHNe Hen TEeBOro NoAxo4a Ans annpoKCcMMaumm OgHOW rMapoauHaMUYeCcKon
Maeen Te eB, 6 ¢ "Ncnonb3oBaHne HerpoceTeBoro noaxoaa annpokcuma ofHO OOMHaMNYecko
mogenn"

Bnaeo

05.05.17

He 6ydem

12.05.17

Angpen AtaHos, 3 kypc ®KH BLLS "Ensemble distillation”

ApTtem lNageukun, 3 kypc ®KH BLLDS "Conditional Generators of Words Definitions"

MonuHa Kupnuerko, 3 kypc PKH BLUDS "Dealing with the vanishing and exploding gradient problems in recurrent neural
networks"

BUaeo

19.05.17

He 6ydem

26.05.17

Novi Quadrianto, Academic Supervisor, International Laboratory of Deep Learning and Bayesian Methods, Faculty of
Computer Science, Higher School of Economics; Assistant Professor, University of Sussex

The Privileged Cube in Machine Learning

In standard discriminative machine learning models, the assumption is that all features that are being used at training time are available for
future data (at deployment time). This assumption however does not always hold. Some features are not available. Some features are too
costly in terms of time and money. 3D data are not easily available at deployment time; discarded features from filter/wrapper feature
selection methods are not available at deployment time; confidence in crowdsourced annotations is only available at training time. In this talk,
| shall review recent approaches to utilize this so-called privileged information in discriminative models. While those applications are
important, the full potential of privileged learning has not yet been explored, both in theory and in practice. Therefore, | shall touch upon the
Privileged Cube that means the privileged learning paradigm in three dimensions: models (non-Bayesian v. Bayesian), learning problems
(non-structured v. structured), and constraints (cost-effective v. transparency). Learning in the Privileged Cube will allow for example making
the deployed system to operate with interpretable features while using complex un-interpretable deep features as privileged data at training
time.

Bnageo

02.06.17

Pre-defence of Skoltech Master students

Valentin Sytov "Deep Neural Descriptors for Image Retrieval"

Ekaterina Yakovleva "Multimodal distributions in variational autoencoders"
llia Yakubovsky "Variational Multilingual Model for Sentence Embedding"
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OceHHnn cemecTtp 2016 T.

B oceHHem cemecTpe 2016 1. cneucemuHap npoxoamT B LLALL no naTHMUaM, Ha4arno B 18-45.

[na nony4veHns nponycka 3apaHee Hanuwmnte hamunmio, uMs n otyectso Muxauny durypHoy (michael@figurnov.ru). Asbik cneuceMmmnHapa —
aHIMUNCKNIA.

Paccbinika cnelcemuHapa, Buaoeo, CTpaHuua cnelcemuHapa Ha machinelearning.ru (apxmB AOKNaa0B

HDarta Joknag4yuvk n tema MaTtepuansl
2.09.16 OmuTtpuin MonyaHoB, marnctp Ckontexa BUAEO, crnanabl
Variational Dropout for Deep Neural Networks and Linear Model
Variational dropout is a recent method to learn optimal dropout rates for a neural network in a bayesian way. During my talk | will tell
about my work with Arseniy Ashuha. Our research was focused on automated learning of dropout rates. We studied this approach on
deep neural networks. Also we applied this approach to linear models and used it for feature selection in a way, similar to automatic
relevance determination in RVM.
9.09.16 CneuceMnHap oTMeHsieTcs u3-3a BhicTynnenunsa Kpucrtoda Jlamnepra 8 ceHTabps.
16.09.16 | Cepren bapTtyHoB, BHelwHUn coBmecTutens PKH BLLIS BUAOEO, cnanabl
One-shot generative modelling
There are many existing approaches to generative modelling which appeared recently such as variational autoencoders or adversarial
networks. However, most state of the art models are able to produce good results (in terms of visual quality or likelihood) only after
extensive training on large datasets. This talk will cover an emerging trend in generative modelling which is often referred to as
one-shot learning, i.e. the ability to learn only on several training examples. In addition, a draft of the new model that can generalize
over different classes of training examples will be presented.
23.09.16 | Kupunn CtpymuHckui, acnnpaHt ®KH BLUD BUAEO, cnanabl
Discrete variational autoencoders
Datasets composed of discrete classes can be naturally captured by probabilistic models with discrete latent variables. However,
usually they are hard to train on large datasets due to a number of reasons. A novel class of probabilistic models, comprising discrete
and continuous latent variables will be introduced. Specifically, in these models discrete component captures the distribution over the
disconnected smooth manifolds induced by the continuous component. What is more, models in this class can be trained by an
extension of variational autoencoder framework.
https://arxiv.org/abs/1609.02200
30.09.16 | Aptém MNageukmn, ctygeHT ®KH BLUS BMAEo, crnangpl
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https://arxiv.org/abs/1609.02200
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https://youtu.be/brcqU7yYhhI
http://bayesgroup.github.io/bmml_sem/2016/AlphaGoTalk.pdf

AlphaGo or how Deepmind taught machine to win

The game of Go has long been viewed as the most challenging of classic games for artificial intelligence owing to its enormous search
space and the difficulty of evaluating board positions and moves. During my talk | will tell about how Deepmind used convolutional
neural networks for reducing effective search space and how networks were combined with Monte Carlo Tree Search.

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
https://arxiv.org/abs/1412.6564

7.10.16

Omntpun Kponotos, HayYHbIn coTpyaHuk BMK MY

Optimizing Neural Nets using Kronecker-factored Approximate Curvature (K-FAC)

In classic optimization, second-order methods and their variants (Hessian-free Newton, natural gradient, L-BFGS and others) forms a
state-of-the-art approach - they do not need any user-tunable parameters and can outperform by far simple strategies like gradient
descent. However, application of these methods in stochastic and non-convex setting (most notable example is learning neural nets)
remains a very challenging problem. Numerous attempts in this field (e.g. stochastic L-BFGS, Hessian-free for deep learning) hasn'’t
led to successful and popular algorithm, and thus many practitioners still prefer using here plain stochastic gradient descent (SGD)
and its simple modifications.

Recently, a new second-order optimization method with Kronecker-factored approximate Fisher matrix (K-FAC) has been proposed.
One of the key advantages of this method is its high-quality approximation for full Fisher matrix based on information from stochastic
mini-batches. The iteration complexity and memory cost of the method is only a constant factor higher comparing to SGD. However,
thanks to using second-order information, in practice the new method requires several orders less iterations for convergence and has
no problem-specific parameters.

In my talk, | tell about basics of natural gradient approach, K-FAC approximation ideas and introduce the resulting algorithm for
optimization of fully connected neural networks. Besides, | give a glimpse on KFC approximation - a recent modification of these
method for convolutional networks.

BMOEO, cnangsbl

14.10.16

OMuTpui YnbsHoB, acnupaHT Ckontexa

Image artistic style transfer, neural doodles and texture synthesis

A recent advances in image style transfer allowed incredible end-user applications. At first, Gatys et al. demonstrated that deep neural
networks can generate beautiful textures and stylized images from a single example. The core idea of the method was used then to
create so-called neural doodles. While the visual quality of both style transfer and neural doodles was astonishing, the methods
required a slow and memory-consuming optimization process, which limited their usage. We lately improved the speed of both
algorithms significantly, while preserving the quality. This allowed almost real-time stylization using GPU, the method was used as a
core technology in several successful applications. In this talk we overview and discuss the mentioned algorithms.

BMUOEO, crnanabl

21.10.16

Bnag Waxypo, acnmpaHt ®KH BLU3

Training generative neural networks using Maximum Mean Discrepancy

There are several approaches to training generative models based on neural networks. The most popular are variational autoencoder
and adversarial networks. In this talk | tell about alternative approach for training generative models. It is based on technique from
statistical hypothesis testing known as maximum mean discrepancy (MMD). Such technique leads to a simple loss function that tries
to match all orders of statistics between training dataset and samples from the model which can be trained by backpropagation.
Compared to GAN, training with MMD loss function is easier. One doesn’t have to design a discriminator and no tricky alternating
training procedure is required.

https://arxiv.org/pdf/1502.02761v1.pdf https://arxiv.org/pdf/1505.03906v1.pdf https://arxiv.org/pdf/1606.02556v4.pdf

BMOEO, crnanabl

28.10.16

Brnagnmup CnokonHbld, WIAS and Humboldt University Berlin

BUOEO, crnanabl
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http://bayesgroup.github.io/bmml_sem/2016/AWC_2016_Repino.pdf

Clustering using adaptive weights

The paper discusses a new method of unsupervised learning for high dimensional data based on the idea of adaptive weights from
Polzehl and Spokoiny (2000). The procedure recovers the unknown clustering structure without any prior information about the
number of clusters, their size, distance between clusters, etc.The approach extends the popular k-mean and density based clustering
procedures by using dynamically updated local weights. Theoretical results describe two major features of the method: propagation
within a homogeneous region and separation between two different regions. Numerical results show state-of-art performance of the
new procedure.

4.11.16 BbixogHom
11.11.16 | Anekcangp NacHukos, MOTU BUAEO, cnanarbl
COBpeMeHHbIe YUCIIEHHbIE MEeTOAbI CTOXaCTNYeCKOW onTuMmn3aumm n nxX NnpunoxxXxeHmnd
B noknage nonget peyb O TOM Kak C MOMOLLIbIO CTOXaCTUYECKOW ONTUMMU3ALMM MOXKHO pellaTb 3adaqv MaTeMaTUyYecKom CTaTUCTUKK
(arpermpoBaHune OLEHOK) 1 CTaTUCTUYECKON Teopumn obydeHns. [oknag OyaeT HoCUTb 0630PHbLIN XapaKkTep.
18.11.16 | B.C. CmonuH, MM um. M.B. Kengbiua PAH BMOEO, cnansbl
TabnunyHoe NpeacTaBneHne 1 MHTEPNoNMpoBaHne PyHKLMIA HENPOCETAMM
lMpennaraeTcst HECKONbLKO MAEN MaTteMaTUYEeCcKoro onMcaHusa Kak cammux ceten popmarnbHbIX HEMPOHOB, TaK U BbIMOMHAEMbIX B HUX
npeobpasoBaHUii, NO3BOMSIOLLMX MyyLLe NOHATbL XapakTep 06paboTkm nHpopmaumn B HerpoceTax. [MpoBoanTCs aHanornsa Mexay
TabrnmMyHOM yHKUMEN N HEMPOCETLIO.
PaboTbl No pasBuTMO YHMBEPCANbHOM anmnpoKCUMaLMOHHON TeopeMbl A (YHKUUA MHOTUX NepeMEeHHbIX BEAYTCA AaBHO, HaYMHas C
pabot KonmoropoBa 1 ApHonbaa B 1956-7 rogax, nonyyeH psi, UHTEPECHbIX pe3ynbTaToB, HO LUMPOKOro NMPUMEHEHUS HEMpPOCETEBbIE
annpoKcUmaTopbl NoKa He Noy4Yuu.
3TO CBSI3aHO C HeOCTATOYHOM pa3paboTKOM TakMx BOMPOCOB annpokcuMaumum yHKLUMUIA MHOTUX NEPEeMEHHbIX, Kak NPOKnsTMe
pasmMepHoCTH, NpeobpasoBaHme PYHKLUMIA K MOHOTOHHOMY BUAY, 3afaHne LeneBbix yHKUMIA 1 OQHOSKCTPpeMaribHOCTb agantauum,
macLitab nporHosnpoBaHusi. O6eykaarTcs BO3MOXKHbIE NMYTU PELLUEHNS BbILLENEPEUNCIIEHHBIX N HEKOTOPBIX CBA3AHHBLIX C HUMMU
BOMPOCOB U HA OCHOBE PacCMOTPEHMUS AeNnatoTcs NpeanoXxeHust 06 Ncnonb3oBaHUM annpoKCUMUPYHOLLMX HEMPOCETEN ANsi peLUEHNS
LUMPOKOTO Kpyra NpuKnagHblX 3agau.
25.11.16 | Anekcangp lNanHuH, Yandex Data Factory BUAEO, crianibl
Variational Information Maximizing Exploration
When it comes to solving practical problems, performance of reinforcement learning algorithms usually depends highly on efficient
environment exploration. However, classical exploration strategies (e-greedy, boltzmann) have several common drawbacks that
jeopardize training speed. Informally, if you want to learn to program in java, having already learned python, randomly mistyping 10%
of characters (e-greedy) and keeping those that compiled will likely yield poor results. We'd like to describe a method devised by
Abeel et. al that tackles this problem by means of variational inference.
2.12.16 CneuceMnHap OTMeHsIeTCS M3-3a BhicTynnenus MNurepa PuxTtapuka B AHOeKce.
9.12.16 Bce ywnu Ha NIPS...
16.12.16 | OaHwun lMonbikoBckuin, ctyaeHT BMK MI'Y BMOEO, cnangsbl

Neural networks. from: LSTM, to: Neural Computer
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Some essential problems (like sequence sorting, copying and reversal) can not be solved with vanilla LSTM networks, however
standard algorithms and data structures can do that. Fusion of these two worlds can expand a class of solvable problems. ML backed
up with data structures is one first steps forward to that vision. Recently proposed Neural Turing Machines, Neural Data Structures

and Differentiable Neural Computers are currently one of candidates for a soon break-through. For example, problems with structured
data such as finding the shortest path can be solved with these techniques.

23.12.16 | 3a4€T no cneucemuHapy (4ns CTYAEHTOB rpynmbl).
27.12.16 | HoBorogHui konnokeuym no ctatbsim ¢ NIPS 2016

Konnoksuym npongét Ha ®KH BLUD B aya. 205 ¢ 15:10 go 19:00. Cnncok ctaTern CM. HUXe
30.12.16 | MNMepecpada 3a4éTa No cneuceMmmnHapy (ans CTyaAeHTOB rpynnbl).

CTtaTbM Ha HOBOrOAHEM KOMMOKBUYME: BUAEO YacTb 1 YacTb 2

Jdoknaguuk

Awyxa

Betpos

Fapwres

HoBukoB
Wrnatos [.U.

JlobayeBa

MonyaHoB
Hekntogos
Hosunkos
MogonpuxuH
Cokonos
CTpyMUHCKMIA

®urypHoB

Cratbs

Learning Structured Sparsity in Deep Neural Networks
The Generalized Reparameterization Gradient

Residual Networks Behave Like Ensembles of Relatively Shallow Networks
Something interesting from tensor-learn.org workshop @ NIPS

Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural
Networks

Variance Reduction in Stochastic Gradient Langevin Dynamics

Boosting Variational Inference

Using fast weights to attend to the recent past

Learning to Play in a Day: Faster Deep Reinforcement Learning by Optimality Tightening
Sequential Neural Models with Stochastic Layers

Operator Variational Inference/Stein Variational Gradient Descent

Doubly Convolutional Neural Networks

https://papers.nips.cc/paper/6504-learning-struct

r

http://papers.nips.cc/paper/6328-the-generalized-

- rsity-in-

Ccblinka

-neural-network

reparameterization-gradient.pdf

https://arxiv.org/abs/1605.06431

https://arxiv.org/abs/1602.07868

http://papers.nips.cc/paper/6293-variance-reducti
on-in-stochastic-gradient-langevin-dynamics.pdf

https://arxiv.org/pdf/1611.05559v1.pdf

https://arxiv.org/abs/1610.06258

https://arxiv.org/abs/1611.01606

https://arxiv.org/pdf/1605.0757 1v2.pdf

https://arxiv.org/pdf/1610.09033v2.pdf

https://arxiv.org/abs/1610.09716
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