Summary: On this episode of *Critical Care Time*, Cyrus and Nick go beyond the basics of vasopressor management. During this episode - jam-packed with high-yield pearls - we discuss important topics such as how to titrate vasopressors, what can be done when vasopressors seem to be failing a patient and how to wean patients from vasopressors in order to successfully get them out of the ICU and ultimately home. Sit back, relax, and enjoy this hour long master-class on Vasopressors - Beyond the Basics!

Quick Take Home Points:

- 1. **Many patients will need more than one vasopressor** to get through their hospitalization
- 2. For most folks, vasopressin is the best 2nd line vasopressor
- 3. Consider starting steroids hydrocortisone AND fludrocortisone in patients with septic shock who require a second vasopressor
- Always consider reasons for persistent shock these can include conditions such as adrenal insufficiency, undrained/untreated infection, stress cardiomyopathy or the very-important-but-oft-misunderstood dynamic LVOT obstruction
- 5. When starting a third-line pressor, use this opportunity to **once again** consider untreated causes for persistent shock, but also **consider a trial of a vasodilator scavenger** as well as that third pressor
- For most patients, the third pressor should be epinephrine, although there is a place for other agents such as phenylephrine, perhaps angiotensin II, and even-but-probably-not dopamine
- 7. **Exit strategies are important:** don't forget to de-resuscitate a patient who has gotten significant volume resuscitation if indicated (persistent oxygen requirement with evidence of pulmonary edema, for example) and have a strategy for managing patients who are a "tough wean" from vasopressors (stop norepinephrine before vasopressin, think about confounding conditions, consider midodrine)

Show Notes:

- 1. Initial approach to a person who is failing their first-line vasopressor therapy?
 - a. Consider assessing, again, for volume responsiveness (250cc rapid fluid bolus vs passive-leg raise test, in conjunction with invasive cardiac output monitoring, non-invasive cardiac output monitoring and/or point of care ultrasound - aortic VTI assessment, carotid VTI assessment, etc.)
 - b. Low threshold to add a second line vasopressor almost universally vasopressin
- 2. What's so cool about vasopressin?
 - a. Why? **There is no** *maximum dose* **of norepinephrine**, however, the law of diminishing returns likely plays a role at some point you are saturating most

catecholamine receptors, and thus, it makes sense to approach a patient - especially in septic shock - through a different mechanism

- b. There is evidence that, at increasing doses of norepinephrine, not only do returns diminish, but problems can arise such as:
 - i. Increased tissue oxygen demand
 - ii. Decreased renal blood flow
 - iii. Decreased mesenteric blood flow
 - iv. Increased pulmonary vascular resistance which → worsening RV function
 - v. Increased tachyarrhythmias
- c. There is some data to suggest patients in septic shock suffer from an <u>acute</u> <u>deficiency</u> of endogenous vasopressin
- d. Collectively, this portends a synergistic effect between catecholamine and non-catecholamine vasopressors
 - i. *LANDMARK TRIAL ALERT* The VASTT Trial
 - 1. ICU patients with septic shock on at least 5mcg/min NE randomized to starting vasopressin vs increasing NE
 - 2. Early vasopressin group **trended** towards a mortality benefit (i.e. non-significant) but technically did not yield a mortality benefit
 - However In the subgroup with less severe shock (NE<14mcg/min), mortality was ~10% lower at 30 and 90 days when vasopressin was added early → NNT of 10
- 3. What's the deal with steroids in septic shock?
 - a. *Potential* for acute adrenal insufficiency in septic shock, resulting in a relative glucocorticoid deficiency, which can cause problems...
 - i. This is **not** cut and dry!
 - Much more support for adrenal insufficiency in those who are critically ill for 5-7 days or longer, than those who have a rapidly uptrending pressor requirement
 - ii. <u>Check out this great discussion</u> regarding the history of glucocorticoid deficiency in septic shock
 - b. Steroids do a few things...
 - Increase ligand-receptor interactions between catecholamines and catecholamine receptors, and increase transcription of those receptors receptors, making a patient more receptive to catecholamine therapy
 - ii. <u>In animal models</u>, induced glucocorticoid receptor deficiencies have catastrophic outcomes when it comes to laboratory induced septic shock vs non-knock out populations
 - c. What's out there?
 - i. Steroids in septic shock selected studies
 - Ananne Trial 2002: Reduction in 28 day mortality with hydrocortisone + fludrocortisone, criticized due to wide-spread use of etomidate in these patients

- 2. <u>CORTICUS</u> 2008: Hydrocortisone expedited shock-reversal without a mortality benefit
 - a. Fludrocortisone was not used
- HYPRESS 2016: Hydrocortisone did not have any significant impact on mortality or shock reversal, resulted in increased hyperglycemia, may have improved rates of delirium (somewhat of an unusual finding given conventional wisdom as pertaining to steroids in the inpatient setting and the signal for delirium)
 - a. Fludrocortisone was not used
 - b. Very heterogeneous patient population as far as primary diagnosis, making subgroup analysis difficult
- APROCCHSS 2018: In those with septic shock who received hydrocortisone and fludrocortisone, all-cause mortality at 90 days was significantly improved vs those who did not
- ADRENAL 2018: In those with septic shock who received a continuous infusion of hydrocortisone for their shock (no fludrocortisone) there was no mortality benefit seen, but there may be improvements in some secondary outcomes such as time to extubation, or ICU LOS
 - a. Continuous infusions are not physiologic
- JAMA Meta-Analysis 2023 Hydro + Fludro vs Hydro Alone in Septic Shock:
 - a. Nearly 90,000 patients included
 - b. Composite Outcome: in-hospital death OR discharge to hospice
 - c. >8% absolute risk reduction (p<0.001) in those treated with hydrocortisone & fludrocortisone vs hydrocortisone alone
- ii. Steroids in respiratory diseases
 - <u>CAPE-COD Trial</u>: Patients with severe CAP in the ICU who
 received hydrocortisone had improved mortality vs those that
 received placebo
 - RECOVERY: Patients with COVID pneumonia who were hospitalized, with an oxygen requirement, had improvement in 28 days mortality
- 4. So you've added vasopressin **and** steroids... but the patient still isn't getting better.
 - a. Considerations
 - i. Go to the beside and re-evaluate the patient
 - Use point-of-care ultrasound to interrogate the heart, the lungs, and any other areas that could be hiding an untreated source of infection, or site of hemorrhage

- a. Some basic things to look for: pericardial effusion / tamponade (not that subtle), pneumothorax with tension physiology (*really* not that subtle), perinephric abscess, empyema/loculated pleural effusion.
- b. More advanced concepts: assess for evidence of cardiogenic shock
 - i. LV function via global assessment, LVOT VTI
 - ii. RV function via TAPSE, RVOT VTI
 - iii. Assess for dynamic LVOT obstruction
- ii. Undrained source of infection?
 - 1. Abscesses aren't well treated with antibiotics especially those that are larger than 5cm
 - a. First: Look with U/S and see if you find anything, then consider a CT scan to further interrogate an U/S finding or to identify something that your U/S missed
 - b. Second: Think about broadening coverage if the clinical context suggests that would be helpful
- iii. Stress Cardiomyopathy?
 - 1. Sepsis-induced myocardial dysfunction (SIMD)
 - Reversible myocardial depression, usually seen in the LV but may manifest as systolic and diastolic, right and left sided, cardiac dysfunction that contributes to a patient's shock state
 - b. May be seen in up to 40% of patients with septic shock, portends a worse outcome.
 - 2. Sepsis-induced takotsubo cardiomyopathy
 - a. "Aka apical ballooning syndrome"
 - b. "...generally characterized by reversible systolic dysfunction of the apical and/or mid segments of the LV, with a presentation mimicking myocardial infarction"
 - c. Severe LV dysfunction, *usually* without biomarker elevation
 - d. ST-elevations can be seen and make this difficult to differentiate from STEMI - especially given presence of chest pain, even more so if biomarker elevation is present
 - e. Reversal often seen on echo within weeks of sepsis resolution
 - 3. Tips
 - a. Increased SVR can unmask these processes
 - b. Consider using **inotropes** such as dobutamine to support these patients until their cardiac function improves
- iv. Dynamic LVOT Obstruction

- 1. Seen in a few scenarios...
 - a. A hypertrophic LV (perhaps due to long-standing hypertension) is generally associated with a narrowed LVOT and may set the stage
 - b. Classically seen in those with **hypertrophic (obstructive)** cardiomyopathy
 - c. Can also be seen in scenarios where the changes in loading conditions can lead to the development of a gradient between LV & LVOT
 - i. Examples: hypovolemia, hypotension, increased HR / inotropy
- 2. The narrowed LVOT results in an increased pressure gradient with respect to the LV relative to the aorta
- Blood travels through the narrow LVOT at a pathologically high velocity, which can pull the papillary muscles into the LVOT with every ejection of blood, resulting in systolic anterior motion of the mitral valve (aka SAM) which leads to further narrowing of the LVOT and mitral regurgitation
- 4. These patients are often asymptomatic at baseline, may have subtle/mild symptoms with exertion, but can often have their disease unmasked during critical illness - especially when inotropes increase LV contractility, thereby increasing the gradient and ultimately causing a dynamic LV outflow obstruction to manifest
- When to suspect: Patient who gets worse with increasing doses of pressors (or "vasopressor refractory shock"), + ?new systolic murmur, + ?new pulmonary edema due to mitral regurgitation
 - May also see a very narrow pulse-pressure due to reductions in stroke volume (SV proportional to PP)
- 6. Diagnosis: POCUS!
 - a. High-velocity, late-peaking continuous-wave doppler signal across the LVOT (dagger shaped tracing)
 - i. V usually > 300cm/sec
- 7. Treatment
 - a. Correct hypovolemia if relevant
 - b. **Increase afterload** without increasing inotropy (consider phenylephrine, vasopressin, angiotensin II)
 - c. Stop inotropes if patient is on them
 - d. Consider beta blockade
- v. Anaphylaxis?
 - Review medications did this patient get started on something new?

- Anaphylaxis can be cryptic in patients with a secure airway who are sedated
- Consider a trial of therapy (anti-histamines, steroids if not on them, epinephrine) and assess for response if you cannot definitively rule out anaphylaxis

vi. Acidosis?

- Acidosis contributes to <u>decreased smooth muscle tone</u> which contributes to stubborn vasodilation
- 2. Acidosis contributes to <u>a negative inotropic effect</u> on the heart resulting in varying degrees of pump failure
- Acidosis <u>impairs the ability of vasopressors</u> to interact with their respective receptors
- 4. Treatments?
 - a. Increase minute ventilation on the ventilator
 - b. Consider bicarbonate boluses & infusion
 - c. Consider continuous renal-replacement therapy

vii. Vasoplegia?

- "... a condition characterized by persistent low systemic vascular resistance despite a normal or high cardiac index, resulting in profound and uncontrolled vasodilation."
 - A bit of a wastebasket term in some respects, that describes persistent shock despite augmented cardiac function
- 2. This may be better understood when viewed from the paradigm of an imbalance between vasoconstrictive and vasodilatory factors, such as <u>nitric oxide</u>, <u>adenosine</u>, <u>prostanoids and endothelins</u>
- 3. Treatment includes all the aforementioned interventions, plus the use of nitric oxide scavengers
- b. Once you've appropriately assessed the patient and considered the above causes for refractory shock, it's appropriate to focus on "defending the MAP" once again, and to do this, we recommend two interventions in general
 - i. Adding a third pressor usually epinephrine
 - 1. Epinephrine provides inotropy more so than norepinephrine as well as afterload augmentation
 - a. At increasing doses, it can be problematic by increasing the frequency of tachyarrhythmias
 - 2. Dopamine has generally fallen out of favor due to numerous studies (SOAP-II) due to trends towards increased mortality and a strong tendency to cause tachyarrhythmias
 - a. May have a role in bradycardic patients?
 - 3. Phenylephrine may be helpful especially in dynamic LVOT obstruction or in patients who are tachycardic (ex A-Fib with RVR)

- a. Will not provide any cardiac support in the setting of stress cardiomyopathy
- 4. Angiotensin II
 - a. Only major study involved AT2 vs Placebo
 - b. Beneficial with those who have high renin levels but are not producing endogenous angiotensin
 - Unfortunately using a renin-assay to guide therapy is impractical for most
 - c. Often not available on hospital formularies
 - d. When available... the drug is somewhat expensive although this has been mitigated by the company as of late through provision of test-doses that can be trialed rather than larger quantities
 - e. Sometimes this is a fine option, the issue is "...it's hard to know *a priori* who will respond and who won't."
- ii. Vasodilator scavengers can be helpful to treat underlying "vasoplegia" specifically the element of increased vasodilators relative to vasoconstrictors
 - 1. Methylene Blue
 - a. Nitric oxide scavenger
 - b. <u>Increases MAP, increases SVR, decreases vasopressor</u> requirement
 - At least one 2022 <u>meta-analysis</u> suggests decreased mortality when added to vasopressors in those with distributive shock
 - d. May even be a <u>role for early use</u> (first 24 hours) in septic shock
 - e. Results in green/blue urine
 - 2. Hydroxycobalamin
 - a. Nitric oxide scavenger & hydrogen sulfide scavenger
 - b. Less evidence versus methylene blue
 - Results in dark-red urine, which can trick dialysis machines into thinking blood is leaking into the dialysate and therefore may severely hamper efficiency
- 5. De-resuscitation and weaning from vasopressors
 - a. De-resuscitation
 - i. Patients often receive fluids perhaps overzealous amounts of fluids as part of their resuscitation
 - ii. Patients in shock generally have a low MAP, and if they have been overly "tanked-up" they may have a normal-to-high CVP resulting in a low renal perfusion pressure, which may in turn limit their ability to maintain fluid balance through consistent UOP

iii. Once the shock state has resolved, a patient may need some degree of diuresis (usually a loop diuretic) to mobilize extravascular fluid (especially resuscitation associated pulmonary edema)

b. Weaning

- i. Move the goalposts
 - 1. Remember "<u>The 65 Trial</u>" and how, in some populations, it may be reasonable to target a lower MAP goal
 - If a patient is asymptomatic and able to participate in PT for example - at a lower MAP, then that may be an acceptable number for that patient
 - 3. What is worse is chaining a patient to the bed due to what is now asymptomatic hypotension without signs of shock, because of the number... thereby adding to their likelihood of sarcopenia & ICU-associated debility
- ii. Wean in the right order
 - Evidence suggests that weaning norepinephrine before vasopressin will get folks off pressors faster than the reverse
- iii. Consider persistent causes for hypotension and treat them
 - Chronic adrenal insufficiency or hypothyroidism can be masked by critical illness
 - 2. Consider these diagnoses in those who have a lingering pressor requirement, and initiate treatment for them if present
- iv. Consider midodrine if not already done!
 - 1. Oral midodrine may liberate patients more quickly from the ICU
 - A single center, retrospective study in one ICU demonstrated a significant reduction in vasopressor requirement and ICU length of stay
 - 3. MIDAS Trial: midodrine was NOT helpful in regards to liberating patients from the ICU and vasopressor requirements
 - 4. There is an ongoing RCT (<u>LIBERATE</u>) looking at this question, again, hoping to expand on the work done in MIDAS
 - 5. Based on available data and an overall favorable risk-to-reward ratio, we recommend using midodrine...
 - a. ...either early in patients who are thought to be at risk for needing a prolonged vasopressor course (more elderly patients with more comorbid conditions)
 - b. ... or as a means to wean from vasopressors in a more "reactionary" manner, to facilitate PT and ICU discharge
 - 6. **Important: Make sure the midodrine is STOPPED prior to discharge** or a plan is in place for midodrine management once discharge occurs

a. Do not make the mistake of sending home a patient on their antihypertensives and midodrine!!!

SoMe.:

1. Follow Nick on X/Twitter via @nickmark & Cyrus via @Askins Razor

2. Follow Critical Care Time!

a. X/Twitter: @CritCareTime
b. Instagram: critical care time
c. Threads: critical care time
d. YouTube: Critical Care Time

REFERENCES (To be pasted under references on the site):

- 1. Ukor IF, Walley KR. Vasopressin in vasodilatory shock. Crit Care Clin. 2019;35(2):247-261.
- 2. Patel BM, Chittock DR, Russell JA, Walley KR. <u>Beneficial effects of short-term vasopressin infusion during severe septic shock</u>. Anesthesiology. 2002;96(3):576-582.
- 3. Russell JA, Walley KR, Singer J, et al. <u>Vasopressin versus norepinephrine infusion in patients with septic shock</u>. N Engl J Med. 2008;358(9):877-887.
- 4. Téblick A, Gunst J, Van den Berghe G. <u>Critical illness-induced corticosteroid insufficiency: what it is not and what it could be.</u> J Clin Endocrinol Metab. 2022;107(7):2057-2064.
- 5. Gibbison B, López-López JA, Higgins JPT, et al. <u>Corticosteroids in septic shock: a systematic review and network meta-analysis.</u> Crit Care. 2017;21(1):78.
- 6. Collins S, Caron MG, Lefkowitz RJ. <u>Beta-adrenergic receptors in hamster smooth muscle cells are transcriptionally regulated by glucocorticoids.</u> J Biol Chem. 1988;263(19):9067-9070.
- 7. Goodwin JE, Feng Y, Velazquez H, Sessa WC. <u>Endothelial glucocorticoid receptor is required for protection against sepsis.</u> Proc Natl Acad Sci USA. 2013;110(1):306-311.
- 8. Annane D, Sébille V, Charpentier C, et al. <u>Effect of treatment with low doses of hydrocortisone</u> and fludrocortisone on mortality in patients with septic shock. JAMA. 2002;288(7):862-871.
- 9. Sprung CL, Annane D, Keh D, et al. <u>Hydrocortisone therapy for patients with septic shock.</u> N Engl J Med. 2008;358(2):111-124.
- 10. Keh D, Trips E, Marx G, et al. <u>Effect of hydrocortisone on development of shock among patients</u> with severe sepsis: the hypress randomized clinical trial. JAMA. 2016;316(17):1775-1785.
- 11. Annane D, Renault A, Brun-Buisson C, et al. <u>Hydrocortisone plus fludrocortisone for adults with</u> septic shock. N Engl J Med. 2018;378(9):809-818.
- 12. Venkatesh B, Finfer S, Cohen J, et al. <u>Adjunctive glucocorticoid therapy in patients with septic shock.</u> N Engl J Med. 2018;378(9):797-808.
- 13. Bosch NA, Teja B, Law AC, Pang B, Jafarzadeh SR, Walkey AJ. <u>Comparative effectiveness of fludrocortisone and hydrocortisone vs hydrocortisone alone among patients with septic shock.</u> JAMA Internal Medicine. 2023;183(5):451-459.
- 14. Dequin PF, Meziani F, Quenot JP, et al. <u>Hydrocortisone in severe community-acquired pneumonia</u>. N Engl J Med. 2023;388(21):1931-1941.

- 15. The RECOVERY Collaborative Group. <u>Dexamethasone in hospitalized patients with covid-19.</u> N Engl J Med. 2021;384(8):693-704.
- 16. Lv X, Wang H. <u>Pathophysiology of sepsis-induced myocardial dysfunction. Mil Med Res.</u> 2016;3:30.
- 17. Zhang H, Liu D. <u>Sepsis-related cardiomyopathy: Not an easy task for ICU physicians.</u> J Intensive Med. 2022;2(4):257-259.
- 18. Aalkjaer C, Peng HL. Ph and smooth muscle. Acta Physiol Scand. 1997;161(4):557-566.
- 19. Poole-Wilson PA. Acidosis and contractility of heart muscle. Ciba Found Symp. 1982;87:58-76.
- 20. Schotola H, Toischer K, Popov AF, et al. <u>Mild metabolic acidosis impairs the β-adrenergic response in isolated human failing myocardium</u>. Critical Care. 2012;16(4):R153.
- 21. Ratnani I, Ochani RK, Shaikh A, Jatoi HN. <u>Vasoplegia: a review</u>. Methodist Debakey Cardiovasc J. 2023;19(4):38-47.
- 22. De Backer D, Biston P, Devriendt J, et al. <u>Comparison of dopamine and norepinephrine in the treatment of shock.</u> N Engl J Med. 2010;362(9):779-789.
- 23. Sakr Y, Reinhart K, Vincent JL, et al. <u>Does dopamine administration in shock influence outcome?</u> Results of the sepsis occurrence in acutely ill patients (Soap) study. Crit Care Med. 2006;34(3):589-597.
- 24. Khanna A, English SW, Wang XS, et al. <u>Angiotensin ii for the treatment of vasodilatory shock</u>. N Engl J Med. 2017;377(5):419-430.
- 25. Kwok ESH, Howes D. <u>Use of methylene blue in sepsis: a systematic review.</u> J Intensive Care Med. 2006;21(6):359-363.
- 26. Zhao CC, Zhai YJ, Hu ZJ, Huo Y, Li ZQ, Zhu GJ. Efficacy and safety of methylene blue in patients with vasodilatory shock: A systematic review and meta-analysis. Front Med (Lausanne). 2022;9:950596.
- 27. Ibarra-Estrada M, Kattan E, Aguilera-González P, et al. <u>Early adjunctive methylene blue in</u> patients with septic shock: a randomized controlled trial. Crit Care. 2023;27(1):110.
- Lamontagne F, Richards-Belle A, Thomas K, et al. Effect of reduced exposure to vasopressors on 90-day mortality in older critically ill patients with vasodilatory hypotension: a randomized clinical trial. JAMA. 2020;323(10):938-949.
- 29. Wu Z, Zhang S, Xu J, et al. <u>Norepinephrine vs vasopressin: which vasopressor should be discontinued first in septic shock? A meta-analysis</u>. Shock. 2020;53(1):50-57.
- Levine AR, Meyer MJ, Bittner EA, et al. <u>Oral midodrine treatment accelerates the liberation of intensive care unit patients from intravenous vasopressor infusions.</u> J Crit Care. 2013;28(5):756-762.
- 31. Santer P, Anstey MH, Patrocínio MD, et al. Effect of midodrine versus placebo on time to vasopressor discontinuation in patients with persistent hypotension in the intensive care unit (Midas): an international randomised clinical trial. Intensive Care Med. 2020;46(10):1884-1893.
- 32. Whitson MR, Mo E, Nabi T, et al. <u>Feasibility, utility, and safety of midodrine during recovery phase from septic shock</u>. Chest. 2016;149(6):1380-1383.

This episode, and all episodes in season 1 of Critical Care Time, is sponsored by SeaStar Medical. SeaStar Medical is advancing the science of cell-directed extracorporeal therapy to help restore the balance of a dysregulated immune system in acute kidney injury and sepsis. Check out their website, <u>seastarmedical.com</u>, to learn more!