CKI HACKFEST NOTES

NOTE: Please click the blue button at the top right if you want to request comment/edit access. &

Introductions

Participants: (please add your own name/affiliation here)
e Red Hat:
Major Hayden
Veronika Kabatova
Nikolai Kondrashov <nkondras@redhat.com>
Don Zickus
Jakub Racek
Inaki Malerba
Rachel Sibley
Rafael Aquini
Bruno Meneguele
Eliska Slobodova
o Stef Walter
e Linaro/ LKFT:
o Dan Rue
o Anders Roxell
e kernelCl
o Mark Brown (Arm)
o Kevin Hilman <khilman@baylibre.com> (BayLibre)
o Guillaume Tucker <gtucker@collabora.com> (Collabora)

o O 0O 0o O O 0O O O O

e Fuego
o Tim Bird <tim.bird@sony.com> (Sony)
e |BM

o Andrew Donnellan (PowerPC + Patchwork/Snowpatch)
o Daniel Axtens (PowerPC + Patchwork)
o Russell Currey (PowerPC + Snowpatch)
o Michael Ellerman (PowerPC maintainer, KisskB)
e Google
o Dmitry Vyukov (syzkaller/syzbot)
e OpenXT.org
o Rich Persaud <persaur@gmail.com>

mailto:nkondras@redhat.com
mailto:khilman@baylibre.com
mailto:gtucker@collabora.com

Resources

KernelCl
Mailing list: kernelci@groups.io: https://groups.io/g/kernelci

Test data standardization

Topic summary: Current status of test result unification across Cl systems, what
defines test data and metadata.

Session lead: Tim Bird

Notes:
e Problems
o Test systems are monolithic (tied closely to sub components in their own systems)
m e.g. Jenkins, ttc, Lava, Beaker, buildbot, etc
o Need more modular components that can be reused
e Similar APIs needed for components to talk to each other
o Interfaces are wildly different between Cl systems right now
e Tim/Kevin have a complex diagram for Cl providers to line up their features to basic
functions (the Cl loop)
o Test management system
Test scheduler / work farm
Device Under Test (DUT) control
Artifacts from build/run (run == results data)
Backend for reviewing data/results
Notifications
o https://elinux.org/File:Cl-Loop-high-level-arch-v3.jpg
Many systems have implicit APIs (local operations, such as saving a file to a local filesystem)
What's a test definition?
o Metadata + instructions for running a test
o Everything you need before, during, and after a test
Tim has a quick comparison between Fuego/CKl in his slides
Main focus on some things we all have in common
o Metadata
m Information about the test (license, version, etc)
m Functional data (type, test format version, packaging manifest)
m Fuego: YAML
m CKI: Makefiles
m Lots of harmony here already
o Prerequisites & dependencies
m Pre-conditions or state required for a test
e Something that cannot be changed

o O O O O

mailto:kernelci@groups.io
https://groups.io/g/kernelci
https://elinux.org/File:CI-Loop-high-level-arch-v3.jpg

e Kernel versions, permissions, programs/libraries, capacity, etc.
m Dependencies are things needed to execute the program
o Results format
m DB, JSON, xunit, etc
m Everyone has parsers for figuring out what's passing/failing in a test log
Action items:
e Proposal: Each test emits parser helper data as part of log output
o Could output a format type when it starts (as KTAP does with TAP header)
o Apparently there’s something else called TAP14?!
o Q:Why do we want to write multiple parsers? Can't we work with test maintainers to
get output written in common format?
m Problems happen with test suites inside another test suite
m Some tests use tabs for sub tests to make it easier to parse, but that's not in
the TAP spec
Goal is to write a universal parser one time and reuse it everywhere
Would require work and coordination from test maintainers/authors
m There needs to be an incentive for test maintainers/authors to do the work
o Challenge with kernel developers who write a quick bash script but then have no
idea how to add it to a test wrapper/framework/harness
o Kernel developers want a framework to plug into (kselftest harness?)
e Proposal: Use Kernel Cl JSON format for feeding common results into the same place
o URL: https://api.kernelci.org/
o Could help us find patterns for kernel versions and common test issues
m Example: one LTP subtest could be flaky across all Cl platforms; would be
easier to find with results sent to the same place
o Could be used for more advanced data mining/notifications later on
e Summary:
o Make guidelines for test writers
o Must have clear results data from tests (pass, fail, skip)
m No manual reading/parsing
o Use common output format with common parsers
o Tim: Need to document what kernel is doing with/to TAP format (KTAP?)
m Possible next steps: push the standard and start using it across the board.
Developers won't need to learn a billion test standards/frameworks and
results will be consistent as well
o Discussion on KernelCl mailing list: https://groups.io/g/kernelci

https://api.kernelci.org/
https://groups.io/g/kernelci

Common place for upstream results

Topic summary: There are plans to drop all available data into a common DB to
use but what next? The place should be easily available and browsable by people
wanting to see the results.

Notes:
e Previous discussion thread on the mailing list:
https://lists.yoctoproject.org/pipermail/automated-testing/2019-April/000389.html
o BigQuery solution proposed, CKI promised to provide data. No actual progress on
implementation yet
e Possible starting point: schema (from kernelCl).
o https://api.kernelci.org/schema-test.html
e syzbot schema (centered around crashes rather than tests, but some bits may be useful):
o distilled version, or if you want to poke around actual code ([1], [2], [3])
e Greg receives multiple reports from several Cl systems, can we unify the results into a single
report.
e Greg would like a high level report summarizing pass/fail status for testing to easily find
regressions
e Patchwork supports some of this result data via the checks API
o Thisis already working well on the ppc list today (0zlabs)
o Butwhat about git trees/commits or the stable queue?
o There's a kernel patchwork and one on ozlabs -- could be combined
Agreement: Reporting and data collection are separate things
BigQuery could be a place to upload data as well
o Complex terms of service
o Some companies won't want to publish anything, much less to a cloud provider’s
product
o There are some options if we make the data public (free storage, perhaps?)
e Companies need a way to run some of these deployments internally for proprietary
hardware
Data store can be switched later; real value comes from sharing/comparing data
Bigquery presentation on public data sets:
o https://s3.amazonaws.com/connect.linaro.org/bkk19/presentations/bkk19-300k1.pdf
o https://s3.amazonaws.com/connect.linaro.org/bkk19/videos/bkk19-300k1.mp4

Action items:

e Review the KernelCl schema to see if each group could push their data into it
o Perhaps a command line tool to submit a result?
o Each Cl system should do this review independently
o There is a metadata field for miscellaneous data
o Discuss fields on mailing list that are required, not needed, etc

e Each testing group should submit their data via KernelCl schema
o Tokens are required to push data into the API

https://lists.yoctoproject.org/pipermail/automated-testing/2019-April/000389.html
https://api.kernelci.org/schema-test.html
https://gist.githubusercontent.com/dvyukov/18d3e2b0eb90a1a35ae812d83c9b645a/raw/d7e6e7bf17c7c5deebf763c765d9070d5f1c2f74/bug_report.go
https://github.com/google/syzkaller/blob/master/dashboard/app/entities.go
https://github.com/google/syzkaller/blob/master/dashboard/dashapi/dashapi.go
https://github.com/google/syzkaller/blob/master/dashboard/app/config.go
https://patchwork.ozlabs.org/
https://s3.amazonaws.com/connect.linaro.org/bkk19/presentations/bkk19-300k1.pdf
https://s3.amazonaws.com/connect.linaro.org/bkk19/videos/bkk19-300k1.mp4

o Ask for a token on the KernelCl ML
e Leave the door open for moving to BigQuery possibly later

e POC: https://github.com/spbnick/kcidb

https://github.com/spbnick/kcidb

How to avoid effort duplication

Topic summary: How to get results from enough diverse environments (HW,
compilers, configurations etc.) without duplicating others’ work and still providing
useful results.

Notes:
e From mailing list discussion: developers are not happy with receiving multiple “same” reports
of questionable quality as having to go through all slows them down
Nobody wants to write another reporter!
What do kernel dev/maintainer want?
o Wants to know when a patchset will bring a regression into a tree
o Contributor should get a report before the maintainer sees it
o Patchset dependencies are really hard but really important
m Painful in downstream and upstream
m Not a standardized way to define patch dependency relationships
Wants to know if the current tree is okay before applying patches
Bisection would be helpful
Collaboration between developer submitting patch and test maintainer would be
helpful
e Compiler issues are fairly limited, mainly around warnings
o Not a lot to worry with here
o Report should include it for sure
o Gets complicated fast with embedded
e Kernel configs should be a click away from the report
o Everyone has their config fragments
o Some configs are very opinionated
e Would kernel developers like to have the built kernel presented in a way that is VERY easy to
boot and run (and debug?)
o Yes, in all the formats (thanks, Bruno) ;)
o Would be handy for testing patches
Allow kernel developers to request additional tracing during testing, or crash dumps
How do we avoid running the same tests in each Cl system?
o Isthata bad thing?
o Greg doesn't like getting PASS/FAIL from different groups on the same test
e LTP takes along time to run all of its test cases
o Isit possible to run just one?
e Sample LAVA jobs:
https://lava.collabora.co.uk/scheduler/job/1817668
YAML definition: https://lava.collabora.co.uk/scheduler/job/1817668/definition
Results summary: https://lava.collabora.co.uk/results/1817668
https://lava.collabora.co.uk/scheduler/job/1818951 (more results from IGT)

https://lava.collabora.co.uk/scheduler/job/1817668
https://lava.collabora.co.uk/scheduler/job/1817668/definition
https://lava.collabora.co.uk/results/1817668
https://lava.collabora.co.uk/scheduler/job/1818951

Action items:

Make a proof of concept of an easily runnable/bootable OS + kernel that a kernel
developer/maintainer could use to boot their kernel and run it/debug it

o As few commands/clicks maximum - less than 10 definitely, as few better

o For build failures, make build environment easily accessible
Need a way to annotate a component or a failed test

o “mtest06 was badly written, no time for a fix, we should disable it"

o Can be another field for test result to make things easy for now
We really really need to start centralizing our data to highlight where conflicting
issues are located

Open testing philosophy

Topic summary: Modularity and interoperability of different Cls: standardized API
points to “share” different parts of Cl systems, resource usage optimization,
bisections, ...

Notes:

KernelCl modular pipeline proposal:
https://docs.google.com/document/d/15F42HdHTO6NDLSL53 iLI77Ife 1XQKdWaHAf7XCNkKD8
Ledit

Modular pipeline diagram:
https://docs.google.com/presentation/d/1-CrMZR3YtP7W7TETsouEIgW1w4DNSgiherkOKIlyuh
A/edit?usp=sharing

Getting patches from a mailing list? Check out snowpatch:
https://github.com/ruscur/snowpatch

Action items:

The first step would be to send results to a common place, making it possible to have a
common point for the last functional blocks (analyze, report)

Then the next step may be to have a common place where builds are stored, and have
various labs download these builds rather than do their own for the same upstream kernel
revisions. Having a modular approach to how the builds are made would also help, rather
than being all managed by KernelCl's Jenkins.

As KernelCl is making an abstraction above LAVA interaction, we could also be scheduling
jobs in other lab types such as Red Hat's Beaker to get CKIl results directly integrated into the
main pipeline and run tests using KernelCl builds.

https://docs.google.com/document/d/15F42HdHTO6NbSL53_iLl77lfe1XQKdWaHAf7XCNkKD8/edit
https://docs.google.com/document/d/15F42HdHTO6NbSL53_iLl77lfe1XQKdWaHAf7XCNkKD8/edit
https://docs.google.com/presentation/d/1-CrMZR3YtP7W7TETsouElgW1w4DNSgiherk0KIlyuhA/edit?usp=sharing
https://docs.google.com/presentation/d/1-CrMZR3YtP7W7TETsouElgW1w4DNSgiherk0KIlyuhA/edit?usp=sharing
https://github.com/ruscur/snowpatch

Common hardware pools

Topic summary: Sharing hard-to-get HW with other Cls, companies being able to
sign up to have stuff run on their HW to validate it.

Notes:
e From yesterday’s discussion, we talked about this being a bit easier with a more modular
pipeline approach

o That also turned into a discussion around Beaker, Lava, other provisioning tools, etc
and the limitations of each &

Action items:
e Find out if it's possible to translate Beaker to Lava and vice versa
o Just different XML formats after all ;)

e Setup a public Beaker instance for kernel Cl to play/develop a transition layer (Don Z)
o Supply instructions for Beaker-in-a-Box

Getting results to
developers/maintainers

Topic summary: How many emails to send and with what data (links to dashboard, how to

reproduce the results, etc.). How much data should be sent in the first step and what is OK to be a
few clicks away? Using Patchwork checks for tested patches that point to dashboard.

Notes:

e Strong preference for storing check data in Patchwork for patch series
e Two real audiences here:

(e]

o

Developer who submitted the patch
Maintainers who maintain the kernel

e What communication is being sent now?

(0]

e What do maintainers want?

o

(e]

(0]

Pass/Fail obviously
What is it under test? Commit SHA(s), patches, etc.
New failures
m Regressions first
m Then show things that have been failing for a long time
Why did it fail?
m Getto a crash dump, logs, built kernel, bisect output quickly
m What was the test doing when it failed? Need to find out what it was testing
and how it failed. A snippet of log or something could be helpful.
When did it pass again?
m Reporting fixes is helpful
Maintainers don’'t want a long email full of passing test details, just failed tests
Links to extended report data are okay
m Long emails are annoying

e Failures require some curation from the Cl owners

(e]

(e]

Logs for tests are really long and it's difficult to isolate which log lines correlate to the
failure
Logs look different for different tests

e Why can't there just be a single framework for tests?

(e]

o

(e]

Should be a best practices document for what tests should do/log

Should turn into a standard later

We have to go to where the tests are -- our teams aren't big enough to push test
maintainers to change their framework

kselftests is aimed towards getting more tests written; not looking pretty
“Please tell me what the heck this test is testing”

(e]

(e]

Test has a name that is very ambiguous and a kernel developer doesn’t know exactly
what it's doing on the system
Tests need to have a purpose -- what are they intended to find or prevent?

e Dol want more test coverage or more organized/optimized tests?

Number of tests is only one dimension
Fewer tests with more hardware is also helpful
Trees, compilers, kernel configs are also valuable dimensions
Email reports make anything more than two dimensions difficult
e Need more tests but fewer test suites (would be easier to optimize around improvements)
e If more Cl systems use kselftests and send those results to lists, then maintainers would
push people to put tests in kselftests
o Cl systems need to use kselftests and promote it ASAP

o O O

o

[side conversation]:

e would it be useful to add meta-data directly into kselftest?

o How to doit? What format? Where does it live?

e itwould be good, but shouldn't require it of individual test authors

e Add it to the source as kerneldoc
extract it into json? and use as part of reports
have to define a schema
At a minimum, want the description of the test, and its dependencies
If not outputting in KTAP, describe output format
(things rejected: put it outside the tree, put it in yaml or json (kernel devs would
reject it)

o O O O

Action items:
e (Il systems should start using kselftests and report results to maintainers ASAP
o Dan Rue would like to work with anyone who is interested in this
o Run latest kselftests on later versions of kernels (kselftest documentation will be
updated soon to say that)
e Email content
o Include in Kernel Cl document eventually
m Should be living document where maintainers could propose changes
o Mustinclude:
m Pass or Fail
Commit SHA(s) used
Where any patches came from and how they were applied
Failing test names
Number of passing tests
m Test environments / architectures
o Should include:
m Will determine this as we iterate
o Should link to:
m Kernel config files
Test sources
Built kernel artifacts
Reproducer
QEMU environment for testing
Versions of software (compiler, libc, etc)
e Doesn't have to be super detailed: “GCC 8" or “GCC 9”
o Ask maintainers if they want to get a pre-test notification

Onboarding new trees and tests

Topic summary: What trees need the most attention/are most bug-prone? Which
tests are you missing in Cl but find important? Upstream test location unification;
making it easy to wrap and onboard tests to CI.

Notes:
e Onboarding new tests as it is today:
o CKl
m Review how the test is triggered, prerequisites, architecture requirements
m Onboard it into the pipeline in a “waived” state
e Waived means the test is not trusted
e Once it stabilizes, the waived tag is removed
m Tests are added into jobs for different hardware types
m Newly onboarded tests aren’t always the most stable or they have narrow
requirements
m Thereis pre-Cl for test changes
o LKFT
m Ask developer to add their test to kselftest or LTP :)
o KernelCl

m Worked with maintainers to determine how to onboard media tests
m Worked through dealing with output
LTP has a higher bar of quality than kselftest for now
Red Hat has two LTP maintainers who would be happy to talk about making changes to LTP
Sometimes it's better to let a project be wild for a while (kselftest) so we don't stifle
innovation/adoption
We all need curators and librarians for new tests
New test suites need to get “wrapped”
o Each system has something like this right now
o LKFT doesn't have the waived concept, but would like to have it
Can we (Cl systems) influence these test developers to change how they report?
If there's a reason why people are not pushing tests into LTP, we should get those
deficiencies fixed
e Onboarding new trees (as it is today):
o Toonboard a new tree to test with CKI, submit a PR to
https://gitlab.com/cki-project/pipeline-data/ we can help with format if needed
e How do we work with a kernel maintainer to add their tree?
o Ask them which dimensions they care about: architectures, test suites, compiler
version, compile options, kernel configs, kernel tree, branch of tree, etc
o What tests do you care about, how do we run them, and where are they?
m Consider trees like media, graphics, audio -- might have highly specialized
test
o Kernel maintainers should soon define what tests they want in the maintainers file
(yay!)
o Kernel maintainers should be able to see what they're going to get

https://gitlab.com/cki-project/pipeline-data/

m Consolidated reporting could make the value offering better
o Inthe end we want kernel developers/maintainers to care about what the Cl
systems are doing

e Whatis success?

o Everyone needs to watch Dmitry’s talk from LPC 2019
More bugs are being fixed
Subsystems are not broken for long periods
Developers/maintainers care about breaking (and unbreaking) the build
Maybe Linus will tell maintainers to have Cl at some point (we can hope!)

o It all starts with maintainers using Cl and talking about it with other maintainers
e What's the workflows mailing list? (it's new as of 2019-09-12)

o No outcomes for testing
It was assumed that we (Kernel Cl) will handle that ;)
No strict no or yes on anything
Identity and common data formats coming soon (possibly)
Structured data formats for patches and suggested changes (communication
protocols for Cl to say “we tested this” other than sending email)
Someone even suggested web Uls :)
Intel's 0-day is slowing in responses and maintainers want to know if the testing
started

o O O O

o O O O

o

Action items:

e Find a way to interact with test maintainers
o Recommended to use automated testing list since LTP authors are already there
o Call out deficiencies on the LTP list directly

e Articulate what we want to make it easier for kernel developers to contribute to LTP
o Current coding best practices are not user friendly
o There is confusion about doing pull requests or submitting patches via email
o Red Hat to work with developers to on-board tests in LTP and work with upstream to

solve issues.

e Define what success looks like for all of us

o Write it down publicly

Cl bug tracking

Topic summary: Is bugzilla.kernel.org useful to report bugs from CI? Is anyone
actually checking and fixing stuff that's there in a timely manner? Would it make
sense to have a bug tracker for possible issues found by CI? Automated bug
submission on failed tests.

Notes:

imalerba: proposal to use GitLab project issues to track bugs
o Simple API, a lot of labels to use to mark progress
Emails are fine to announce a bug was found + details but it's impossible to track all
submitted bugs by a Cl system, comparing them with possible duplicates by other Cls etc.
Is bugzilla.kernel.org useful?
o Resounding no from the group
o BZsends emails to the list, maintainers want replies by email
o Sending an email to the ML is preferred because it doesn't force maintainers to deal
with a separate system
o If Cl sends a bug to the maintainer, the maintainer might make a bug in BZ to track
the fix if it takes time
syzkaller sends emails, but then maintainers want all the features of BZ in syzkaller's
dashboard
If Cl opens a bug, then there needs to be some sort of closure when the bug no longer exists
Some Cl systems need to demonstrate progress through metrics to maintain funding and
grow
syzkaller asks developers to add a tag in there patch to do correlation
o Some developers do it, some don't
Having an ID/UUID is handy for tracking fixes

Action items:

Put the bug report tracker/ID/URL in the data submitted by each Cl system
o The link goes in the shared data stored centrally
o Each ClI system can track their own independently
o As we start collecting shared results/failures, we can look for common ways of
combining and/or de-duplicating failures and coming up with a common tracking ID

Bugs and result interpretation

Topic summary: Test result interpretation, regression/fix detection, infrastructure
issue detection, using neural networks to detect and categorize issues, “known
issue” detection...

Notes:

e Tim Bird: skiplists and pass criteria

e Carlos Hernandez: using neural networks for bug detection

e Sasha has some nice machine learning working with the stable tree right now to identify
patches which are easily backportable or are critical security/bug backports

e Would be nice to have a "confidence rating" for individual boards in a lab, that can be used
to rate test results

o Based on how flaky the board hardware is
e Kevin suggests using emojis to report relative flakiness

o) ;.'.'J'_::%Ezs@é

Action items:
e Stef has a link to some machine learning application inside a container that is worth checking
out

Code: https://github.com/cockpit-project/cockpituous/tree/master/learn
DevConf Talk:

https://devconfcz2019.sched.com/event/|cg0/using-machine-learning-to-find-linux-b
ugs

m Slides: https://github.com/stefwalter/slides-machine-learning-bugs

m Video: https://www.youtube.com/watch?v=vU6KeUEWmMsQ

https://github.com/cockpit-project/cockpituous/tree/master/learn
https://devconfcz2019.sched.com/event/Jcg0/using-machine-learning-to-find-linux-bugs
https://devconfcz2019.sched.com/event/Jcg0/using-machine-learning-to-find-linux-bugs
https://github.com/stefwalter/slides-machine-learning-bugs
https://www.youtube.com/watch?v=vU6KeUEWmsQ

Security when testing untrusted
patches

Topic summary: How do we merge, compile, and test kernels that have untrusted
code in them and have not yet been reviewed? How do we avoid abuse of systems,
information theft, or other damage?

Notes:

Problems/threats:
Treat anyone/everything as hostile
Identity helps with knowing that a developer really submitted a certain patch
Syzkaller currently does:
o Build kernel with new local user
o All builds in its own user/network namespace
o Blacklist certain sender email addresses / regular expressions
o Partition build machines away from other systems
How do we handle the hardware tests?
What if someone submits code that is patented or poorly licensed and you're distributing it?
Multi-level approach:
o Trusted person: run on hardware
o Untrusted person: runin aVM
o Identity verification is still required
Incentivize developers to submit w/identity or signatures if they want more testing
o Still needs to be as easy as possible with least delays
Developers also may want to compromise test results (to look okay when it's not okay)
o Think about certification for autonomous cars
Perhaps do VM testing for untrusted patches and deeper tests on signed tags from
maintainer
Hardware could be exposed into VMs via SR-IOV
Attackers could modify system component firmware or BIOS
o Signed BIOS?
How effective are tests in VMs?
Could limit what gets tested based on which files are changed
Maybe you just don't build/test
o lIgnore whitespace changes or changes to comments
o Ignore changes to architectures which aren’t ones you care about
Do reproducible builds and compare results to know if anything changed

Action items:

Don to verify DCl/Beaker publicly documents best practices for a lab network.

Additional topics

Compat (32b userspace and 64bit kernel)

Notes:
e distros use this commonly, but it's not often tested
e also a common attack surface

Actions:

Events

Linux.conf.au 2020 Kernel Miniconf - 1 day stream as part of LCA2020, 13-17
January, Gold Coast, Queensland, Australia. Andrew will be putting out a CFP very

shortly - see http://Ica-kernel.ozlabs.org/. Testing/Cl/process talks very welcome.
(Actions: Everyone: submit an overwhelming number of papers)

Platform Security Summit 2019: 3 day single track, focused on hardware-assisted
security and open+closed software supply chains, Oct 1-3 near Seattle, WA, USA. Kevin may
be able to speak about CKI.

2018 videos (TPM2,firmware,boot): https://platformsecuritysummit.com/2018/videos

2019 speakers: https://platformsecuritysummit.com

http://lca-kernel.ozlabs.org/
https://platformsecuritysummit.com/2018/videos
https://platformsecuritysummit.com

