Ain Shams University e (pe daala
Faculty of Computer and Information Sciences e slaall 5 lanlal) 4408
Computer Systems Department Clualall ol aud

TwoKey — Password Manager

with a Physical Access Token

By:
Ahmed Wael EImayyah

Danya Rizk Hamouda
Omar Hesham Fathy
Nouran Khaled Ibrahim

Ahmed Yasser Abdellah

Under Supervision of:
Dr. Karim A. Emara,
Assistant Professor, Computer Systems Department,
Faculty of Computer and Information Sciences,

Ain Shams University.

TA. Abdulrahman Alj,
Teaching Assistant, Computer Systems Department,
Faculty of Computer and Information Sciences,

Ain Shams University.

Acknowledgment

It has been a great opportunity to gain experience and work on a real project,
utilising all of the knowledge gained in four years of studying at the Faculty of
Computer and Information Science, Ain Shams University.

We thank all of the FCIS staff and management for all of the knowledge and
experience they granted us across our years of study.

Special thanks to our graduation project supervisor Dr. Karim Emara, who has
guided us with great advice, reviewing, encouragement, and support with a deep
technical perspective during the entire year.

Special thanks to TA. Abdulrahman Ali, who has helped us throughout the
semester in coordination and reviewing our progress constantly.

A huge thanks to our friend and FCIS-ASU graduate Adam Zahran who gave us
many useful tips for designing the architecture of the project.

Thanks to anyone else who helped us throughout the entire project, that
includes connections and people who helped us in the survey before
implementing the project. A special thank you to all of the open source
developers and organisations who open source their libraries and software such
as Davy Landman, rxi, Qt, Crypto++, OpenSSL and many other contributors that
help developers develop better software.

Abstract

The use of online services is increasing day after day and these services have
become necessary to our day-to-day lives. Most, if not all of the services, require
an account for each user, and most services have independent accounts. This
makes it hard to keep track of all the different passwords for different accounts.
This may lead to the user choosing insecure passwords which are easy to
memorise or storing their passwords in an insecure way such as a plaintext file,
an unencrypted online note or writing them on a piece of paper or in a
notebook. Even worse, a user may use a single password for all accounts,
making all of his accounts vulnerable in the case that the single password was
leaked or cracked.

Password managers began to gain popularity as a solution to the
aforementioned problems. They encrypt and store the users' different
passwords for different services, allowing the user to access them using a single
strong key or password, often referred to as the “Master Password”. However,
this solution can sometimes be vulnerable due to poor security practices and the
use of weak 2FA methods like SMS-based authentication.

TwoKey is a password manager which uses a unique physical token as a 2FA
method for every user. Alongside the master password which is used for
encrypting the passwords and more cybersecurity practices such as memory
scrubbing, encryption, hashing, challenge-response based authentication, and
secure communication, TwoKey is a secure password manager aimed at users
which care more about security than they care about convenience.

Table of Content

Acknowledgment
Abstract
Table of Content

List of Figures
Charts
Figures

Chapter 1: Introduction

1.1 Background

1.2 Problem Definition

1.3 Objective

1.4 Document Organization
Chapter 2: System Overview
Chapter 3: Hardware Token
Chapter 4: Desktop Application
Chapter 5: Browser Extension/Plugin
Chapter 6: Server Backend and Deployment
Chapter 7: Implementation and Testing
Chapter 8: Conclusion and Future Work

Chapter 2: System Overview
2.1 Project Modules
2.2 General View of System Architecture
2.2.1 The Desktop App
2.2.2 The Browser Extension
2.2.3 The Hardware Token
2.2.4 The Server

Chapter 3: Hardware Token
3.1 Security
3.2 Hardware Technology
3.3 Hardware Security Model

Chapter 4: Desktop Application
4.1 UI/UX
4.2 Hardware Token Handler

O 0 W N

31
31
33
34
35
36
36
36
36
36
36
36

36
36
37
38
39
39
39

39
39
40
41

41
41
45

4.2.1 Token Communication
4.2.2 Token Auto-Detection
4.2.2.1 Windows Systems
4.2.2.2 GNU/Linux Systems
4.3 Browser Extension Communication
4.3.1 Native Messaging API Test
4.3.2 Embedded Web Server (HTTP Communication)
4.4 Server Backend Communication
4.5 Credentials Generation
4.6 Key Derivation

Chapter 5: Browser Extension

5.1 Module Definition
5.2 Browser Extensions APIs
5.3 API Problems
5.3.1 Cross-Compatibility
5.3.2 Deprecated APIs and Poor Documentation
5.3.3 Native Messaging API
5.4 Solutions for the Browser Extension Problems
5.5 Communication Problems and Solutions

Chapter 6: Server Backend and Deployment

6.1 Module Definition
6.2 Secure Communication
6.2.1 Using HTTP with TLS/SSL
6.2.2 DDoS Protection
6.3 The Hosting Server
6.2.1 Nginx and uWSGlI servers
6.2.2 Online Hosting (DigitalOcean)
6.4 User Authentication
6.4.1 Authentication
6.4.1.1 Authentication Maturity Model
6.4.2 The Factors of Authentication
6.4.3 Applying 2FA to TwoKey
6.5 Registration
6.6 Session Management
6.6.1 Addressing the Statelessness of HTTP
6.6.2 Issues when Load Balancing
6.6.3 Protection Against User Enumeration Attacks
6.7 Database
6.7.1 Choosing the Database

45
45
46
48
48
49
50
51
52
54

54
55
56
57
57
57
57
58
60

61
62
63
63
64
65
65
67
67
67
68
68
70
70
71
72
72
72
74
74

6.7.2 Securing the Database

Chapter 7: Implementation and Testing
7.1 Use Case Diagram
7.2 Class Diagram
7.3 Communication Diagram of SandBird
7.4 Sequence Diagram
7.5 Testing and Results
7.5.1 Secure Programming
7.5.2 Secure Communication
7.5.2.1 SSL Certificate Validation
7.5.2.2 Desktop App and Backend Server COmmunication
7.5.3 Strong Passwords
7.5.4 Strong Second Factor of Authentication
7.5.5 Trustworthy

Chapter 8: Conclusion and Future Work
8.1 Conclusion
8.2 Future Work
8.1 Desktop Application
8.2 Hardware Token
8.2.1 Physical Design of The Hardware Token
8.2.2 Hardware Token Security
8.2.3 Hardware Security Module
8.2.4 Mobile Devices Support
8.3 Browser extension
8.4 Server Side and Infrastructure
8.5 Additional Modules

Appendix 1: User Manual
1.1 Registration
1.2 Login
1.2.1 Login Screen
1.2.2 Check Token Validation
1.3 Manager Page
1.3.1 Show Password
1.3.1 Copy to Clipboard
1.4 Add New Account
1.4.1 Add credentials
1.4.2 Generate Random Strong Password
1.4.3 Password Strength Test

74

74
75
76
76
77
78
78
82
82
83
83
83
84

86
86
86
87
87
88
88
88
88
88
89
89

20
90
91
91
92
92
93
93
93
93
94
94

— |
1.5 Edit an Existing Account 94
1.6 Exiting TwoKey 95

Appendix 2: Code Snippets 95

Appendix 3: References 103

List of Figures

Charts

Chart 1.1

How many unique passwords do you have?

Unique Passwords
20.2%

More than 10
4.6%

6 to 10
9.2%

2to 5
66.1%

Chart 1.2

Do any of your passwords have personal yet identifiable information? Such as: Phone
number, relatives' names, significant others' name, countries you've lived, etc...

Prefer Not To Say
13.7%

Yes
45.3%

No
41.0%

Chart 1.3

How often do you change your passwords?

Never
6.8%

Ever month (or more

1.7%

Every 3-6 months
11.1%

Every year

4.3%

Have you or anyone you know received the infamous email which states that you have
been hacked and that your password is:

Yes
23.1%
No
76.9%

When | forget them...
76.1%

Chart 1.4

Figures

Figure 1.1

Hello!
I'm a member of an international hacker group.

As you could probably have guessed, your account was hacked, because I sent message you from it.

Now I have access to you accounts!
For example, your password for is c@yhud8e3q96

Within a period from July 17, 2818 to October 3, 2018, you were infected by the virus we've created, through an
So far, we have access to your messages, social media accounts, and messengers.
Moreover, we've gotten full damps of these data.

Transfer $800 to our Bitcoin wallet: 14bXlk 1
If you don't know about Bitcoin please input in Google

I guarantee that after that, we'll erase all your "data" :)

y . It's really easy.

A timer will start once you read this message. You have 48 hours to pay the above-mentioned amount.

Your data will be erased once the money are transferred.

you've visited.

If they are not, all your messages and videos recorded will be automatically sent to all your contacts found on your devices at the moment of

infection.
You should always think about your security.

We hope this case will teach you to keep secrets.
Take care of yourself.

Figure 2.1

Desktop A []
c]Qt) PP um

[e]
TwoKey (GUI)

BackendClient

[e] - Main thread, [1] - Secondary Thread On tab update or login
*Creates a thread for each event handling.

(o] :/

Se rverE

Figure 4.1

Figure 4.2

‘ TwokKey

Email:

newuser @gmail.com

Password:

Email:

‘ TwoKey

newuser @gmail.com

Password:

‘, Token not Found >

e TwoKey's token is not connected, please connect it to login.

oK

10

R Twokey - O X
Vault: Information:
Google Accounts:
Linkedin newuser @gmail.com hd|
ASU Website:
google.com
Email/Username:
newuser@gmail.com
Password:
SEERERRRRERS
R Twokey - O >
Vault: Information:
Google Accounts:
LinkedIn newuser @gmail.com ;I
AU Website:
google. com

Email Username:
newuser @gmail, com

Password:

yBaGRuHSDEVH

Edit Account Information

1

Figure 4.5

B MainWindow
Message: abcdefghijkimnop
Response:
Refresh
Write Read
Textlabel ==
Register
7 MainWindow -] X
Message: abcdefghijldmnop
Response:
Refresh
TextLabel T
Register
R Twokey X
Vault: Information:
Google Accounts:
Linkedln newuser @gmai.com =
AsU Website:
google.com
Email /Username:
newuser @qmail.com
Password:
Add Account Edit Account Information

12

13

.
. 2213
NG 02072021
‘ TwoKey
Email:
newuser@gmail.com
Password:
00000000 @
Create an Account
10:24 PM
Friday, 2 July 2021
Challenge ‘ Challenge
Hardware .| Desktop
Token Encrypted App Encrypted
Challenge Challenge

Server

Figure 4.13

USBEventHandler

Figure 4.14

User’s computer

Web browser

My_Native_app.json

“path”: “/path/to/My_Native_app”

My_WebExtension

runtime

!

runtime.port.

runtime.port.

My_Native_app

stdin.read()

Figure 4.15

Figure 4.16

® Password Generator ?

Bg #R.@Nr&3! ~1Q2TY41EP 348K

Length I

Uppercase Letters [A-Z]
Lowercase Letters [a-z]
Mumbers [0-9]

Accept Regenerate

]
=

Special Characters [I, @, #, §, %, *, & *]

Figure 4.17
Email fUsername;
newuser @gmail. com
Password:
yBaGfuHEDEVH >
Chosen password is strong
Figure 4.18

Email fUsername:
newuser @gmail. com

Password:
Password 1| o

M Chosen Password is weak

15

Master
Password

Salt
(added bytes)

Number of
Tterations

Key Derivation Function

16

New

Derived

Key

Cast...

AdBlock — best ad blocker
TwoKey

View page source

Inspect

earch Google ortype a

chhhh@gamil.com

123@gmail.com

O 456@gmail.com

Ctrl+U
Ctrl+5Shift+I

Deprecated

This feature is no longer recommended. Though some browsers might still support it, it may have

already been removed from the relevant web standards, may be in the process of being dropped, or

may only be kept for compatibility purposes. Avoid using it, and update existing code if possit

the compatibility table at the bottom of this page to guide your decision. Be aware that this featur

cease to work at any time.

17

Figure 6.1

Sender Receiver

|
@

GG - 42l

‘—”fﬂfﬁm
i
ThenteyExchange |- —

N2

s *___________(—-—-——' Finished
------- -

SwLl- s

oo 224 s

Figure 6.2

® Your SSL/TLS encryption mode is Full

This setting was last changed 18 hours ago

() Off (notsecure) @
No encryption applied

() Flexible

Encrypts traffic between the browser and Cloudflare

@ Full

Encrypts end-te-end, using a self signed certificate on the server

Browser Cloudflare Origin Server

(O Full(strict)
Encrypts end-to-end, but requires a trusted CA or Cloudflare
Origin CA certificate on the server

Figure 6.3

DDoS Mitigation Stages

9 101010241 NG
10010 o/ |\
W &, — (v — KK
y S L |/c

[
Routing Detection Response Adapt
Route traffic across Detect the fingerprint of Drop malicious traffic at Use machine
multiple Data Centers an attack as it occurs the network edge learning to adapt to

the attack pattern

Figure 6.4

Desktop App

)

Figure 6.5

TwoKey

Rewverse Promy

Request from Client
e mm e Unix Socket

II__________

Respanse from Semver

® in g TwoKey/1GB Memory / 25 GB Disk / FRAT - Ubuntu 20.04 (LTS) x64

ipvd: 64.227127192

Volumes
Resize
Networking
Backups

Snap:

Kerne

ipv6: Enable now Private IP: 10114.0.3

Learn how to update this Droplet for new metrics.

24 hours e

Bandwidth

2.5kb/s

2.0kb/s

1.5kb/s

1.0kb/s e

soobss |
Db/s

16:05 16:10 1615 16:20 16:25 16:30

— private - inbound public - inbound private - outbound — public - outbound

CPU Usage

40%

3.0%

0%
16:05 1610 16:15 16:20 16:25 16:30

S¥s — user

16:35

16:35

18

Unix Socket

WSGI

Flask

Floating IP: Enable now

16:40

16:40

16:45

16:45

16:50 16:55

16:50 16:55

Invoke the
Callable Object

Console: &

1700

1700

Figure 6.6

Passwordless cmpies: webauthn, ooz ULNERABLE T
Rather than authenticating with passwords, you
authenticate using OS-integrated biometrics.

Token-based 2FA ecmvies: ore Token

In addition to quality passwords in a manager, you
authenticate using a physical token that only you have.

VULNERABLE TO:

App-based 2FA samvtes: Google Authenricator, uthy
6 A PP2 FA In addition fo quality passwords in a manager, you

authenticate using an application that only you can access.

VULNERABLE TO:

SMS-based 2FA sxampies: Any smis-based auth

In addition to quality passwords in a manager, you
authenticate using a fext sent o your mobile device.

VULNERABLE TO:

Password Manager Examples: 1Password, LastPass

In addition to having unique passwords, you also
store them securely in an encrypted archive.

VULNERABLE TO:
ACCOUNT RESET / TAKEOVER

Qualify Passwords Examples: AO12-2vOs-11xM
VULNERABLE TO:

3 QUALPASS Your passwords are not just unique, but they're long, PASSWORD DUMPS / CRACKING
random, and they include special characters.

Unique Passwords exmpies: Doss, Teams, Schools
VULNERABLE TO:

. , .
Your pas_swords are unique, t?ut they're too short, simple, LIVE PASSWORD GUESSING
or contain personal information.

Shared Passwords exmpies: Gmai, wells Fargo, Netfix vy NERABLE To:
SHARPASS You use the same password in mulfiple places across the CREDENTIAL STUFFING
internet.

=

TR ETT

DANIEL MIESSLER 2021

Figure 6.7

Somethi

g you know

o=

-—
Something you have

Something you are

Figure 6.8

Desktop App .

ﬂ Username, master password hash Server
EJ' Randam challenge | —
—

a‘ Encrypted challenge —

@ Session granied —

abuapeya wopuey @

9 Encrypted challenge

Stored/Spec:

Hardware - 2FA Key

- Can encrypt the given
challenge with a unique key

Token

A

Figure 6.9

Stored/Spec:

- 2FA Key

- Master Password Hash

- Encrypted Credentials

- Can generate random
challenges

- Can encrypted any
generated challenge

20

Figure 6.10

1. POST /login with username and password

Server

\J

3. Sends the JWT

&

-l
-

4. Sends the JWT (eg. on the Authorization header)

6. Sends response to the client

Y

)

&

2. Creates a JWT
with a secret

5. Checks the JWT signature.
Gets user information
from the JWT

Figure 7.1

T <<includesss N
Login e Uge - —mmmmmmm | Authentication
A —
0 i
. + ecincludess>
Use -
H N
1 .
H .
- —_— jr—

"

(" Requestauto-fill)<Z--Use-——-{ Auto-il
User e ccincludesss -

[Register ef--------4 Usg---------- { Store credentials |
<<includesss b ’

Use ==includes=>
L]
L]
—_—

Database

Figure 7.2

QDialog QWidget QObject QAbstractNativeEventFilter

[Posswobiog | [woker |

QObject QAbstractNativeEventFilter
QObject
BrowserExtensionCommunicator

| usb_notif
1

!

BrowserExtensionCommunicator QObject QObject
SignalWrapper

| PasswordGenerator | | BackendClient |

22

I |
Figure 7.3
sb Server sb_Buffer
i
AR 3
h ¢ recy_buf
\ !
/ [. streams . Server s send buf
! [\ / -
-
I I 1 ~
!
, server "'handler sb_Stream ""; next
| -
\
\ r z
I < stream
LY L
2P
sb_Ewvent
Figure 7.4
‘Browser ; . ’
ENEE ‘DesktopApp “Server ‘HardwareToken
i L]] [
~L : 1 :
Login
J e ;
Request Challenge '
Challenge String
Challenge String -
Encrypted Challenge
Send Challenge
for Validation o
Activate Login Validation
Browser Extension 77T
R :
Alt
Error Validating Challenge Invalid
Hardware Token & 7T
W ==sssssssssssssssnnnns

-

Email:
newuser @gmail.com

Password:

test1234

Vault:

Google
LinkedIn
ASl

‘k TwoKey

‘i TwoKey

Information:

Accounts:

newuser @gmail.com
Website:

google.com
Email {Username:

newuser @gmail.com

Password:
iLCIEhbGHOIIIUZI 1M1=

Chosen password is strong

count Information

23

24

Figure 7.7

[Task Manager
File Options View
Processes Performance App history Start-up Users Details Services

4% 52% 0%
Name CPU Memory 3 Network

‘ TwoKey

[Gt Creator (2)
1 Task Manager Vault: Information:
Google Accounts:
> TwoKey.exe
A Expand Linkedin nenuser @gmai.com
ASU Wiebsite:
Resource values google.com

Background processes (33) End task

Antimalware Service Executable -
= Provide feedback Email/Username:

[i= Application Frame Host Deb newuser@gmail.com
ebug

I binsvr.exe Password:

Create dump file L =
iL.C1@hbGAOIIIUZ NS &>
[COM Surrogate o to details iLCIghbGd i

A Chosen password is stron
[COM Surrogate Open file location & = g

[COM Surrogate Search online
Properties

3 CTF Loader

[i Device Association Framework ...

Fewer details End task

Figure 7.8

File Options View

Processes Performance App history Start-up Users Details Services
- 25% 52% 0%
CPU | Memory k| Network

x | ‘h TwoKey

The file has been successfully created 2379 MB

The fiie s located at 173MB Email:
C:\Users\Satharus \App DataLocal\Temp\ TwoKey. DMP

320Me Password:

Backgrou Open il location

[3:] Antimalware Service Executable

[Application Frame Host
[blnsvr.exe

[COM Surrogate

[#) COM Surrogate

[#] COM Surrogate

CTF Loader

[Device Association Framework ...

Fewer details End task

Figure 7.9

[Hotline [C -z 'strings TwoKey.DMP | grep "iLCJ@hbGciOiJIUzITNiJ9"']] && echo "No credentials found"
No credentials found
[Hotline: [C -z 'strings TwoKey.DMP | grep "test1234""']] && echo "No credentials found"

edentials found

strings TwoKey.DMP rep "iLCJ@hbGciOiJIUzITNiJ9"
strings TwoKey grep "test1234"

Figure 7.10

[}

File Edit View h Tools Help

B+ 3

TwoKey.DMP X

0018285a
0018286d

001828Bab
001828b3
0DLl828cc
001828df
001828f2
00182905
00182918
0018232b
0018233
00182351
00182364
00182977
0018298a
0018293d

31

Show little endian decoding

Figure 7.11

Common Name

Issuer Name

Common Name

Validity

Not Before
Not After

bject Alt Names

DNS Name
DNS Name
DNS Name

00182880|00 00 DO 00 00 0O 0O 0O OO OO
00182893 |00 00 0O 00 00 0O 0O 0O OO OO

The pattern you

End of

Float32 b

341106196594E+276

igned as hexadecimal

Cloudflare Inc ECC CA-3

California

San Franci

Cloudflare, I
i.cloudfl

Cloudflare, T

Thu, 01 Jul

Thu, 20 Jun 202:

twokey.tech

l.com

://twokey. tech/
reg.application/jso
n.first name.last n
ame.email.username.
password.serial.def
ault..Response: .co
de.200.https://twok
ey.tech/Zfa.Access-
token.challenge.Enc
rypted Challenge:
Basefd challenge:
.Response (New JWT) :
.400.https://twoke
v.tech/login.Reciev

121111117116

171157 165 164

01111001 01101111 011101

yout

Selectior

Baltimore CyberTrust

Figure 7.12

SSL Report: twokey.tech

Assessed on: Thu, 01 Jul 2021 20:22:18 UTC | Hide | Clear cache

Server

2606:4700:3030:0:0:0:6815:4028

1
Ready

2 2606:4700:3033:0:0:0:ac43:afec
Ready

3 104.21.64.40
Ready

4 172.67.175.236
Ready

SSL Report v2.1.8

Figure 7.13

Overall Rating

Figure 7.14

Test time

Thu, 01 Jul 2021 20:16:11 UTC

Duration: 124.36 sec

Thu, 01 Jul 2021 20:18:15 UTC
Duration: 130.28 sec

Thu, 01 Jul 2021 20:20:25 UTC

Duration: 57.63 sec

Thu, 01 Jul 2021 20:21:22 UTC
Duration: 55.468 sec

Certificate

Protocol Support

Key Exchange

Cipher Strength

Scan Another >>

Grade

A

A

00

Eile Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

mMERE Qex2EF LS

Qe eir

104.21.64.40

34 14.145557580 192.168.123.86 104.21.64.40
35 14.146311585 192.168.122.86 104.21.64.40
36 14.375739571 104.21.64.48 .168.122.86
37 14 386349828 104.21.64.4¢ .168.122.86

38 14, g .40 B
39 14 389365963 192.168.122,86 104.21.64.40

40 14300927638 192.168.122.86 104.21.64.40
41 14470279242 104.21.64.40 192.168.122.86
42 14.479413369 192.168.123.86 104.21.64.40

43 14.555840072 104.21.64.40 192.168.122.86
44 14.637969926 104.21.64.48 192.168.122.86
45 14,638271591 104.21.64.49 192,168,122,86

46 14.638354211 192.,168.122.86 104.21.64.40

Ethernet II, Src: Realtekl B
Internet Protocol Version 4, Lok 21 64 49, Ds

Source Port: 443
Destination Port: 60569
IStream_inde;

Destination Pmmcu\ Lengtr Info
23 10.668190536 104.21.64.40 192.168.122.86 54 443 . 60568 [ACK] Seq=2620 Ack=508 Win=67584 Len=0
24 10.668307476 192.168.123.86 104.21.64.40 Tst1 3 355 Application Data, Application Data
25 10.790599770 104.21.64.40 192.168.122.86 TCR . 6568 [ACK] Seq=2629 Ack=989 Win=68608 Len=0
26 10.907042150 104.21.64.49 192.168.122.86 TLSV1.3 1094 Application Data
27 10.907614251 104.21.64.49 192,168.122.86 TLSvi.3 55 Application Data
28 10.907617061 104.21.64.40 192,168.122,86 TLSvi.3 &1 Application Data
29 10.907854511 192,168.122.86 104, 21,6440 TCP 54 60568 - 443 [ACK] Seq=989 Ack=2097 Win=263168 Len=0

54 68560 . 443 [ACK] Seq=1 Ack=1 Win=263168 Len=0
571 Client Hello
54 443 . 60569 [ACK] Seq=1 Ack=518 Win=67584 Len=0
1494 Server Hello, Ghange Gipher Spec
1240 Application Data
TP 54 60560 - 443 [ACK] Seq=518 Ack=2627 Win=263168 Len=0
TLSv1.3 134 Change Cipher Spec, Application Data
P 5:

Tk _. 60569 [ACK] Seq=2627 Ack=598 Win=67584 Len=o
TLSv1.3 562 Application Data, Application Data

TCR 54 443 _ 60569 [ACK] Seq=2627 ACk=1106 Win=6B688 Len=0
TLSv1.3 1479 Application Data, Application Data

TLSv1.3 81 Application Data

54 60569 - 443 [ACK] Seq=1106 Ack=4079 Win=263168 Len=0

(D 4 Sk D O AT €40 VB, sty i capmren (9920 bits) on interface wnetd, id
3 (52

ealtekl_e6:70:45 (52:54:60:e6:70: 45)
122,

GB 86
Transmission Control Prutucu, "Src P : 443, Dst Purt susss Seq: 1441, Ack: 518, Len: 1186

Frame (1240 bytes) =~ Reassembled TCP (2493 bytes}
O 7 wireshark s pcapng

Packets: 188 - Displayed: 37 (19.7%)

Profile: Default

Figure 7.15

—/

1% whois 104.21.64.40

ARIN WHOIS data and serv
available at: https://www.a
see inaccuracies in the
tps://www.arin.net/resource

=
+

Copyright 1997-2021, American Registry for

#
#
#
#
If
it
#
it
#

CIDI 104. 4]

NetName : CLOUDFLARENET
NET-184-16-@-9-1
NET104 (NET-104-0-0-0-0)
Direct Allocation

Inc. (CLOUD14)

Figure 7.16

S5#3pb@2*6gY

Figure 7.17

@R*n%978UjGjDs

Figure 7.18
RUN STUDY
THE
FREEDOMS
OF GPL
\ | /
/ \
>
SHARE IMPROVE
Figure 8.1

Photodiode
Detector

28

Figure 8.2

@ Login

5 card

[85] Identity

[Secure note

FOLDERS
College

Communication

Emalls
Gaming

Misc

29

30

Chapter 1: Introduction

1.1 Background

Online services have become inseparable from our day to day life. In a world
where almost every online service needs an account, it is important for a user to
practice good password hygiene in order to keep their accounts secure.

A survey was conducted to check the average level of security practices between
a relatively sizable sample of people.

The goal of the survey was to assess the following points:

e How many unique passwords do they have?

e Do any of these passwords contain personal identifiable information such
as names of relatives, phone numbers, countries they have lived in, etc..?

e How often they change their passwords.

e Have ever been compromised due to a weak password (i.e received a fake
email containing their password or any similar phishing attempt)

The results were as follows:

e 66.1% of people (72/109) use only 2-5 unique passwords across all of their
accounts. That's approximately 4 accounts sharing the same password at
the best case, if that user uses only 20 services.

How many unique passwords do you have?

Unique Passwords
20.2%

More than 10
4.6%

6to 10
9.2%

2t0 5
66.1%

Chart 1.1

31

e 45.3% of people (53/117) have personal information in their passwords.

Do any of your passwords have personal yet identifiable information? Such as: Phone
number, relatives' names, significant others' name, countries you've lived, etc...

Yes
45.3%

Chart 1.2

Prefer Not To Say
13.7%

No
41.0%

e 76.1% of people (89/117) only change their passwords whenever they
forget them or feel like someone has accessed their accounts.

How often do you change your passwords?

Never
6.8%

Ever month (or more

1.7%

Every 3-6 months
11.1%

Every year

4.3%

Chart 1.3

When | forget them...
76.1%

e 23.1% of people (27/117) have been compromised or received the

32

infamous phishing email (Figure 1.1) which contains their leaked password
and threatens them to leak their information if they don't pay a ransom.

Have you or anyone you know received the infamous email which states that you have
been hacked and that your password is: ?

No
76.9%

Chart 1.4

Hello!
I'm a member of an international hacker group.

As you could probably have guessed, your account was hacked, because I sent message you from it.

Now I have access to you accounts!
For example, your password for is c@yhudBe3q96

Within a period from July 17, 2818 to October 3, 20818, you were infected by the virus we've created, through an you've visited.

So far, we have access to your messages, social media accounts, and messengers.
Moreover, we've gotten full damps of these data.

Transfer $80@ to our Bitcoin wallet: 14bXUoPwruptLamlfKTuMW390y1qdohXOw

If you don't know about Bitcoin please input in Google "buy BTC". It's really easy.

I guarantee that after that, we'll erase all your "data" :)

A timer will start once you read this message. You have 48 hours to pay the above-mentioned amount.

Your data will be erased once the money are transferred.

If they are not, all your messages and videos recorded will be automatically sent to all your contacts found on your devices at the moment of
infection.

You should always think about your security.

We hope this case will teach you to keep secrets.
Take care of yourself.

Figure 1.1

All of the following results show that security awareness when it comes to

23.1%

passwords is an issue. That's why a lot of users have resorted to using password

managers. Some of which have issues.

33

1.2 Problem Definition

Passwords are often mishandled by the majority of internet users. Users often
choose insecure passwords which are easy to memorise, or some may even
store their passwords in an insecure way such as a plaintext file or an
unencrypted online note. Even worse, a user may use a single password for all
accounts, making all of his accounts vulnerable in the case that the single
password was leaked or cracked.

A good solution to this problem is using a password manager, which a lot of
people have started resorting to recently. A password manager is software
which stores and encrypts your passwords using a single master password
which allows you to decrypt and access your passwords when logging into
services.

There are a lot of existent password managers, many of which store data online.
According to research by ISE®, a lot of password managers have issues securing
their secrets/passwords. Which in turn lowers the security of the user as they
already have all of their passwords stored using the password manager.

Issues with existing password managers are:

e Weak 2FA or lack thereof

e |eaving plaintext passwords in memory even after the password manager
has been closed

e Weak encryption or lack thereof (Especially when it comes to
communication)

Hence the idea of TwoKey was created.

34

1.3 Objective

The idea of TwoKey is creating a password manager which has the following
features:

e Secure Programming

o Doesn't leave any unencrypted secrets behind in memory.

o Protected against memory leaks, ROP Chain Attacks, Buffer
Overflows, etc...

e Secure Communication

o No transmission of any unencrypted data.

o Cryptographic keys never leave any of the system’s modules.
e Strong Passwords

o The software forces the user to use strong passwords which are
randomly generated by TwoKey itself.

o The software warns the user if any of their passwords are weak.

o The passwords are never sent or stored in plaintext. Even if a
breach were to happen, the passwords are still unreadable to the
attacker as the passwords are encrypted by the master password,
which only the user knows.

e Strong Second Factor of Authentication

o Each user has a unique physical USB token which they use as their
second factor.

o The user can't log in or use the software without their token.

o Users can't interchange their tokens. Each user has a single token
which can only be used by them.

e Trustworthy

o Using software such as a password manager requires trust from
the end user, as they are putting the security of their online
presence into the hands of the password manager itself.

o That's why TwoKey is free open source software, which is licensed
under the GPL license. In which anyone can run, study, share, and
improve the software. These are the 4 freedoms of software as
depicted by the Free Software Foundation

o This allows any user/auditor to verify the claims of TwoKey, and
allows any other party which uses the software to modify it to their
liking and deploy it in their own environment, making the
responsibility for security and uptime theirs.

Project modules are described in Chapter 2: System Overview.

35

1.4 Document Organization

The following chapters of this document are organized as follows:

Chapter 2: System Overview

Chapter 2 discusses the modules of the project and an overview of how they
integrate with each other.

Chapter 3: Hardware Token

Chapter 3 discusses the hardware token’s function, its mechanism for second
factor authentication, and HSMs.

Chapter 4: Desktop Application

Chapter 4 discusses the desktop application’s functions, the UI/UX design, the
design choices, and the features.

Chapter 5: Browser Extension/Plugin

Chapter 5 discusses the browser extension’s functions, how it communicates
with the desktop application, and the various challenges met.

Chapter 6: Server Backend and Deployment

Chapter 6 discusses the server backend, the secured communication, DDoS
protection and other features which are provided by this module.

Chapter 7: Implementation and Testing

Chapter 7 discusses the system analysis and design, the final implementations,
and the testing methodology and results.

Chapter 8: Conclusion and Future Work

Chapter 8 discusses the conclusion of the project, a link to the demo video, and
recommendations/possible improvements for future work.

36

Chapter 2: System Overview

2.1 Project Modules

TwoKey consists of 4 modules, all of which implement security practices which
protect against known attacks which target password managers.

Attack

Module

Security Practice

Brute Force

Dictionary/Rainbow
Table Attack

Phishing

Less Common
Interfaces

GSM Sniffing

MITM Attack

Replay/Playback
Attack

Insecure Programming
Attacks

Desktop App, Server-Side

Desktop App

Browser Extension

Desktop App, Browser
Extension

Hardware Token

Desktop App, Browser
Extension, Server-Side

Hardware Token
Hardware Token,
Server-Side

Desktop App, Server-Side

The Entire Project

Strong and different password for
each account.

PBKDF is used for key stretching and
to make password cracking difficult.

Fill password when the service
domain is verified to be the legitimate
domain. i.e the browser extension
won't autofill gogle.com mistaking it
for google.com.

Hardware tokens are always checked
for verification.

No SMS Security Codes are used as
a 2FA. The only 2FA is the USB token.

Credentials are encrypted and
transferred securely between modules
and memory is sanitized.

Authentication token and encryption
keys never leave the chip on the USB
device.

A random challenge is always sent
each time for authentication.

Random session keys/tokens.

Secure programming to avoid
common vulnerabilities such as BOF,
ROP/Ret2LibC, Format String Attacks,
etc...

37

2.2 General View of System Architecture

G Desktop App [[| Server&
un
3
(o] — (0])
USBCommunicator* TwoKey (GUI)
Hardware /-r / :]
Token /— USBEventHandler |_— (o] . ")
. | BackendClient . Q‘_ P
.e’ % Flask
ARDUINO H
[1]
BrowserExtensionCommunicator
Browser E G
[8] - Main thread, [1] - Secondary Thread On tab update or login Extension o @
*Creates a thread for each event handling.

Figure 2.1

The project’s four modules all revolve around the desktop app, which is the
central component connecting all of the modules together.

e The Desktop App is mainly written in C++ with the aid of the Qt

Application Framework, it runs an embeddable HTTP server by rxi called
SandBird™. It is cross platform and works on both Windows and Linux.
The Browser Extension is written mainly in JS and HTML. It relies heavily
on Browser Extension APIs and Javascript WebExtension APIs.

The Hardware Token can be implemented on most of the common
commercially-available AVR. For this version of the project, an Arduino
Nano, and an ATtiny85 custom board. Both of which are valid POCs for
different-sized USB tokens.

The Backend Server is mainly written in Python with the aid of Flask,
pyaes, and a couple of other python packages in order to help with data
formatting and organisation. The server also utilises MongoDB as a
database to store user and hardware information

38

The desktop app itself has 2 main threads:

e The main thread, which contains:

o The GUI

o The USBEventHandler which communicates with the hardware
token and detects plug/unplug events.

o The backend client which communicates with the backend server,
to perform functions like login, register, and retrieve, update, and
remove credentials.

e The secondary thread, which contains the Browser Extension
Communicator which is an embed of SandBird by rxi. The communicator
receives requests from the browser extension to allow them to
communicate using a client-server architecture where the extension is the
client and this thread is the server.

e Communicates with the desktop app to retrieve credentials from the
server.

e Autofills service credentials based on the domain name of the website
and the added credentials.

e Responsible for 2FA with the server through the desktop app.

e The application refuses to log in or perform any functions without it. If the
token is removed, the desktop app logs the user out and deletes the
session.

e Responsible for data management, credential storing and retrieval, user
authentication, and user registration.

e Employs security features such as HTTPS/SSL encryption and DDoS
protection

39

Chapter 3: Hardware Token

3.1 Security

The authentication process is done using a security challenge-response such
that a sequence of bytes is sent to the hardware token from the desktop
application to be encrypted using 128bit AES encryption and then received by
the desktop app to be forwarded to the desktop app for validation.

#include <AESLib.h>

void setup()
{
Serial.begin(9600);
Serial.setTimeout(3000);
}

uint8_t message[17];
uint8_t keyl[] "rskDSkocuB6&YulLx0";
uint8_t iv[] "su4djDtAWNUvYjVg";

void loop()
{
if (Serial.available() > 0)
{
Serial.readBytes(message, 16);
aes128_cbc_enc(key, iv, message, 16);
for (int i = 0; 1 < 16; i+)
{
if (message[i] < 16) Serial.print("0");
Serial.print(message[i], HEX);
}
Serial.flush();

Code Snippet 3.1

As seen in Code Snippet 3.1, the USB token waites for any incoming bytes, after
it reads the bytes it encrypts them using a key that is constant for every device,
and a constant initialisation vector (in order to have the same encryption output
as the server). After the bytes are encrypted, they are sent back via the serial
port to the desktop app.

40

3.2 Hardware Technology

The chosen technology for the hardware token device is an AVR microcontroller
due to its small size which is suitable for carrying, as well as having enough
processing capability to perform 128-bit AES encryption which is sufficient for
the authentication process.

3.3 Hardware Security Model

Using the challenge-response authentication allows the implementation of a
security model such that the key will never leave the device.

Since the token is only used as a second factor of authentication, even if it were
to be lost or stolen, the user’'s data wouldn't be accessible by someone else as
the attacker would need to know the user’s password itself.

41

Chapter 4: Desktop Application

4.1 UI/UX

The frontend of the desktop app was created using C++ and the Qt Application
Framework.

The desktop application has multiple forms for the essential functions of the
application, QStackedWidget allows the existence of multiple widgets stacked
on top of each other for the user to navigate between the pages they need.

The application also consists of many widgets (Text boxes, Buttons and Labels)
and these objects must be consistent and have a unified theme. Using Qt Style
Sheets, which are similar to HTML Cascading Style Sheets (CSS) a style was
added for each widget to make a custom harmonious theme. Also adding a
different look for the multiple states of the widgets like hovering, pressing, and
selecting a certain style was added to each state specific to each widget.

{ TwoKey — m] X %

R Token not Found et
@ TwoKey's token is not connected, please connect it to login.
oK

Figure 4.1 TwoKey Login Screen Figure 4.2 TwoKey's Ul when token is removed

42

{ TwoKey — m] X R Twokey O x
Vault: Information: Vault: Information:
Google Accounts: Google Accounts:
LinkedIn newuser @gmail.com j Linkedin newuser @gmail,com LI
ASU Website: AsU Website:
google.com google.com
Email/Username: Email {Username:
newuser @gmail.com newuser @gmail. com
Password: Password:
............ & ¥BaGRUHEDEVH £l
Edit Account Information Edit Account Information

Figure 4.3 TwoKey when a password is hidden

Figure 4.4 TwoKey when a password is shown

The Ul was designed to be dynamic (Figure 4.7) and scalable to any size the user
prefers by using QLayout which also allowed the widgets to be consistent.

B’ MainWindow

[m} x

B MainWindow

b

-]
Message: abcdefghijkimnop Message: abcdefghijkimnop
Response:

Response:
Refresh
Refresh
TextLabel Legin
Register TextlLabel T
Register
Figures 4.5, 4.6 : Early non-scalable prototype of the Desktop App
R Twokey - O X
Vault: Information:
Google Accounts:
Linkedin newuser @gmail.com =l
ASU Website:
google.com
Email JUsername:
newuser @gmail.com
Password:
............ @
Edit Account Information

Figure 4.7: TwoKey utilising the dynamic Ul

43

The desktop app does not halt when an external event occurs, such as the
plugging of the token which is indicated in the application’s Ul and the tray icon
(Figure 4.8) which is added for a more intuitive and convenient UX. The user is
allowed to keep TwoKey running without having to keep the window itself open
and taking up space, with an option to close the program if needed (Figure 4.9).

EII . 13 2213 Exit
> ' 02/07/2021

Figure 4.8, 4.9: The taskbar tray icon

Using a cross-platform framework like Qt allowed the Ul to look consistent on all
platforms (Figure 4.10) and operate with native speed and capabilities which
focuses on the required functionalities that the users may need. Ensuring that
the interface elements are easy to access and facilitate the functionalities to the
user. Using such a framework makes TwoKey easy for contributors to join, as the
project is open source.

TwoKey

‘s TwoKey

Email:
newuser@gmail.com

Password:

20000080 @

10:24 PM

Friday, 2 July 2021

Login Create an Account

Figure 4.10: TwoKey running on KDE Plasma 5.12.5 Figure 4.11, TwoKey tray icon on KDE

4.2 Hardware Token Handler

44

The communication between the desktop application and the hardware token is
confined to sending and receiving a sequence of bytes for authentication and

validation. This happens through serial communication between the AVR device
and the desktop app. Qt provides classes to interface with serial devices such as
QSerialPortInfo and QSerialPort.

Communication happens between them to authenticate the user when it comes
to the second factor, which is the challenge-response authentication from the
server. The server sends the desktop app a challenge, which the desktop app
then forwards to the hardware token. The desktop app then forwards the

token’s response to the server to authenticate the user (Figure 4.12).

Hardware
Token

Challenge Challenge
.| Desktop
Encrypted App Encrypted
Challenge Challenge
Figure 4.12

Server

The desktop application has the ability to auto detect if the hardware token was
plugged in or out and change the Ul accordingly, as stated in figures 4.1 and 4.2.

When the token is plugged out, the user is automatically logged off and the
session is deleted from the machine.

45

4.2.2 Token Auto-Detection

The initial method of auto detecting the usb token was by creating a thread
which constantly polled the device in an infinite loop while the program was
running (Code Snippet 4.1). That worked, but was very unstable and had
problems with thread safety due to sharing pointers. On further research,
Windows Device Notification APIs were found to be a much more solid and
stable alternative.

QSerialPort xtoken = new QSerialPort();
bool tokenIsAvailabhle = false;
QString tokenPortName;
static void checkForToken(int *running)
{
while (*running)
{
foreach(const QSerialPortInfo &serialPortInfo, QSerialPortInfo::availablePorts())
1
if (serialPortInfo.hasVendorIdentifier() &&
serialPortInfo.hasProductIdentifier() &&
serialPortInfo.vendorIdentifier() = TOKEN_VID &&
serialPortInfo.productIdentifier() = TOKEN_PID)

tokenPortName = serialPortInfo.portName();
tokenIsAvailable = true;

s

if (tokenIsAvailable)
{

if (!'token—isOpen())

{

token—setPortName (nanoPortName);
token—setBaudRate (QSerialPort :: Baud9600);
token—setDataBits(QSerialPort::Data8);
token—setParity(QSerialPort:: NoParity);
token—setStopBits (QSerialPort::0neStop);
if ('token—open(QIODevice::ReadWrite))

Code Snippet 4.1

46

4.2.2.1 Windows Systems

On Windows systems, an API is provided which allows a GUI window to register
for a device notification™. That is, if any device is inserted or removed while the
window is open, it is notified by the OS. The program can then implement a
handler function which executes every time the notification is fired. Qt also
provides a class QAbstractEventFilter™, this class can be implemented in
order to use it as an event handler class for any event (Code Snippet 4.2).

Every time a device is connected, a separate thread is created by TwoKey to
check if that device is the token or not based on its USB vendor ID and product
ID. If it is the token then it adjusts the Ul accordingly, the user can then try to
login. Note that the user will only login if the token is his own token and the
master password matches his account.

class USBEventHandler : public QObject, public QAbstractNativeEventFilter
{

Q_OBJECT
public:

explicit USBEventHandler(QObject xparent = nullptr);

virtual bool nativeEventFilter(const QByteArray &eventType, void xmessage, long xresult);
signals:

void SerialDeviceInserted();

void SerialDeviceRemoved();

bs

USBEventHandler :: USBEventHandler (QObject *parent) : QObject(parent)
{

connect(this, SIGNAL(SerialDeviceInserted()), SLOT(checkDeviceID()));
connect(this, SIGNAL(SerialDeviceRemoved()), SLOT(checkDeviceID()));
+

bool USBEventHandler::nativeEventFilter(const QByteArray &eventType, void *_message, long *result)

éifdef Q_OS_WIN OAbstractEventFilter

MSG *message = static_cast<MSGx>(_message);
PDEV_BROADCAST_HDR device = reinterpret_cast<PDEV_BROADCAST_HDR>(message—1Param);

if (message—message = WM_DEVICECHANGE 8&& message—wParam = DBT_DEVICEARRIVAL)
{

if (device—dbch_devicetype = 0x3) emit SerialDeviceInserted();

else if (message—message = WM_DEVICECHANGE && message—wParam = DBT_DEVICEREMOVECOMPLETE)

if (device—dbch_devicetype = 0x3) emit SerialDeviceRemoved();
} USBEventHandler
#endif
return false;

}

Code Snippet 4.2 Figure 4.13

47

4.2.2.2 GNU/Linux Systems

On GNU/Linux systems, there isn’t an option to register for device notifications
via the OS itself. The only option was to use libudevt”? and libusb® and create a
timer which polls the device every X milliseconds.

USBEventHandler :: USBEventHandler(QObject *parent) : QObject(parent)
{
#ifdef Q_O0S_LINUX

timer = new QTimer(this);

udev = udev_new();

if (ludev)
gDebug() << "Failed to allocate new udev";

non = udev_monitor_new_from_netlink(udev, "udev");
udev_monitor_filter_add_match_s stem_devtype(mon, "usb", NULL);
udev_monitor_enable_receiving(mon);
connect(timer AL(timeout()), this, SLOT(tick()));
timer—start(
#endif
nect(this, Ser Inserted()), SLO eID()));
G dQ), ¢ : 0);
+
#ifdef Q_OS_LINUX
void USBEventHandler::tick()
{

deviceFD = udev_monitor_get_fd(mon);

fd_set fds;

FD_ZERO(&fds);

FD_SET(deviceFD, &fds);

int ret = select(deviceFD+1, &fds, NULL, NULL, &udevTimeout);
if (ret < 0)
return;

if (FD_ISSET(de FD, &fds))
{
struct udev_devicex dev = ude onitor_re e_d ;e(mom);
if (dev)
{
if (ude ice_get de(dev))
const charx action = udev_device t_action(dev);

tion, "add") = 0) emi rialDe\
mp(action, "remove") = 0) emit

#endif

Code Snippet 4.3

As seen in snippet 4.3, a QTimer is created which has its timeout () signal
connected to the tick() slot which checks if the device is connected or not.

48

4.3 Browser Extension Communication

4.3.1 Native Messaging APl Test

The desktop app needs to serve the browser extension with any data it requires
such as credentials or if the user wants to login from the browser extension. All
of this has to happen without halting the Ul or slowing it down.

User’s computer

My_Native_app.json

The first try was to use the Native

Messaging®API for browser extensions, it Vst e
allows extensions to communicate with : _l
My_WebExtension My_Native_app

desktop apps. It also enables extensions to
access resources that are not accessible _ 0
through WebExtension APIs.

runtime.port. stdout.write()

Figure 4.14

The code for testing this API in the desktop app was an implementation of
QAbstractEventFilter!'™ which ran aslot readFromStdin() every time
something arrived at stdin and the signal was fired (Code Snippet 4.4).
However, due to the API being poorly documented at the time of development
and the APl using plaintext to communicate with native desktop apps, it was
excluded after multiple tries of getting it to work.

MainWindow :: MainWindow(QWidget xparent, USB_communicator xusbh_comm) :
QMainWindow(parent),
ui(new :MainWindow)

ui—setupUi(this);

this—stdinNotifier = new QSocketNotifier(fileno(stdin), QSocketNotifier::Type::Read, this);

connect(this—stdinNotifier, SIGNAL(activated(int)), this, SLOT(readFromStdin()));

+
QString MainWindow::readFromStdin()
std::string stdinMessage;
std::cin >> stdinM e
QString retMessage = QString::fromStdString(stdinMessage);
this—ui—browserExtensionlLabel—setText("Extension Message: " + retMessage);

return retMessage;

Code Snippet 4.4

49

4.3.2 Embedded Web Server (HTTP Communication)

The solution was to use a small embeddable HTTP

server -SandBird by rxi- in the desktop applicationina | fyckey Main Thread [8]
separate thread using QThread!"". The HTTP server

waits for any request coming from the browser

extension.
HTTP Server Thread [1]

Ewvent Handlers in Thread 8

Figure 4.15

Using Diffie-Hellman key exchange, the desktop app and the browser extension
agree on an encryption key to use per session which allows them to encrypt the
traffic between them.

int compute(int a, int m, int n)

{
int r;
inty = 1;

while (m > 0)
{

r=m%2;
if (r = 1)

y = (yxa) % n;

axa % n;
m/ 2;

return y;

generate_key(int public_B)

srand(ti

int p

int

int et_alice = rand();

int public_A = compute(g, secret_alice, p);

printf("Desktop App's Public Key: %d", public_A);

int key_A = compute(public_B, secret_alice, p);
printf("Secret Key: %d", key_A);

Code Snippet 4.5

50

After the keys are exchanged successfully, the browser extension is able to
communicate with the desktop app securely. An example for a login scenario
from the browser extension can be seen in code snippet 4.6.

void BrowserExtensionCommunicator::startServer()
{
running = true;
gDebug() << "Server running at http://localhos + QString(opt.port);

while(true)

sh_poll_server(server, 1
+
I

int BrowserExtensionCommunicator::event_handler(sb_Event xe)
{
BrowserExtensionCommunicatorSignalWrapper* signalWirapper = (BrowserExtensionCommunicatorSignalWrapper*)e—udata;
if (e—>type = SB_EV_REQUEST)
{
char *masterpa d = reinterpre t<charx>(malloc(1
sh_get_var(e—stream, "masterpasswd", masterpasswd, 1

char xemail = reinterpret_cast<char*>(malloc(1000));
sb_get_var(e—stream, "email", email, 1000);

char xdec_mast = decrypt(masterpa vd) ;
char *dec_email decrypt(email);

if (strlen(dec_email) && strlen(dec_masterpasswd) 8&
apper—getBackendClient() >login(QString(email), QString(masterpas
ient::loginStatus CCESS)

sh_send_status(e—stream, 208, "OK");

sh_send_header(e—stream, "Content-Type", "text/plain");

signalllrapper—emitSu ssfullogin();

sb_writef(e—stream, sig apper—getBackendClient() »getIwt() .toStdString().c_str());

else if (!strlen(url))
{
sh_send_status(e—stream, 401, "Unauthorised");
r(e—stream, "Content-Type", "text/plain");
Unauthorised login, wrong password.");

Code Snippet 4.6

51

4.4 Server Backend Communication

Using QNetworkRequest!'?! and QNetworkAccessManager!™! an encrypted
secure connection is established for traffic transfer between the desktop app
and the server.

The API functions for TwoKey are available at https://twokey.tech/<function>, the
function could be register, login, 2fa, etc...

The desktop app can invoke web requests with JSON content containing
information such as the email, password hash, requested URL, etc...

All of the communication is encrypted over an HTTPS connection, which is
managed by Cloudflare, inc. (i.e. not self signed). Thus creates no SSL errors.

int BackendClient::login(QString email, QString password)

{
QNetworkRequest request(QUrl("https://twokey.tech/login"));
request.setHeader (QNetworkRequest :: ContentTypeHeader, "application/json");
QJsonObject json;

QCryptographicHash *sha256sum = new QCryptographicHash(QCryptographicHash::Algorithm:: Sha256);
QByteArray password_hash = sha256sum—hash(password.toUtf8(), QCryptographicHash::Algorithm::Sha256);

json.insert("email", email);
json.insert("password_hash", QString(password_hash.toHex()));

QNetworkAccessManager nam;
QNetworkReply xreply = nam.post(request, QJsonDocument(json).toJson());

while (!reply—isFinished())
{

gApp—processEvents();

QByteArray response_data = reply—readAll();
QJsonDocument jsonResponse = QJsonDocument:: fromJson(response_data);

QString challenge = jsonResponse.object()["challenge"].toString();
this—jwt = jsonResponse.object()["Access-token"].toString();

ushComm—writeToToken(challenge.toStdString().c_str());
tokenChallengeResponse = ushComm—readFromToken();

int loginStatus = _2fa();
delete reply;

delete sha256sum;

return loginStatus;

Code Snippet 4.7

Code snippet 4.7 demonstrates the login function from the backend client in the
desktop application. It sends a request containing the password hash and email
to the server, and then starts the 2FA process by sending the challenge received
in the response to the token and then sending the result back to the server.

https://twokey.tech/

52

4.5 Credentials Generation

The desktop app generates customisable random strong passwords with
uppercase and lowercase characters, numbers, and symbols with custom length
which follow all the password strength guidelines and recommended tips to
prevent the user from using guessable or easily-crackable passwords and the
common dictionary passwords and it warns the user if a weak password
(previously picked) is added or replaces an existing password.

Password strength is assessed based on 4 factors:

e Password length has to be at least 11 characters long.
e Contains a mix of lowercase [a-z] and uppercase [A-Z] characters
e (Contains at least one special character
o Special characters are defined as ! @#$%"&*
e Contains at least one numeric character [0-9]

® Password Generator ? X

Bo#R @Nr&3! ~1Q20Y41EP 348K

Length I 27 5
Uppercase Letters [A-Z]

Lowercase Letters [a-z]

Mumbers [0-9]

Special Characters [1, @, #, §, %, *, &,]

Accept Regenerate

Figure 4.16: Password generation dialog

Email Username: Email fUsername:
newuser @gmail.com newuser @gmail. com
Password: Password:
yBaGRHEDEVH @ Password 1] @
Chosen password is strong /M Chosen Password is weak

Figure 4.17: A strong password is chosen Figure 4.18: A weak password is chosen

53

4.6 Key Derivation

Using Crypto++'4 a key derivation function (Figure 4.19) was implemented for
key stretching using the user’'s master password and a salt value and a number
of iterations for repeating the process as many times as possible.

Unlike the regular hashing which is vulnerable to brute force attack in which the
attacker tries as many combinations of passwords as possible till a matching
hash is found.

Another type of attacks that the common password hashing techniques are
vulnerable to is the dictionary/rainbow table attack in which the attacker uses a
huge (multiple gigabytes) precomputed dictionary of passwords and the
corresponding hashes and takes the password hash and look it up in the
dictionary and check if it exists the attacker can take the password.

The key derivation function makes the password cracking more difficult taking a
grueling amount of time to attack and as the number of iterations and the
amount of repetitions of the function increases the amount of time required for
the password to be cracked increases making it harder and harder to attack.

galt Number of
(added bytes) Iterations

d J

Fggigid c———>| Key Derivation Function —>| Derived
Key

Figure 4.19

54

Chapter 5: Browser Extension

5.1 Module Definition

A browser extensions are plugins for web browsers that add and extend
functions and features to browsers. Extensions can modify the user interface or
add web service functionality to the browser. This makes the browser extension
an important module in the project as it makes it easier for the user to use
TwoKey without having to return to the application to retrieve the password
every time.

The passwords are stored in TwoKey's database and are automatically retrieved
by the browser extension if the domain name is saved in the database. This
gives the ability for the browser extension to auto-fill all of the user’s saved
passwords, making the user experience more seamless and convenient. This
must happen without sacrificing security. This was discussed in chapter 4,
section 3: Embedded Web Server (HTTP Communication). The extension also
protects the user from phishing links as it verifies the domain name, e.g. it won't
mistake gogle.com for google.com like a human might.

Browser Extension has a session which is in sync with the desktop application. If
the desktop application isn't logged in, the browser extension doesn't log in.

The Browser Extension communicates with the server only through the desktop
app and doesn't communicate directly with TwoKey's server. All the
communication between the desktop app and the browser extension is
encrypted (as discussed in chapter 4, section 3). The role of this module is critical
as it ensures the convenience of the user, as simply clicking on the account the
user wants to log in makes it autofill its credentials.

Cast R R R R R e
Bearch Google ortype a
AdBlock — best ad blocker L
Twokey P @ ochhhh@gamilcom
) O 123@gmail.com
Wiew page source Ctrl+U
B O 456@gmail.com
Inspect Ctrl+5Shift+

Figure 5.1: The different accounts selection

55

5.2 Browser Extensions APIs

chrome.tabs.onUpdated.addListener(getTab)
function getTab()
{
chrome.tabs.query({active: true, currentWindow: true}, tabs = {
let link = tabs[0].url;

var http=new XMLHttpRequest();

const url="http://localhost:8000/?url="+Link;

http.open("GET",url,true);

http.send("");

http.onreadystatechange = (e) = {

retrievedCredentials = http.responseText;

if (retrievedCredentials.length = 0)
console.log(retrievedCredentials);

+

chrome.tabs.sendMessage(tabs[0].id, retrievedCredentials);

Code Snippet 5.1: Chrome Tabs AP/

A lot of browser extension APIs were utilised such as the tabs API' which
returns tab information, such as Tab ID, Current Browser Window, Current
Browser Window ID, Currently opened URL. The main use of this API is retrieving
credentials for the current web page being browsed through its URL. The URL is
sent to the desktop app, which then retrieves the credentials for the specified
account if the user is authenticated.

The Runtime API'® s also used extensively for sending messages between the
background script and the content script of the web page. Changes such as font
changes, colour, text highlighting, are handled through this API. As well as
retrieving information from webpages.

Menus or contextMenu API' is critical to the system as it plays a very important
role in the autofill feature. Many users have multiple accounts for the same
service. This API allows the user to have a context menu which allows them to
select the account they want to log in to (Figure 5.1). The list of accounts are
retrieved from the server by the desktop app when it receives the URL from the
browser extension.

for (int i = 0; i < 3; i+)

chrome.contextMenus.create({id:i.toString()}, type: 'radio', title:x[il});
chrome.contextMenus.onClicked.addListener((info, tab) = {

alert("Item " + info.menuItemId + " clicked " + "in tab + tab.id");

13}
+

Code Snippet 5.2: Chrome contextMenu AP/

56

5.3 API Problems

As mentioned before, the browser extension relies heavily on the APIs like the
tabs API. The problem with the tabs APl is that the onActivated()listener only
listens to tab change events but not tab update events. i.e. it only updates when
the tab is switched, not if the url is changed. The workaround for this was to use
two event handlers (Figures 5.3 and 5.4), one for the current tab if the user
changes the webpage and another for when the user switches between open
tabs. This ensures that all the browser extension is always in the loop with what
the user is browsing, in order to be able to retrieve the credentials for the
service being browsed.

Browser Extension APIs create a uniform landscape for the development of
browser extensions. However, among the browsers that use the extensions API
(the major ones being Chrome, Firefox, Opera, and Edge), there are differences
in both the implementation of the APl and the scope of coverage. Not just that,
Safari uses its own proprietary Safari Extensions JS.

There are two APl namespaces, which are browser . *, the proposed standard
for the extensions API, used by Firefox and Edge. The other being chrome . *
which is used by Chrome and Opera. While the namespace is called chrome,
some of its functions are usable with Firefox, Edge, and other browsers too.

Deprecated

This feature is no longer recommended. Though some browsers might still support it, it may have
already been removed from the relevant web standards, may be in the process of being dropped, or
may only be kept for compatibility purposes. Avoid using it, and update existing code if possible; see
the compatibility table at the bottom of this page to guide your decision. Be aware that this feature may
cease to work at any time.

Figure 5.2: A deprecated APl message from the documentation

Another problem related to the extensions APl was the lack of resources and
usable documentation. A lot of the resources and documentation are outdated.
A lot of time was spent experimenting with different APIs to find out which work
for which use cases. Even then, a lot of APIs had unpatched bugs which needed
manual handling.

57

Native Messaging APl is a protocol which is recommended by Chrome to
communicate with a local application. However, it is riddled with bugs such as
occasionally refusing to open executables whether on Linux and Windows.

Sometimes, the APl would also log random errors which prevented it from
functioning. This, alongside the poor documentation, led to this APl not being a
usable option. It is worth noting that the Native Messaging API's documentation
was updated after the project was finished (implementation-wise) on May 24,
2021, by MDN contributors.

The API also had a problem which was that it sends data in plain text, and relies
on STDIN/STDOUT to communicate with desktop apps. This makes it very easy
for any program running in the userspace to read the traffic between the
desktop app and the browser extension.

That made it not suitable for TwoKey as it is a security-oriented project. The final
implementation for the communication between the browser extension and the
desktop app which ensures the security of the credentials and the info of the
users has already been discussed in Chapter 4, Section 3: Browser Extension
Communication.

58

5.4 Solutions for the Browser Extension Problems

As discussed previously the APIs had a lot of problems which needed manual
handling instead of relying on different APIs.

For example, the problem of the tabs APl mentioned previously was handled by
adding the two listeners mentioned previously.

chrome.tabs.onUpdated.addListener (getTab)
function getTab()
{

chrome.tabs.query({active: true, currentWindow: true}, tahs = {
let link = tabs[0].url;
console.log(link);
var http=new XMLHttpRequest();
const url="http://localhost:8000/?url="+link;
http.open("GET",url, true);

http.send("");
http.onreadystatechange = (e) = {
retrievedCredentials = http.responseText;
if (retrievedCredentials.length = 0)
console.log(retrievedCredentials);
}

chrome.tabs.sendMessage(tabs[0].id, retrievedCredentials);

Code Snippet 5.3

chrome.tabs.onActivated.addListener(getTab)
function getTab()
{
chrome.tabs.query({active: true, currentWindow: true}, tabs = {
let link = tabs[08].url;
console.log(link);
var http=new XMLHttpRequest();
const url="http://localhost:8000/?url="+link;
http.open("GET",url, true);
http.send("");
http.onreadystatechange = (e) = {
retrievedCredentials = http.responseText;
if (retrievedCredentials.length = 0)
console.log(retrievedCredentials);
}
chrome.tabs.sendMessage(tabs[0].id, retrievedCredentials);
B;
+

var sending = chrome.runtime.sendMessage(retrievedCredentials);

Code Snippet 5.4

The advantages of this workaround is that it ensures that the desktop app
always has the correct URL in order to be able to return the credentials for it.
The disadvantage is that it makes the code more verbose and sometimes sends
the url twice. A filter on the desktop app is needed in order to fulfil the request
only once.

59

The second problem for autofill is that if the user has multiple accounts on the
same website and wants to switch between them, it won't be possible if TwoKey
only autofills one account. This was solved by using the contextMenu API which
shows the user all of the available accounts for the current website being
browsed.

60

5.5 Communication Problems and Solutions

As discussed previously, the native messaging APl wasn't suitable for the
communication between the desktop app and the browser extension.

The main issues of the APl is that it sends data unencrypted to the desktop
application and that isn't secure as it could leak user secrets if there was a third
party on the system.

This problem was solved by using a local embedded HTTP server in the desktop
app (refer to Chapter 4, Section 3: Browser Extension Communication) this didn't
affect the performance or the speed of the extension as a local web request
containing few bytes doesn’'t take much overhead at all. Even though the
communication is over HTTP, it is still secure and encrypted, with diffie-hellman
being the method of key exchange between the modules in order to not leak
secrets and communicate securely and efficiently.

The advantages of using a local minimal server is that it is far more secure than
using native messaging, without compromising a lot on speed.

The disadvantage is that an extra thread was added to the desktop app in order
to handle the requests, and while this isn't an issue on most modern systems, it
may be an issue on less capable machines.

Chapter 6: Server Backend and
Deployment

6.1 Module Definition

The backend is the technology required to process incoming requests and
respond to the client appropriately with the requested data or action.

The backend of TwoKey is responsible for 5 major parts:

1. Secure Communication with Desktop App

2. Server Management: The hosting device which receives the
incoming requests

User Authentication and Login

Registration

Session Management

Securing and Managing the User Data.

o vk Ww

Each point will be discussed in the next sections.

61

6.2 Secure Communication

6.2.1 Using HTTP with TLS/SSL

Communication between the server and the desktop is the only way that the
user can access their data. So, securing the communication between them is

62

critical to the privacy and the security of the user to prevent any interception of

any data being transmitted from the server to any client by a third party.

HTTP is the standard protocol for the wide majority of web apps. Why can't it be

used for communication in

TwoKey?

It is not effective because it transfers the data in the clear without any kind of

encryption. So, the solution

is to use HTTPS.

HTTPS is HTTP plus another layer of security called TLS/SSL.

ClientKeyExchange |..-....
ChangeCipherSpec
Finished 140 s

Regeiver

Oms

R
g 401

Hms
Servertells
Certificate
ServerHelloDone
N

o) ChangeCipherSpec
Finished

SWLL- &L

163 s

It typically uses an asymmetric encryption technique which is usually RSA to

Figure 6.1

= Application Data

Mm

make sure no one can view the content of any transmitted data.

63

Implementing the first edition of the self signed HTTPS is discussed in the next
section, but a problem with self signed SSL certificates is that they are vulnerable
to impersonation. That's why TwoKey's certificate had to be certified by a
certificate authority in order to avoid using a self-signed certificate. So, the best
solution was to use Cloudflare so that we can use cloud flare to do the job.

With Cloudflare, traffic going to the end user will always be encrypted. There are
several options when implementing Cloudflare:

1. To not secure any data transmission. (Use plain HTTP)
2. Only encrypts the traffic between Cloudflare and the end user
a. Thatis, the desktop app in the case of TwoKey.

3. To use a self-signed certificate with the internal communication on the
server itself, and use an SSL certificate which encrypts the data end to end
from the desktop app to the server.

4. Use the previous setting, but replace the self-signed certificate on the
server with a trust CA certificate.

The first two options aren't valid to TwoKey's design philosophy of not
transmitting any unencrypted data.

The fourth option (getting a trust CA certificate) isn't a valid option as TwoKey
isn't a registered company.

That leaves only one option which is using Full mode, explained in figure 6.2.

® Your SSL/TLS encryption mode is Full

This setting was last changed 18 hours ago

() Off (not secure) @
No encryption applied

() Flexible

Encrypts traffic between the browser and Cloudflare

o —o—

Encrypts end-to-end, using a self signed certificate on the server

Browser Cloudflare Origin Server

() Full (strict)
Encrypts end-to-end, but requires a trusted CA or Cloudflare
Origin CA certificate on the server

Figure 6.2

64

6.2.2 DDoS Protection

Cloudflare can also successfully protect servers from distributed denial of
service (DDoS) attacks.

The four stages of mitigation which Cloudflare takes are:

DDoS Mitigation Stages

q 10107 ~ ./‘
‘ mm(c
v —_— IO —_— Q —_— l 1
- ~
Routing Detection Response Adapt
Route traffic across Detect the fingerprint of Drop malicious traffic at Use machine
multiple Data Centers an attack as it occurs the network edge learning to adapt to

the attack pattern

Figure 6.3 The DDoS Mitigation Stages by CloudFlare

1. Routing - By intelligently routing traffic, an effective DDoS mitigation
solution will break traffic into manageable chunks over multiple data
centers to make it possible to detect denial of service attacks.

2. Detection - It should be able to distinguish an attack from the intensity of
normal traffic with correlation to the IP reputation of the originating
connections, and know the common attack patterns.

3. Response - It should respond to an incoming identified threat by
intelligently dropping malicious bot traffic, and letting the rest of the
traffic pass through.

4. Adaptation - It analyzes traffic for patterns such as repeating offending IP
blocks. By adapting to attack patterns, a protection service can harden
itself against future attacks.

6.3 The Hosting Server

6.2.1 Nginx and uWSGI servers

65

The Backend in our project is implemented using Flask (a python-based
framework), Flask has a built-in web server (UWSGI) but it has a problem in
scalability, meaning it handles requests sequentially in turns, one at a time.

So, to solve this problem NGINX was used. Which acts as a proxy to handle
multiple requests at a time and a reverse proxy to communicate with Flask API
through uWSGI. Because NGINX cannot directly communicate with Flask.

Desktop App

)

Resquesst fram Clienk
_— —

— S
Respanse from Semver

Reverse Promy

Uiz Sncke1|:

WSGI

:| Unix Socket

Figure 6.4: The integration of the backend components

Invake the
Callable Object

Flask

66

6.2.2 Online Hosting (DigitalOcean)

TwoKey needs a 24/7 uptime and constant availability. DigitalOcean is a cloud
infrastructure platform which allows for easy scalability. Hence, it was chosen.

TwoKey's backend is hosted on a DigitalOcean droplet running Ubuntu 20.04 LTS
which allows for 24/7 uptime and easy management on the go without worrying
about the underlying infrastructure.

It is worth noting that TwoKey is open source and can be self-hosted per
organisation on the server of their choice.

6] Teker a
@ in g TwoKey /1GB Memory / 25 GB Disk / FRA1 - Ubuntu 20.04 (LTS) x64
ipvd: 64227127192 ipv6: Enable now Private IP: 10.114.0.3 Floating IP: Enable now Console: &
Graphs Learn how to update this Droplet for new metrics.

24 hours e

Bandwidth

2.5Kkb/s

Z2.0kbis

1.5kb/s

1.0kb/s

500 b/s
Ob/s

16:05 16:10 16715 16:20 16:25 16:30 16:35 16:40 16:45 1650 16:55 1700

private - inbound public - inbound private - outbound public - outbound

CPU Usage

4.0%

2.0%
1.0%

0%
16:05 16:10 16:15 16:20 16:25 16:30 16:35 16:40 16:45 16:50 16:55 17:00

sys user

Figure 6.5: TwoKey's dashboard on DigitalOcean, the cloud hosting platform

67

6.4 User Authentication

6.4.1 Authentication
First, let's discuss how authentication works in the first place,

1. The user enters their email and password to verify themselves, this is the
first factor of authentication.
2. The server checks if the email and password are correct.
2.1. Are they correct? The server opens a session for the user (discussed
later)
2.2. Not correct? User is not authenticated and no session is created.

This is typically how the authentication process works!". But, this is not secure
enough to verify that the user is who he claims to be. As any adversary could
have gotten their hands on the user’'s email and password. So, two-factor
authentication is applied.

6.4.1.1 Authentication Maturity Model

Passwordless Exmpies: webauthn, Fipo2 .
Rather than authenticating with passwords, you
authenticate using OS-integrated biometrics.

Token-based 2FA &xmpies: oTp Token

. X . VULNERABLE TO:
In addition to quality passwords in a manager, you

authenticate using a physical token that only you have.

App-based 2FA 5xamples: Google Authenticator, Authy

. . . VULNERABLE TO:
In addition to quality passwords in a manager, you
authenticate using an application that only you can access.

SMS-based 2FA semples: Any sMs-based auth
5 In addition to quality passwords in a manager, you VULNERABLE TO:
authenticate using a text sent fo your mobile device.

Password Manager Examples: 1Password, LastPass

In addition to having unique passwords, you also
store them securely in an encrypted archive.

VULNERABLE TO:

Quality Passwords rmpies: a012-2:05- 11

Your passwords are nof just unique, but they're long,
random, and they include special characters.

VULNERABLE TO:

Unique Passwords exmples: 0Bs, Teams, schools

Your passwords are unique, but they're too short, simple,
or contain personal information.

VULNERABLE TO:
LIVE SSWORD GUESSING

Shared Passwords cempies: Gmai, wells Fargo, Netfix yuLNERABLE TO:

1 SHARPASS You use the same password in multiple places across the CREDENTIAL STUFFING
internet.

DANIEL MIESSLER 2021

Figure 6.6: The Consumer Authentication Strength Maturity Model (CASMM) v5 by Daniel Miessler™®

68

6.4.2 The Factors of Authentication

The factors of authentication are mainly five:

Something you know (Password, passphrase, etc...)

Something you are (Fingerprint, eyescan, voice, etc...)

Something you have (Credit Card, Mobile Phone, Key, etc...)

Somewhere you are (A location)
o Not commonly used as it is easily spoofable

e Something you do (Such as a construction worker)

o This factor isn’t used as people can impersonate job titles quite easily
enough to pass for authentication

Something you know

Something you have

Something you are

Figure 6.7: The Factors of Authentication

69

6.4.3 Applying 2FA to TwoKey

In the case of TwoKey, as mentioned previously, a physical hardware USB token
is used as a second factor of authentication.

The full authentication scenario is as follows:

1. User enters their email and master password.

2. The server responds with a challenge to be encrypted using the user’s
physical token.

3. The desktop app sends the encrypted challenge to the server after it has
been encrypted by the token.

3.1. Does the challenge match the one on the server, and the user’s
email and master password are valid and match the token? A
session is opened for the user, and a JWT is sent to the user.

3.2. No? A session is not created for the user.

Figure 6.8 illustrates the 2FA process as a whole.

ﬂ Username, master password hash _ | server

Desktop App a Random challenge

6 Encrypted challenge

- 2FA Key
- Master Password Hash
- Encrypted Credentials

—1
—| Stored/Spec:
—1
—]

@ Session granted

UEJ‘I ? - Can generate random
% 3 challenges
et] - Can encrypted any
il |g generated challenge
5| |3
8l I
Stored/Spec:
Hardware - 2FA Key
Taken

- Can encrypt the given
challenge with a unigque key

Figure 6.8: The 2FA process

70

6.5 Registration

When users buy the token in order to use it as their 2FA, they have to link the
device with their user ID in order to bind the encryption key on the token with
their account. This ensures that each user has a device which is linked to their
account and can't be changed. This decreases the attack surface as the chance
of impersonation greatly decreases.

To solve this problem, each device is accompanied with a unique serial number
on it. In the registration phase, the user enters their registration data (first
name, last name, email, master password, etc...) and the serial number of the
device.

After the registration info is processed by the backend, the backend generates a
random unique user identifier (UUID) for every user which links that device with
their account. At that point, the serial is expired and can't be reused by any other
user.

Figure 6.8 demonstrates the device encryption keys and their serial numbers
and how they reside in the database.

31le7-4a80-b430-adbeac9bTach” }

Figure 6.9

71

6.6 Session Management

HTTP is a stateless protocol. Which means that the connection between the
server and the desktop app is lost once the transaction ends. Meaning that with
each request, the users have to authenticate themselves from the start. That is
very inefficient, and creates an overhead with each request the user sends.

So, from here came the idea of opening a session and closing it only when there
are no more requests required or it times out after a certain time due to security
concerns and resource management.

Basically, after authentication the server is supposed to give each user a unique
token or ID which lasts as long as the session is open. Normally, each server has
its own session ID per user. Session IDs stored on that server to verify each
request in that session.

However, this raises an issue when there are multiple servers for load balancing.
If there are multiple requests on multiple servers at the same time, the first
server which opens the user’s session has to be available to handle other
servers’ requests as the session tokens are stored on it. The user needs to be
able to send requests to any server without having to reauthenticate.

Which means that a way is needed to make the state in the token itself not on
the server. And that is why the JWT!" was chosen, as the state (info of the user)
is stored in the token itself.

As discussed before, the user enters their credentials first. The server sends a
temporary JWT with the 2FA challenge. A temporary session is opened using the
temporary JWT with the received credentials which the user uses to reply with
the encrypted challenge. This is done to prevent username enumeration attacks.

Username enumeration attack is a common vulnerability when an attacker can
guess or know if a username is valid or not. Which makes it easy to brute force
the password if the attacker already knows that the username is correct.

72

So, the temporary JWT and the random challenge sent to the user are stored in
the database temporarily. After the final authentication, the temporary JWT is
removed and a new JWT with a longer expiration time will be generated and sent
to the user to be sent with each request after that.

Figure 6.9 illustrates how a JWT works

1. POST /login with username and password
»
2. Creates a JWT
with a secret
3. Sends the JWT
-
4. Sends the JWT (eg. on the Authorization header)
>
5. Checks the JWT signature.
Gets user information
6. Sends response to the client from the JWT
-

Figure 6.10

73

6.7 Database

There were multiple choices of what databases could be used. There's
MongoDB, Firebase, and MySQL for example.

MySQL creates a strict schema-template. It employs the concept of storing data
in rows and tables.

MongoDB has no restrictions on schema design. It stores the data in collections
of JSON-formatted objects.

Firebase isn't open source, so it wasn't an option for this project as it aims to be
100% trusted free software.

So, MongoDB was used to have flexibility to add the user’s data without any
restrictions of how many accounts he has or how many accounts for the same
service, without worrying too much about database schemas and the
restrictions behind SQL. Especially since there aren't too many different types of
data being stored, so it makes sense to use the simpler option.

As discussed before, each user enters their master password which is then
hashed at the client side and sent to the server to be stored in the database. The
password itself is never transmitted, only the hash which is a SHA256 hash. This
makes it extremely difficult for any attacker to get the user’'s master password as
hashes are irreversible, and are usually cracked by dictionary or rainbow table
attacks.

All of the passwords in the database are encrypted using a key derived from the
master password (as discussed in Chapter 4, Section 6: Key Derivation) and are
only decryptable at the client side. They are retrieved as they are stored,
encrypted, and then sent to the client side where the desktop app decrypts
them in memory and then removes them right after the user is finished with
using them.

74

Chapter 7: Implementation and Testing

7.1 Use Case Diagram

z<includess: o
Login {-_‘ ________ g mmmmmmmmm a Authentication

oy 3
! N
i » zaincludess=
USIE USE
L

Request auto-fill == Use----4 Auto-fill

=<includess=

2FA
User

Register wZ--------- Usg----------4 Store credentials
zzincludess:

M

Uze =<includes==

Database

Figure 7.1 The use case diagram for TwoKey

75

7.2 Class Diagram

The following is the class diagram of the classes in the Desktop App which is the
main component and the center of the whole project.

QDialog QWidget QObject QAbstractNativeEventFilter
| PasswordDialog | | TwoKey | | USBEventHandler |
QObject QAbstractNativeEventFilter

I USBEventHandler |

ooiiect ‘\ /’

BrowserExtensionCommunicator)
jusb_notif
|
QObject | USBC | |
BrowserExtensionCommunicator QObject QObject
SignalWrapper
| PasswordGenerator | | BackendClient |

Figure 7.2 The class diagram for TwoKey

7.3 Communication Diagram of SandBird

sb_Server sb_Buffer

I
o . 4
£ Y F,
/ |\ streams . server ;zg—g%

7 A
1 . \ #

f :

, server ""handler sb_Stream ""; next
| -

\

\ r z
I P “ stream

-~
R 2

sb Event

Figure 7.3 The communication diagram for SandBird

76

7.4 Sequence Diagram

‘Browser . . ,
Extension ‘DesktopApp Server ‘Hardware Token
i L] [] [
Login
il - :
Request Challenge !
Challenge String
Challenge Siring '
Encrypted Challenge
i
Send Challenge !
for Validation " :
- i
i
Activate Login Validation i
Browser Extension 777707 i
oo ; i
Alt :
Error Validating Challenge Invalid I
Hardware Token """""""""""": i
L L L LT Y ! :
L i
L i
' i
- - L] i
[L] i
[] ¥ i
W] [] i
L] L] L] i
" L] L] i
L] L ¥ i
i
i
i
i
i
i
i
i
i
i
i

Figure 7.4 The sequence diagram for TwoKey

77

7.5 Testing and Results

7.5.1 Secure Programming

As discussed previously, TwoKey's desktop application is programmed with
security in mind to avoid memory artifacts and memory leaks which may
compromise the security of the user or slow the application down.

for (int 1 = 0; i < password—=length(); i+)

{
}

delete password;
ui—manager_password—clear();

(*password) [i] = static_cast<char>(0);

Code Snippet 7.1: An example on memory scrubbing in C++

To verify the security of the programming, the process was dumped in its
locked/logged-out state and then analysed and checked against the passwords
to see if they still reside in memory.

First step is logging in, verbose debug output is enabled in the background for
demonstration purposes only. The master password for the test account is
test1234. The password for the google account is iL(J@hbGciOiflUzITNiJ9*. As
shown in figures 7.5 and 7.6, we can see that the token is collected (since the key
is green).

‘k TwoKey

Email:
newuser @gmail.com
Password:

test1234

Create an /

Figure 7.5

After the login succeeds, the user’s vault can be accessed.

Vault: Information:
Google Accounts:

LinkedIn
ASU

newuser @gmail.com
Website:

google.com
Email {Username:

newuser @gmail. com

Password:
iLCI@hbGoOiIIUZI INi1S™

Chosen password is strong

Add Account Edit Account Informati

Figure 7.6

79

From now, like any process in Windows, the memory can be dumped by going to
the task manager, and selecting “Create dump file”.

W [Task Manager
e File Options View

W Processes Performance App history Start-up Users Details Services

4% 52%
CcPU Memory sk Network

e ‘ TwoKey

Task Manager y Vault: Information:
Google Accounts:
Expand Linkedin newuser @gmall.con

P ASU)
Background processes (33) End task Website:

Bl > TwoKey.exe

Resource values google.com
Antimalware Service Executable
- Provide feedback Emai/Username:

[Application Frame Host L newuser @gmal.com

Debug P: rd:
BSSWOI
[blnsvr.exe Create dump file

LCI@hbGAOIIUZI INI9*™ @ g
[&] COM Surrogate v LCIghbG E
. Chosen password is strong
[&] COM Surrogate Open file location

[E COM Surrogate Search online

Properties

[CTF Loader

[Device Association Framework ...
v

>

Fewer details End task

Figure 7.7: Dumping a process on Windows

After signing out, the process can be dumped to check if any artifacts or
previous password are still resident in memory.

File Options View

Processes Performance App history Start-up Users Details Services

52% 0%

] Name Memory ke Metwork

I % Twokey

i@ QtCre ‘The file has been successfully created. 237.9MB

The fis islocated at 73MB Emai:
CAAUsers\Satharus App Dt Local\Temp! TwoKey. DMP (Z e
2 LD 320ME Passworc:

Backgrou Open file location

[#] Antimalware Senvice Executable

1 Task

[&] Application Frame Host
[blnsvr.exe

[¥] COM Surrogate

[#] COM Surrogate

[&] COM Surrogate

[#F CTF Loader

[Device Association Framework ...

>

Fewer details End task

Figure 7.8: Dumping TwoKey after singing out

80

After acquiring the dump, it can be analysed using many tools. A simple way of
checking whether certain ASCII bytes (in this case passwords) reside within a
binary file is by running a tool like GNU Strings?® which extracts all consecutive
ASCII characters from a binary file which are at least of length 4. After extracting
all of the ASCII strings from the memory dump, they can be searched through
using a tool like GNU Grep!?'l,

The following figure (7.9) demonstrates that the passwords were not found in
memory. The first two commands check if the output of grep is empty (i.e. no
matches were found) and then print “No credentials found” if that's the case.

The second two commands are there for verification, as grep returns no output.

1% [[-z ° y.DMP | grep "iLCJ@hbGciOiJIUzITNiJ9"' J] && echo "No credentials found"
No credentials found

1% [[-z “strings TwoKey.DMP | grep "test1234"" 1] && echo "No credentials found"
No credentials found

grep "i i0iJIUZITNiT9"

grep "tes

Figure 7.9: Analysing the memory dump

Another way of analysing is also looking with a hex editor and looking for the
needed bytes. Which, too, yielded no results.

>

arch Tools Help

001828a6 ttps://twokey.tech/
001828b% reg.application/jso
001828cc n.first_name.last_n
L8254t The pattern you requested was not found. ame.emall.username.
001828f2 (D password.serial .def
00182305 End of fila reached. ault..Response: .co
00182918 de.200.https://twok
D018292b ey.tech/2fa.Access-
0018293e token.challenge.Enc

00182951 rypted Challenge: .
00182964 1 34 20 43 68 Bl Base64 Challenge: .
00182977 |0A 52 65 73 70 6F 6E 73 65 28 4E 65 77 20 4A 57 54 29 3A|.Response(New JWT):
001B8298a |20 00 34 30 30 00 68 74 74 70 73 2A 2F 2F 74 77 6F 6B 65| .400.https://twoke

00182994 |79 2E 74 65 63 68 2F 6C 6F 67 69 6E 00 52 65 632 69 65 76|y.tech/login.Reciev

Hexadecimal: 79 6F 75 74
Decimal: 121111117 116
Octal: 171157 165 164

94E+276 Binary: 0111100101101111011101

Show little endian decoding Show unsigned as hexadecimal

Offset: 0 Selection: None INS

Figure 7.10: Looking through the dump with a hex editor

81

7.5.2 Secure Communication

7.5.2.1 SSL Certificate Validation

The SSL certificate for twokey.tech is valid. Figure 7.11 demonstrates so.

shi.cloudfla con Cloudflare Inc ECC CA-3 Baltimore CyberTrust Root

Subject Name

Country
State/Province/County
Locality

Organisation
Common Name

Issuer Name

Country
Organisation
Common Name

Validity

Not Before
Not After

Subject Alt Names

DNS Name
DNS Name
DNS Name

Figure 7.11

According to a test performed by Qualys SSL Labs™, twokey.tech has level A SSL
based on its certificate and SSL/TLS configuration as shown in Figures 7.12&7.13.

SSL Report: twokey.tech

Assessed on: Thu, 01 Jul 2021 20:22:18 UTC | Hide | Clear cache

Scan Another >>

Server Test time Grade
1 2606:4700:3030:0:0:0:6815:4028 Thu, 01 Jul 2021 20:16:11 UTC
Ready Duration: 124.36 sec
2 2606:4700:3033:0:0:0:ac43:afec Thu, 01 Jul 2021 20:18:15 UTC
Ready Duration: 130.28 sec
104.21.64.40 Thu, 01 Jul 2021 20:20:25 UTC
3 Ready Duratien: 57.63 sec
172.67.175.236 Thu, 01 Jul 2021 20:21:22 UTC
4 Ready Duration: 55.468 sec

SSL Report v2.1.8

Certificate

Protocol Support

Key Exchange

Cipher Strength

Figures 7.12 and 7.13

82

7.5.2.2 Desktop App and Backend Server COmmunication

To verify that communication is secure, a packet analyser such as Wireshark?*
can be used. Open inspecting the packets, it is shown that not only is the data
encrypted (Figure 7.14), but the desktop app is also not communicating directly
with the TwoKey server, but instead is being proxied to the public IP
104.21.64.40, which belongs to CloudFlare as shown in Figure 7.15.

File Edit View Go Capture Analyze Statistics Telephony Mireless Tools Hel

mae N Qe=2EF IS5 QAQQE

[ATip.addr == 104.21.64.40 BES -]+
No. Time Source Destination Protocol Lengtt Info = L $ whois 104.21.64.40
23 10.668199536 104.21.64.40 192.168.122.86 TCP 54 443 . 66568 [ACK] Seq=2629 Ack=598 Win=67584 Len=0
24 10.668387476 192.168.122.86 104.21.64.40 TLSVI 3 365 Application Data, Application Data
25 10.790599770 104.21. 6440 192.168.122.86 4 443 _. 60568 [ACK] 50q=2629 Ack=080 Wiin=68608 Len=0 .
26 10.907042150 104.21.64.40 192.168.122.86 Thovt.3 1494 Application Data #
27 10.907614251 104.21.64.40 192.168.122.86 TLSv1.3 Application Data = .
28 10.907617061 104.21.64.40 192.168.122.86 TLSV1.3 211 Application Data } A 1) S5 ata a sServices a
20 10.007854511 192.168.122.86 104.21.64.40 TCcP 54 58263 . 443 [ACK] Seq=909 Ack=4897 Win=263168 Len=0 # y PIN \NH()I - t = jnd Services
32 13.926639039 192.168.122.86 104.21.64.40 TCP 66 60569 . 443 [SYN] Seq=@ Win=64240 Len=0 MSS=1468 WS=256 SACK_PERM=1 I! 3 . <
33 14.145376649 104.21.64.40 192.168.122. 86 TCP 66 443 . 66569 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=0 MSS=1480 SACK_PERM=1 WS=1 .
34 14,145557580 192.168.122.86 104.21.64.40 TCP 54 60569 . 443 [ACK] Seq=1 Ack=1 Win=263168 Len=@ I!
35 14.145311585 192.168.122.36 104.21.64.40 TLSvi.3 571 Client hello .
36 14.375739571 104.21.64.40 192.168.122.86 CP 54 443 -, 60569 [ACK] Seq=1 Ack=518 Win=67584 Len=0 #
37 14.386349828 104.21.64.40 192.168.122.86 TLSv1.3 1494 Server Hello, Change Cipher Spec *
: T230 Application Data #
30 14.380365963 192.168.122.36 164.21.64.40 TcP 54 60560 . 443 [ACK] Seq=518 Ack=2627 Win=263168 Len=0 o
40 14.390927630 192.168.122.86 104.21.64.40 TLSv1.3 134 Change Cipher Spec, Application Data ﬂ,
41 14.470279243 104.21.64.40 192.168.122.86 TCP 54 443 . 66569 [ACK] Seq=2627 Ack=598 Win=67584 Len=0 ¥
42 14.470413369 192.168.122.86 104.21.64.40 TLSV1.3 562 Application Data, Application Data M
43 14.555040072 104.21.64.40 192.168.122.86 TCP 54 443 _. 60569 [ACK] 5eq=2627 Ack=1106 Win=68608 Len=0 #
44 14.637969926 104.21.64.40 192.168.122.86 TSl 1479 Application Daca, Applicetion Data .
45 14.638271501 104.21.64.40 192.168.122.86 TLSv1.3 1 Application Data #
46 14.638354211 192.168.122.86 164.21.64.40 TCP 54 60560 . 443 [ACK] Seq=1106 Ack=4079 Win=263168 Len=0
47 14.639415090 192.168.122.86 104.21.64.40 Tce 54 60560 . 443 [FIN, ACK] Seq=1186 Ack=4879 Win=263168 Len=0
48 14.640087075 192.168.122.86 104.21.64.40 TCP 54 60568 - 443 [FIN, ACK] Seq=989 Ack=4097 Win=263168 Len=0 -

 Frane 98: 1240 bytes on wire (9920 bits), 1240 bytes captured (0020 bits) on interface unetd, id 0 -
» Ethernet II, Src: RealtekU Ba:fd:a3 (52:54:00:8a:fd:a3), D Realtekl_e6:70:45 (52:54:00:e6:70:45)
» Internet Protocol Version 4 Src: 104.21.64.40, Dst: 102. 158 122.86
~ Transmission Control Dmtucol, Src Port: 443, Dst Port: 60569, Seq: 1441, Ack: 518, Len: 1186

Source Port: 443

Destination Port: 60569

IStream_index: 41 b

d1 fa 2d 69 5d bl Be 7d

69 ec 19 b7 59 bd ca 29 af 1 14 8e 83 dd 62 dal

Frame (1240 bytes) | Reassembled TCP (2493 bytes)

O 7 wireshark_vnet0X5R450.pcapng Packets: 188 - Displayed: 37 (19.7%) Profile; Default

Figure 7.14 Figure 7.15

7.5.3 Strong Passwords

Passwords are generated with a strong criteria as stated before, as verification
generated passwords were tested on security.org/how-secure-is-my-password?¥
and all of the passwords which were deemed strong by TwoKey were also
verified as strong by the website. Figures 7.16 and 7.17 demonstrate the tests.

5#3pb@2*6gY @R*N%978UjGjDs

Figure 7.16: A password of length 11, the Figure 7.17: A password of length 14, a fair
minimum that is considered secure by TwoKey average that a user may use

83

Using traditional methods like security questions or phone call/text message
verification have been criticised, as they are not secure options for users.

As discussed before, security questions can be guessed and are heavily
vulnerable to social engineering, e.g. someone who knows the victim may guess
the security questions very easily. Phone calls and SMS verification are
vulnerable to GSM sniffing and a few services have started to remove them as
2FA options. They're also heavily vulnerable to phishing attacks.

A few alternatives started to surface but they heavily affected the balance
between the security and convenience for the users like using an alternative
email or phone number specifically for 2FA. Another alternative is using a 2FA
app and keeping backup security codes on the side. The alternative email option
requires logging in onto the email service and checking for the verification mail,
and then using the sent code or link to authenticate. The user may not be logged
onto the mailing service on the same device, which may result in them resorting
to logging in from another device which makes copying the code/link between
devices grueling.

Using a backup security code may be difficult for some users as they are
required to save the code or print it to keep it safe. They also require to have
constant access to it as it will be the only code to login with in the case of not
being able to access the 2FA app. The backup codes differ between all of the
different services too.

With TwoKey's hardware methods the following points apply:

e The 2FA method is not vulnerable to sniffing or phishing attacks as it
doesn't transmit any keys. It also only communicates through USB with
the desktop app. Unless the system has malware on it, it isn’t possible for
a remote system to sniff the USB packets.

e The challenge-response based 2FA can't be replicated by another device
as the key is embedded on the device itself. It also uses 128bit AES which
makes it impossible to brute force it due to a large number of possibilities.

e Itis one single token that allows the user to access all of their passwords,
if and only if they have the correct username and master password.

84

TwoKey is fully open source with a GPLv3.0 license, any claims made by the
TwoKey team can be verified at the official GitHub page at:

e github.com/Satharus/TwoKey.

Any other party that decides to fork TwoKey and improve it is required to share
the changes made to their code, according to the GPLv3.0 license.

This makes TwoKey 100% trustworthy as all of its modules are open source and
completely available for everyone to run, share, study, and improve.

THE

OF GPL

Figure 7.18: The Four Freedoms of the GPL License

85

Chapter 8: Conclusion and Future Work

8.1 Conclusion

This document discusses TwoKey, the secure password manager with a physical
access token. TwoKey consists of four modules, the desktop application which is
the middle-man of the whole system and connects all of the other modules
together, the hardware token which is used as a second factor of authentication,
the backend server which manages user authentication and data, and finally the
browser extension which is responsible for auto filling the user credentials
instead of the user having to copy/paste them everytime.

TwoKey utilises secure programming, secure communication, strong randomly
generated passwords, encryption, hashing, and a solid second factor of
authentication in order to maintain a high level of user security.

While TwoKey may not be convenient, it is well known that convenience and
security don't go hand in hand together. The more secure something is, the
more likely that it will be less convenient to use.

TwoKey balances between security and convenience with very low compromises
regarding security, performance, and privacy.

86

8.2 Future Work

Like any project, there are many improvements which could be implemented in
TwoKey. These points are discussed in the following subsections, on a
per-module basis.

e Auto Filling Credentials in Native apps

o TwoKey's desktop applications can be updated so that it can autofill
all apps, not only web services through the browser extension.

o This will provide a better UX for the user as they wouldn’t have to
go back to TwoKey's desktop app and copy/paste passwords every
time.

e Afeature could be added to remind the user to change their passwords
every while, such as every month or so.

e There could be a possible integration with a service like
havibeenpwned.com which notifies the user when one of their accounts is
found in a breach. This could be a good prompt for the user to change
their password.

e Employ the use of hardware-based features such as SGX®! which help in
securing application data and binaries.

87

Adding an elegant cover to the token itself to
make it look more modern.

IR LED Emitter
Z

. _ . . ' , Photodiode
Adding a suitable casing with special design Detector

to support physical tamper protection, such
as a light sensor which prompts a wipe of
the chips on the token itself, whenever it
senses direct light or removal of the cover.

Base

Figure 8.1: Example of
Tamper Protection

Increasing the security of the challenge-response authentication by using
256bit AES instead of 128bit AES.

Integrating a physical HSM to increase the resistance to more complex
attacks such as firmware dumping and reverse engineering.

NFC could be added to the token in order to support mobile phones and
potentially use TwoKey as a mobile app.

This needs careful studying before it is implemented as it may increase
the attack surface, where the token may be vulnerable to NFC
sniffing/skimming attacks.

88

8.3 Browser extension

e Ul Enhancement
o The browser extension could have a management Ul which allows
the user to manage their accounts and credentials without having
to use the desktop app directly. (Like in Figure 8.2)
e Website Certificate Check
o The browser extension could check the legitimacy of the website
using its certificate before filling in the credentials, not just based
on the domain name. This is to prevent phishing.
e Unlock with Biometrics
o Biometrics could be used as a 3" factor of authentication, or could
replace the password and be the first factor of authentication.
e Launch a website from history
o TwoKey's browser extension will remember a history of websites
the user logged into, from which they can load a site they had open.

(]

@ Google
@ Google (2)

@ Google

v Vv Vv Vv ;

IS Communication

LU L L

7 ¥
.
7 ¥
6 ¥
.
.
50>
o

i

Figure 8.2: Browser Extension Ul from Bitwarden, an open source password manager.

8.4 Server Side and Infrastructure

e Adding multiple servers for load balancing and backup in case any server
fails.

e Applying system administration to the project such as regular backups
incase of a data failure.

89

8.5 Additional Modules

e Creating an API for service vendors to implement into their codebase in
order to enable TwoKey's hardware token as an option of 2FA without
having to use TwoKey's software itself.

Appendix 1: User Manual

1.1 Registration

The user must enter:

A wh =

First name

Last name

Email

Strong Master Password

Serial number which came with the device to link their account with it.

‘ Twokey

‘ TwoKey

First name: Ahmed Lastname: = Mohammed
Email
Ahmed.Mohammed2112@gmail.com
Username:
ahmedm2112
Password:

Serial Number:
vxXhh|

Back Create an Account

O

X

20

1.2 Login

1.2.1 Login Screen

First, the user enters their email and password to login.

R Twokey - O X

‘ TwoKey

1.2.2 Check Token Validation

Second, if the device is not connected or the physical ID on it is not
correct. Then, the system pops up with an error message.

And after the authentication, it goes to the manager’'s main page.

R ke - O

‘ TwoKey

R Token not Found *

@ TwokKey's token is not connected, please connect it to login.

OK

1.3 Manager Page

Where the user can view his vault with all the accounts.

‘ TwokKey

Vault:

Google
Linkedin
ASU

& % TwoKey

- O X
Information:
Accounts:
newuser @gmail.com LI

Website:

google.com
Email/Username:
Password:

............ &

Edit Account Information

1.3.1 Show Password

92

Clicking on the eye icon, the user is able to see the password. Clicking on it again

hides the password like it was previously.

Email fUsername:

newuser @gmail. com

Password:

y8aGfuHSDEVH

o2

Chosen password is strong

1.3.1 Copy to Clipboard

Clicking on the clipboard icon to copy the password to the system'’s clipboard.

Email flUsername:

newuser @gmail. com

Password;

y8aGfuHSDEVH

&=

Chosen password is strong

1.4 Add New Account

1.4.1 Add credentials

‘ Twokey

Website:

Email Username:

Password:

‘ TwoKey

Add Account:

1.4.2 Generate Random Strong Password

93

The user can choose the length of the password, whether the password contains

uppercase and/or lowercase letters, numbers, and special characters.

Q. Password Generator ? *

Bg#R@Nra3! ~Q2TY41EP 348K

Length I 7 =
Uppercase Letters [A-Z]

Lowercase Letters [a-Z]

Numbers [0-5]

Spedial Characters [, @, #, §, %, ~, & 7

Accept Regenerate

TwoKey checks if the password is strong enough or not.

Email Username:
newuser @gmail com

Password:

y8aGfuHsDEVH

Chosen password is strong

s 8 H

1.5 Edit an Existing Account

Email fUsername:

newwuser@g

Password:

Password 1|

miail. com

o 8 H

S, Chosen Password is weak

94

On the manager's main page, a user can choose an account from the vault and
edit the data and by clicking on the “Edit Account Information” button.

R Twokey - m} X
E ‘n TwoKey
Vault: Information:
Google Accounts:
Linkedin newuser @gmail.com Rl
L Website:

‘google.com

Email{Username:

newuser @gmail.com

Password:

y8aGfuHEDEVH rol

Add Account

Edit Account Information

1.6 Exiting TwoKey

When closing TwoKey's main window, it is minimised to a tray icon. The user
must right click that icon and click on “Exit” to close TwoKey.

fluf=

|]
B

2213

02,/07/2021

Appendix 2: Code Snippets

Code Snippet 3.1

#include <AESLib.h>

void setup()

{
Serial.begin(
Serial.setTimeout(3000);

uint8_t message[17];
uint8_t key[] = "rskDSkocuB6YuLx0
uint8_t iv[] = "su4djDtAWNuvyjVg";

void loop()
if (Serial. ilable() >

Serial.readBytes(message, 16);

aes128_chc_enc(key, iv, message, 16);

for (int i = 0; 1 < 16; i+)

{
if (message[i] < 16) Serial.print("0");
Serial.print(message[i], HEX);

+

Serial.flush();

Code Snippet 4.1

QSerial x = new QSerialPort();
bool tokenIs ilabl fa ;
QString tokenPortName;
static void checkForToken(int *running)
{
while (*running)
{
foreach(const QSerialPortInfo &serialPortInfo, QSerialPortInfo::availablePorts())
{
if (serialPortInfo.hasVendorIdentifier() &&
serialPortInfo.hasProductIdentifier() &&
serialPortInfo.vendorIdentifier() .
serialPortInfo.productIdentifier() = TOKEN_PID)

tokenPortName = serialPortInfo.portName();
tok vailable

}

if (tokenIsAvailable)

if (!token—isOpen())

{

token—setPortName (nanoPortName)
token—setBaudRate(QS alPor Baud9600) ;
token—setDataBits(QSerialPort::Datas8);
token—setParity(QSerialPort: Parity);
token—setStopBits(QSerialPort:: 0neStop);
if (!token—open(QIODevice::ReadWrite))

{

Code Snippet 4.2

USBEventHandler : public QObject, public QAbstra ativeEventFilter

Q_OBJECT
public

plicit USBEventHandler(QObject *parent = nullptr);
virtual bool nativeEventFilter(const QByteArray &eventType, void xmessage, long *result);
signals:
void SerialDevicelInserted();
void SerialDeviceRemoved();
USBEventHandler :: USBEventHandler(QObject *parent) : QObject(parent)

nserted()), SLOT(checkDeviceID()));
iceRemoved()), SLOT(checkDev D0));

bool USBEventHandler::nativeEventFilter(const QByteArray &eventType, void *_message, long *r
{

hY

#ifdef Q_OS_WIN

MSG *me e tat st<MSG*>(_nm ge);
PDEV_BROADCAST_HDR device = reinterpret_cast<PDEV_BROADCAST_HDR>(message—1Param);

IM_DEVICECHANGE 8& message—wParam = DBT_DEVICEARRIVAL)

eInserted();

if (message—message M wParam = DBT_DEVICEREMOVECOMPLETE)

if (device—dbch_devicetype

#endif
return

}

926

Code Snippet 4.3

USBEventHandler :: USBEventHandler(QObject *parent) : QObject(parent)
{
#ifdef Q_OS_LIN

timer = new QTimer(this);

udev = udev_new();

if ()

gDebug() << "Failed to allocate new udev";

non = udev_monitor_new_from_netli udev, "udev");
_monitor_f r_add_match_subsystem_devtype(mon, "usb", NULL);
monitor iving(mon);

connect(timer, SIGNAL(timeout()), this, SLOT(tick()));

timer—start (25 Je
#endif

connect(this, G ialDeviceInserted()), SLOT(ch ceID()));
connect(this, G alDeviceRemoved()),)T (checkDeviceID()));

}

#ifdef Q_O0S_LINUX
void USBEventHandler::tick()
{

ceFD = udev_monitor_get_fd(mon);

ZERO(&

FD_SET(devi

int ret ceFD+1, &fds, NULL, NULL, &

, &fds))

t udev_devicex dev = ud nonitor_rece

i (€ get 1ode(dev))
{

const charx action = ud device_get_action(dev

y(action, "add") = 0) emit SerialDevicelnse
cmp(action, "remove") = 0) emit rialDeviceRemoved();

#endif

ted();

Code Snippet 4.4

MainWindow::MainWindow(QWidget *parent, USB_communicator xusb_comm)
QMainWindow(parent),
vi(new Ui::MainWindow)

ui—setupUi(this);

this—stdinNotifier = new QSocketNotifier(fileno(stdin), QSocketNotifier::Type::Read,

connect(this—stdinNotifier, SIGNAL(activated(int)), this, SLOT(readFromStdin()));

B

QString MainWindow:: readFromStdin()
{
std::string stdinMessage;
std::cin >> stdinMessage;
QString retMessage = QString:: fromStdString(stdinMessage);

this—ui—browserExtensionLabel—setText("Extension Message: " + retMessage);

return retMessage;

Code Snippet 4.5

int compute(int a, int m, int n)
{

int r;

int y = 1;

while (m > 0)
{
r=m%2;
if (r 1)
y = (y*a) % n;

= a%xa % n;

m/ 2;

return y;

generate_key(int public_B)

srand(time(0));

int p =

int g =

int secret_alice = rand();

int public_A = compute(g, secret_alice, p);
printf("Desktop App's Public Key: %d", public_A);

int key_A = compute(public_B, secret_alice, p);
printf("Secret Key: ", key_A);

98

Code Snippet 4.6

void BrowserExtensionCommunicator::startServer()

i3

running = true;
bug() << "Server running at http://localhost:" + QString(opt.port);

while(true)

sh_poll_server(server, 1000);

)

int BrowserExtensionCommunicator::event_handler(sh_Event *e)

= (B onCommunicator
reinterpret (malloc(1000));
_var(e—stream, "masterpas g e sswd, 1

char *e L jei t<charx>(mall
sb_get_var(e—stream, "email", email, 1000);

d = decrypt(masterpasswd);
pt(email);

3in) ;

ignalWirapper—getBackendClient() —=getIwt().toStdString().c

Code Snippet 4.7

int BackendClient::login(QString email, QString password)

QNetworkRequest request(QUrl("https://twokey.tech/login"));
request.setHeader (QNetworkRequest :: ContentTypeHeader, "application/json");
QJson0b t json;

QCryptographicHash *sha256sum = new QCryptographicHash(QCryptographicHash::A
QByteArray password_ h sha256sum—hash(p ord.toUtf8(), QCryptograph

json.insert("email", email);
json.insert("password_hash", QString(password_hash.toHex()));

essManager nam;
QNetworkReply *reply = nam.post(request, QJsonDocument(json).toJson());

while (!reply—isFinished())
gApp—processEvents();
QByteArray response_data = reply—readAll();
QJsonDocument jsonResponse = QJsonDocument:: fromJson(response_data);

QString challenge = jsonResponse.object()["challenge"].toString(
this—jwt = jsonResponse.object()["Access-token"].t ng();

usbComm—writeToTo chal ge.t d i).c_strQ));
tokenCha m adFromToken() ;

int loginStatus = _2fa();
delete reply;
delete sha256sum;

rn loginStatus;

ha256) ;

ithm

Irapper*)e—udata;

S

29

100

Code Snippet 5.1

chrome.tabs.onUpdated.addListener(getTab)
function getTab()
{
chrome.tabs.query({active: true, currentWindow: true}, tabs = {
let link = tabs[0].url;

var http=new XMLHttpRequest();

const url="http://localhost:8000/?url="+Link;

http.open("GET",url,true);

http.send("");

http.onreadystatechange = (e) = {

retrievedCredentials = http.responseText;

if (retrievedCredentials.length == 0)
console.log(retrievedCredentials);

I

chrome.tabs.sendMessage(tabs[0].id, retrievedCredentials);

Code Snippet 5.2

for (int i = 0; i < 3; i+)

chrome.contextMenus.create({id:i.toString()}, type: 'radio', title:x[i]});
chrome.contextMenus.onClicked.addListener((info, tab) = {
alert("Item " + info.menuItemId + " clicked " + "in tab + tab.id");

12}
+

Code Snippet 5.3

chrome.tabs.onUpdated.addListener (getTab)
function getTab()
{
chrome.tabs.query({active: true, currentWindow: true}, tabs = {
let link = tabs[0].url;
console.log(link);
var http=new XMLHttpRequest();
const url="http://localhost:8000/?url="+link;
http.open("GET",url, true);

http.send("");
http.onreadystatechange = (e) = {
retrievedCredentials = http.responseText;
if (retrievedCredentials.length == 0)
console.log(retrievedCredentials);

3

chrome.tabs.sendMessage(tabs[0].id, retrievedCredentials);

Code Snippet 5.4

chrome.tabs.onActivated.addListener(getTab)
function getTab()
{

chrome.tabs.query({active: true, currentWindow: true}, tabs = {
let link = tabs[0].url;
console.log(link);
var http=new XMLHttpRequest();
const url="http://localhost:8000/?url="+link;
http.open("GET",url,true);
http.send("");

http.onreadystatechange = (e) = {
retrievedCredentials = http.responseText;
if (retrievedCredentials.length = 0)

console.log(retrievedCredentials);
}
chrome.tabs.sendMessage(tabs[0].id, retrievedCredentials);
B;
}

var sending = chrome.runtime.sendMessage(retrievedCredentials);

Code Snippet 7.1

for (int 1 = 0; i < password—=length(); i+)
{

(*password) [i] = static_cast<char>(0);

S
delete passwonrd;
ui—manager_password—clear();

101

102

Appendix 3: References

[1] William Stallings, Lawrie Brown. Computer Security: Principles and Practice.
[2] ise.io/casestudies/password-manager-hacking
[3] fsfe.org/freesoftware

[4] github.com/rxi/sandbird
[5]

docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-registerdevicenotific
ationw

[6] doc.qt.io/qt-5/qabstractnativeeventfilter.html
[7] freedesktop.org/software/systemd/man/libudev.html
[8] libusb.info

[9]
developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Native_messaging

[10] doc.qt.io/gt-5/qabstractnativeeventfilter.html

[11] doc.qt.io/qt-5/gthread.html

[12] doc.qt.io/qt-5/gnetworkrequest.html

[13] doc.qt.io/qt-5/gnetworkaccessmanager.html

[14] cryptopp.com

[15] developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/APl/tabs
[16] developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/runtime
[17] developer.chrome.com/docs/extensions/reference/contextMenus

[18] danielmiessler.com/blog/casmm-consumer-authentication-security-maturity-model
[19] jwt.io/introduction

[20] sourceware.org/binutils/docs/binutils/strings.html

[21] gnu.org/software/grep

[22] ssllabs.com/ssltest/analyze.html?d=twokey.tech&Ilatest

[23] wireshark.org

[24] security.org/how-secure-is-my-password

[25]
software.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html

https://www.ise.io/casestudies/password-manager-hacking/
https://fsfe.org/freesoftware/
https://github.com/rxi/sandbird
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-registerdevicenotificationw
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-registerdevicenotificationw
https://doc.qt.io/qt-5/qabstractnativeeventfilter.html
https://www.freedesktop.org/software/systemd/man/libudev.html
https://libusb.info/
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Native_messaging
https://doc.qt.io/qt-5/qabstractnativeeventfilter.html
https://doc.qt.io/qt-5/qthread.html
https://doc.qt.io/qt-5/qnetworkrequest.html
https://doc.qt.io/qt-5/qnetworkaccessmanager.html
https://cryptopp.com
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/tabs
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/runtime
https://developer.chrome.com/docs/extensions/reference/contextMenus
https://danielmiessler.com/blog/casmm-consumer-authentication-security-maturity-model/
https://jwt.io/introduction
https://sourceware.org/binutils/docs/binutils/strings.html
https://www.gnu.org/software/grep
https://www.ssllabs.com/ssltest/analyze.html?d=twokey.tech&latest
https://www.wireshark.org
https://www.security.org/how-secure-is-my-password/
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html

	TwoKey ─ Password Manager
	Acknowledgment
	Abstract
	Table of Content
	List of Figures
	Charts
	Chart 1.1
	Chart 1.2
	Chart 1.3
	Chart 1.4

	Figures
	Figure 1.1
	Figure 2.1
	Figure 4.1
	Figure 4.2
	Figure 4.3
	Figure 4.4
	Figure 4.5
	Figure 4.6
	Figure 4.7
	Figure 4.8
	Figure 4.9
	Figure 4.10
	Figure 4.11
	Figure 4.12
	Figure 4.13
	Figure 4.14
	Figure 4.15
	
	Figure 4.16
	Figure 4.17
	Figure 4.18
	Figure 4.19
	Figure 5.1
	Figure 5.2
	Figure 6.1
	Figure 6.2
	Figure 6.3
	Figure 6.4
	Figure 6.5
	Figure 6.6
	Figure 6.7
	Figure 6.8
	Figure 6.9
	Figure 6.10
	Figure 7.1
	Figure 7.2
	Figure 7.3
	Figure 7.4
	Figure 7.5
	Figure 7.6
	Figure 7.7
	Figure 7.8
	Figure 7.9
	Figure 7.10
	Figure 7.11
	Figure 7.12
	Figure 7.13
	Figure 7.14
	Figure 7.15
	Figure 7.16
	Figure 7.17
	Figure 7.18
	Figure 8.1
	Figure 8.2

	Chapter 1: Introduction
	1.1 Background
	1.2 Problem Definition
	1.3 Objective
	1.4 Document Organization
	Chapter 2: System Overview
	Chapter 3: Hardware Token
	Chapter 4: Desktop Application
	Chapter 5: Browser Extension/Plugin
	Chapter 6: Server Backend and Deployment
	Chapter 7: Implementation and Testing
	Chapter 8: Conclusion and Future Work

	Chapter 2: System Overview
	2.1 Project Modules
	2.2 General View of System Architecture
	2.2.1 The Desktop App
	2.2.2 The Browser Extension
	2.2.3 The Hardware Token
	2.2.4 The Server

	Chapter 3: Hardware Token
	3.1 Security
	3.2 Hardware Technology
	3.3 Hardware Security Model

	Chapter 4: Desktop Application
	4.1 UI/UX
	4.2 Hardware Token Handler
	4.2.1 Token Communication
	4.2.2 Token Auto-Detection
	4.2.2.1 Windows Systems
	4.2.2.2 GNU/Linux Systems

	4.3 Browser Extension Communication
	4.3.1 Native Messaging API Test
	4.3.2 Embedded Web Server (HTTP Communication)

	4.4 Server Backend Communication
	4.5 Credentials Generation
	4.6 Key Derivation

	Chapter 5: Browser Extension
	5.1 Module Definition
	5.2 Browser Extensions APIs
	5.3 API Problems
	5.3.1 Cross-Compatibility
	5.3.2 Deprecated APIs and Poor Documentation
	5.3.3 Native Messaging API

	5.4 Solutions for the Browser Extension Problems
	5.5 Communication Problems and Solutions

	Chapter 6: Server Backend and Deployment
	6.1 Module Definition
	6.2 Secure Communication
	6.2.1 Using HTTP with TLS/SSL
	6.2.2 DDoS Protection

	6.3 The Hosting Server
	6.2.1 Nginx and uWSGI servers
	6.2.2 Online Hosting (DigitalOcean)

	6.4 User Authentication
	6.4.1 Authentication
	6.4.1.1 Authentication Maturity Model

	6.4.2 The Factors of Authentication
	6.4.3 Applying 2FA to TwoKey

	6.5 Registration
	6.6 Session Management
	6.6.1 Addressing the Statelessness of HTTP
	6.6.2 Issues when Load Balancing
	6.6.3 Protection Against User Enumeration Attacks

	6.7 Database
	6.7.1 Choosing the Database
	6.7.2 Securing the Database

	Chapter 7: Implementation and Testing
	7.1 Use Case Diagram
	7.2 Class Diagram
	7.3 Communication Diagram of SandBird
	7.4 Sequence Diagram
	7.5 Testing and Results
	7.5.1 Secure Programming
	7.5.2 Secure Communication
	7.5.2.1 SSL Certificate Validation
	7.5.2.2 Desktop App and Backend Server COmmunication

	7.5.3 Strong Passwords
	7.5.4 Strong Second Factor of Authentication
	7.5.5 Trustworthy

	Chapter 8: Conclusion and Future Work
	8.1 Conclusion
	8.2 Future Work
	8.1 Desktop Application
	8.2 Hardware Token
	8.2.1 Physical Design of The Hardware Token
	8.2.2 Hardware Token Security
	8.2.3 Hardware Security Module
	8.2.4 Mobile Devices Support

	8.3 Browser extension
	8.4 Server Side and Infrastructure
	8.5 Additional Modules

	Appendix 1: User Manual
	1.1 Registration
	
	
	
	1.2 Login
	1.2.1 Login Screen
	1.2.2 Check Token Validation

	1.3 Manager Page
	1.3.1 Show Password
	1.3.1 Copy to Clipboard

	1.4 Add New Account
	1.4.1 Add credentials
	1.4.2 Generate Random Strong Password
	1.4.3 Password Strength Test

	1.5 Edit an Existing Account
	1.6 Exiting TwoKey

	Appendix 2: Code Snippets
	Code Snippet 3.1
	Code Snippet 4.1
	Code Snippet 4.2
	Code Snippet 4.3
	Code Snippet 4.4
	Code Snippet 4.5
	Code Snippet 4.6
	Code Snippet 4.7
	Code Snippet 5.1
	Code Snippet 5.2
	Code Snippet 5.3
	Code Snippet 5.4
	Code Snippet 7.1

	Appendix 3: References

