Chapter 21 – Magnetism

Section 21.1 – Magnets and Magnetic Fields

*	is the force a magnet exerts on
	another, on iron or a similar metal, or on
*	Magnetic forces, like electric forces, act over a
*	Magnetic forces, like electric forces, with distance.
*	All magnets have magnetic poles, regions where
	the magnet's force is
>	One end of a magnet is its; the other
	end is its
þ	magnetic poles one another, and
	magnetic poles one another.
.	A surrounds a magnet and can
	exert magnetic forces.
•	A magnetic field, which is near a
	magnet's poles, will either another magnet that enters the field.
٠	The magnetic field always travel from the
	pole to the pole of a magnet.
٠	is like a giant magnet surrounded by a
٠	The area surrounding Earth that is influenced by this field
	is the
•	Within an atom, move around the nucleus.
•	This movement, along with a property called,
	causes electrons to act like tiny

*	In many materials, each electron is	with
	another having an spi effects each other out.	n, so magnetic
*	Many other materials have one or more	
	electrons, but the combine because the right.	usually don't of atoms is not
*	In a few materials, such as iron, nickel, make a strong	ŕ
*	Then the fields combine to form	
*	Ais a region	that has a very large
	number of atoms with mag	netic fields.
*	Acan	be magnetized
	because it contains	
*	When a material is magnetic domains are	, most of its
*	If the of a ferromagnetic	material are aligned
	, the magnetization, and it is not a magne	n of the domains is
*	If a ferromagnetic material is placed in	a
	, then the elec	etron domain can
*	are mater	ials whose domains
	will stay for a long time.	
*	No matter how many times you piece will always have a	Ŭ ,
	piece will always have a	

*	Describe the interaction of magnetic poles.
*	What two things can happen to a magnet entering a magnetic field?
*	What makes a material magnetic?
*	Describe what happens to the fields of two bar magnets when you bring their north poles together.
*	What happens if you suspend a bar magnet so that it can swing freely?
*	How are electrons responsible for magnetism?
Section	n 21.2 - Electromagnetism
*	and magnetism are different aspects
	of a single force known as the
*	The electric force results from
*	The magnetic force usually results from the
	in an atom.
*	Both aspects of the electromagnetic force are caused by

_	electric charges create a
	The magnetic field lines form around a traight wire carrying a
F	moving in a magnetic field will be
t	eflected in a direction to both ne and to the of ne charge.
	f the current is to the magnetic field, the orce is and there is no
	The magnetic fields of combine so that a coiled wire acts like a
	a of current-carrying wire that produces a nagnetic field is called a
i	f you place a, such as an con rod, inside the coil of a solenoid, the strength of the nagnetic field
]	The magnetic field also as the increase.
Ā	is a solenoid with a
(Changing the in an electromagnet controls
ť	ne of its magnetic field.

Section 21.2 Assessment

- ❖ Besides a magnet, what can create a magnetic field?
- ♦ How is the magnetic field of an electromagnet controlled?

- How does a ferromagnetic rod inside a solenoid affect the strength of an electromagnet?
- ❖ What is the effect of a magnetic field on a stationary electric charge? On a moving electric charge?
- Why is it a good idea to have the coil of a solenoid wound closely with many turns of wire?