

Project Report for Bachelor's Degree

Implementation of Touchless Touchscreen
Technology in the Form of an Android

Application

By

Erfan Sadigh Nejati

Supervised by

Dr. Jafar Razzm Ara

Computer Science Department

University of Tabriz

Tabriz, Iran

Winter - Spring

 2023

Abstract

The Touchless technology provides the ability to interact with a system

without any physical contact. However, since this technology is not easily

accessible to everyone and can be costly if available, in this project, we aim to

implement this technology using software on an Android-based device. This

implementation will allow users to interact with various types of displays,

regardless of whether the display itself supports touch capabilities or not and

regardless of its dimensions, by using touchless gestures. This will be achieved

without incurring significant expenses.

1. Introduction
When we place our finger on the screen, in order for the touching action

to occur, in general, there are two actions of generating and sending the touch

event that the operating system must handle. The touch event is generated

when we place our finger on the desired screen and its position is calculated

based on where we have kept our finger on the screen. In this project, as there

is no place for the finger to hit, I have used hand gestures using ML solutions to

announce the position of the finger, and the next step is to calculate the

position to the system. The agent is informed to perform the necessary

reaction to perform the touch action, which in this project, in order not to

install interface software for each target system on which the touch action is

supposed to occur, I have used the HID protocol provided by the USB company

and by implementing it on BLE technology, which at the same time provides

the least possible friction for the user and reduces the complexity of the

implementation.

1.1. Requirements

​ One device with a minimum Android 9 operating system with a

mid-range processor.

2

2. Touch Event Generation

To make the operating system perform the touch action, we first need to

deliver the touch event. In this project, I have utilized the device's camera

sensor and started with a basic idea, gradually refining it to achieve the desired

result.

2.1. Static Frame, OpenCV & Wemos Board, External Processing
​ In this idea, using the image captured by the camera sensor, the corners

of the desired display screen were manually identified. Then, with the help of a

colored cap on the fingertip, I indicated the relative position on the screen. The

image processing, aided by the OpenCV library, was performed in a Python

program within the target system. The Android software was responsible for

sending camera frames to the software through a socket, while the actual

image processing was done within the Python program.

And in order to inform the software on the target system that the target time is

the position where we want the touch action to occur, I have taken the help of

the Wemos D1 Mini board, which by creating a Socket and releasing a

3

sequence of characters 0 and 1 that was created after pressing the button

connected to it, the sending part of the software, by receiving them,

performed the Release and Press actions on the position of the generated

event.

In this idea, there were some fundamental challenges observed, such as

inaccurate calculation of the event position in the presence of objects with the

same color as the colored cap in the environment, and the inability to detect

the colored cap accurately under varying lighting conditions.

2.1. Static Frame, MediaPipe, External Processing
​ The MediaPipe library, by providing a series of pre-trained machine

learning models, allows us to track all the hand landmarks accurately. This

proves to be an outstanding solution for the challenges we faced with object

detection and noise from objects with similar colors when using the color

detection algorithm from the OpenCV library.

4

As a result, I rewrote the code related to finger-tip detection using the

MediaPipe library. Additionally, utilizing this library eliminated the need for the

Wemos D1 Mini board to inform the system about "Press" and "Release"

actions for touch event positions. Instead, I removed the Wemos board entirely

from the project, as I could now measure the distance between the fingertips

of the hand and the point of touch. By setting a condition that if the distance

between the fingertips is less than a certain threshold value, it signifies "Press,"

otherwise, it indicates "Release." This simplified approach allowed me to

achieve the desired touchless interaction without the need for external

hardware like the Wemos board.

The implementation of the MediaPipe library not only reduces the system

resource consumption by the software, consequently eliminating the need for

a separate thread to monitor the event status from the received socket data

but also simplifies the implementation complexity by eliminating the use of the

Wemos D1 Mini board. This is because there is no longer a requirement to

delve into hardware programming concepts. As a result, the overall cost of

implementing the project is reduced as well.

5

2.3. Dynamic Frame, MediaPipe, External Processing
Determining the static frame of the display during the program's

execution on the target system posed a challenge as it resulted in a poor user

experience in various scenarios. For example, if the Android device is shaken or

if the user prefers to hold the phone in hand, the process of determining the

static frame needs to be repeated. To address these issues, I decided to

automate this process.

To achieve this, I started by exploring the idea of detecting a specific

shape that is attached to the corners of the desired display screen. This shape

would act as a marker to identify the static frame. Since ML-based solutions

were proving to be efficient in various aspects, I decided to use the Tensorflow

framework to train a machine learning model for object detection. This allowed

me to efficiently detect the specific shape and automate the process of

determining the static frame, improving the project's overall efficiency.

I was able to train a model with the help of the tutorials available in this regard,

but because, firstly, I had no practical experience in this field before, and I had

taken help from YouTube videos to build the model, and I was not specialized in

the concepts of model optimization and how to do it, and the time frame of

the project was limited, I could not learn them. With poor hardware resources,

it did not meet my expectations. As a result, I came across ArUco markers as an

alternative solution. As their name suggests, these markers are used in AR

technology, and the OpenCV library, by providing a series of functions, gave

developers the option to generate different examples of it and use it to detect

the position.

6

This solution simultaneously demonstrates excellent performance in detecting

while consuming minimal hardware resources, and its implementation is

straightforward by writing a few lines of code.

2.4. Dynamic Frame, MediaPipe, Internal Processing
As a result, transferring the frames generated by the camera sensor

through a socket using Wi-Fi caused delays and even dropped frames, leading

to unintended touch events. Additionally, it introduced extra overhead to the

device, as the frame transfer occurred twice, once from GPU to CPU and then

from CPU to the socket, resulting in increased energy consumption and

elevated device temperature, affecting the overall performance of the frame

transfer process.

Moreover, the dependency on a router device as an intermediary for

data transfer between the Android device and the target system, along with

the mandatory installation of intermediary software for image processing,

reduced the cross-platform capabilities of the project. To address these issues, I

moved the entire image processing process responsible for generating touch

events to the Android device.

The use of the MediaPipe library provided an efficient solution as it

offered cross-platform support and easy implementation with the Kotlin

programming language for Android. By passing the received camera frame

7

through the available API to the analyzer and receiving the results through a

callback, the image processing task was handled within the device. Additionally,

I decided to use ArUco markers as an alternative solution. The OpenCV library

facilitated this by providing a set of functions for generating and detecting

ArUco markers, which are widely used in Augmented Reality (AR) technology.

Throughout multiple trials, I discovered that the position of the hand in

relation to the camera often led to obscuring some fingers, particularly when

they were close together or separated. This required the model to predict the

positions of the obscured fingers, leading to noisy finger positions. To address

this, I needed to normalize the finger positions with a higher threshold, which

resulted in a delay in finger tracking. To mitigate this issue, I decided to use the

middle finger instead of the index finger, as it offered a more complete hand

view in the camera's field of view, reducing the need for extensive

normalization.

Furthermore, changes in the distance between the hand and the camera

resulted in unintended touch events, as the size metric used in a fixed depth

from the camera became unreliable. To counteract this, I introduced an

additional criterion by measuring the minimum angle between the middle

finger and the tip of the thumb's metacarpal joint, which helped minimize the

occurrence of unintended touch events.

8

3. Touch event dispatching.
​ After the touch event is generated, it is time to send it to the target

system. For this, I have followed an evolutionary process, just like the event

generation section, to reach the target.

3.1. Using the interface software on the target system

As with the original idea of generating the touch event, I had written

special programs to pass the touch event with the functions that the operating

system provided to the programmers, so that the touch action is performed on

the desired position, because this method created a dependency on the type of

operating system, and in addition, some operating systems such as Android

itself had a series of restrictions to work with event emitting functions, so I

looked for a better solution.

3.2. Use the HID protocol

​ Although most of us use this protocol on a daily basis to carry out daily

tasks while working with electronic tools, we don't even know its name. This

protocol is used from mouse and keyboard to TV controls and smart watches,

and even to display content and touch screens. This protocol was provided by

the USB company to reduce the cost of designing and manufacturing

peripherals.

3.2.1. Implementation with a combo of Digispark and Wemos

boards
​ The V-USB library makes it possible to implement the HID protocol on

the cheap Digispark ATtiny 85 board more easily. I decided to connect them

due to the WiFi module on the Wemos D1 Mini board by establishing serial

9

communication between these two boards and by

sending an event to the socket built in the Wemos

D1 Mini board through the Android application,

after the event is generated, the responsibility of

sending the event to the target system will be

assigned to the Digispark ATtiny 85 board.

Fortunately, before wasting more time and

energy, I understood the type of socket with

Wemos D1 Mini board can create not compatible

with Android OS.

3.2.2. Implementation of Bluetooth Low Energy Technology
​ The technology that most wireless

peripherals rely on is called BLE, and it is a

version of Bluetooth Classic that, as the name

suggests, is designed for less consumption and

has many uses in IoT. Fortunately, the HID protocol can be implemented on it,

and since the Android operating system itself, of course, from version 9

onwards, it is provided to its developers in the form of the BluetoothProfile

class, which is implemented. along with the Touch report descriptor passed to

it for the touch action to occur.

4. Project planning

​ After each part reached its initial maturity, I did the planning phase at

the same time as the Agile implementation phase using the Github Project

tool, which was that I set a milestone with general tasks and advance the

project along with it, although sometimes it was necessary to step beyond it.

10

5. Conclusion

This project has evolved with the initial idea of processing and sending

events in the target system to perform all processes on the Android device, and

during that, the combined use of new and old technologies related to

Electronics and AI has been able to bring Touchless technology to touch any

type of screen by relying only on an Android software with the lowest possible

cost and an acceptable experience, and the experience of working with large

touch screens that involve a lot of money is provided almost free of charge.

11

6. References

[1] OpenCV and Python Color Detection - PyImageSearch

[2] ESP8266 Arduino: Socket Server - techtutorialsx

[3] MediaPipe | Google for Developers

[4] OpenCV: Detection of ArUco Markers

[5] ArUco - Browse /ArucoNano at SourceForge.net

[6] Human Interface Devices (HID) Specifications and Tools | USB-IF

[7] A USB HID Keyboard, Mouse, Touchscreen emulator with Teensy -

CodeProject

[8] USB Complete Fourth Edition : The Developer's Guide (Complete Guides

series): Axelson, Jan: 9781931448086: Amazon.com: Books

[9] Bluetooth HID: An Intro to Human Interface Devices with BLE (novelbits.io)

[10] The Ultimate Guide to Android Bluetooth Low Energy | Punch Through

12

https://pyimagesearch.com/2014/08/04/opencv-python-color-detection/
https://techtutorialsx.com/2018/06/02/esp8266-arduino-socket-server/
https://developers.google.com/mediapipe
https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html
https://sourceforge.net/projects/aruco/files/ArucoNano/
https://www.usb.org/hid
https://www.codeproject.com/Articles/1001891/A-USB-HID-Keyboard-Mouse-Touchscreen-emulator-with
https://www.codeproject.com/Articles/1001891/A-USB-HID-Keyboard-Mouse-Touchscreen-emulator-with
https://www.amazon.com/USB-Complete-Fourth-Developers-Guides/dp/1931448086
https://www.amazon.com/USB-Complete-Fourth-Developers-Guides/dp/1931448086
https://novelbits.io/bluetooth-hid-devices-an-intro/
https://punchthrough.com/android-ble-guide/

	Implementation of Touchless Touchscreen Technology in the Form of an Android Application
	By
	Erfan Sadigh Nejati
	Supervised by

	Dr. Jafar Razzm Ara
	Computer Science Department
	University of Tabriz
	Tabriz, Iran
	Winter - Spring
	 2023
	Abstract
	1. Introduction
	1.1. Requirements
	2. Touch Event Generation
	2.1. Static Frame, OpenCV & Wemos Board, External Processing
	2.1. Static Frame, MediaPipe, External Processing
	2.3. Dynamic Frame, MediaPipe, External Processing
	2.4. Dynamic Frame, MediaPipe, Internal Processing
	3. Touch event dispatching.
	3.1. Using the interface software on the target system
	3.2. Use the HID protocol
	3.2.1. Implementation with a combo of Digispark and Wemos boards
	3.2.2. Implementation of Bluetooth Low Energy Technology
	4. Project planning
	5. Conclusion
	6. References

