Chapter 3 Practice Problems:

- 1. In the visible range of the electromagnetic spectrum, which color has the longest wavelength?
- 2. In the visible range of the electromagnetic spectrum, which color has the highest frequency?
- 3. Which color has the most energy associated with it?
- 4. Calculate the frequency of light that has a wavelength of 562 nm.
- 5. Calculate the wavelength of light (in nm) with a frequency of 4.33 x 10¹⁴ Hz. What color might this be?
- 6. Calculate the frequency of light with a wavelength 2.50 x 10⁻⁷m.
- 7. What is the energy (in Joules) of green light with a frequency of $5.26 \times 10^{14} \text{ hz}$?
- 8. What is the frequency of a wave with $8.35 \times 10^{-18} \, \text{J}$ of energy?
- 9. What is the energy of a wave with a wavelength of 5.62×10^{-7} m?
- 10. What is the wavelength of a 3.537 x 10⁻¹⁹ J wave?
- 11. Calculate the energy of the photon emitted when an electron transitions from the n = 3 state to the n = 1 state in a hydrogen atom.
- 12. Calculate the wavelength of the photon emitted when an electron in a hydrogen atom transitions from energy level 4 to n = 3.
- 13. An electron moves with a velocity of 2.5 x 10⁸ cm/s. What is its wavelength?
- 14. Calculate the wavelength (in nanometers) associated with a 1.10×10^2 g golf ball moving at 31.0 m/s (about 67 mph). How fast must the ball travel to have a wavelength of 5.65×10^{-3} nm?
- 15. State the four quantum numbers, then explain the possible values they may have and what they actually represent.
- 16. Which of the following sets of quantum numbers describe an impossible situation? Explain why.

a.
$$n = 2$$
, $l = 1$, $m_l = 2$, $m_s = +\frac{1}{2}$

b.
$$n = 5$$
, $l = 2$, $m_l = 1$, $m_s = -\frac{1}{2}$

c.
$$n = 6$$
, $l = 6$, $m_l = 0$, $m_s = -\frac{1}{2}$

d.
$$n = 3$$
, $l = 2$, $m_l = 1$, $m_s = 0$

e.
$$n = 4$$
, $l = 2$, $m_l = 1$, $m_s = +\frac{1}{2}$

17. Give the n and l values for the following orbitals

- a. 1s
- b. 3s
- c. 2p
- d. 4d
- e. 5f

18. What is the ml values for the following types of orbitals?

- a. s
- b. p
- c. d
- d. f

19. How many possible orbitals are there for n =

- a. 4
- b. 3

ANSWERS:

- 1. In the visible range of the electromagnetic spectrum, which color has the longest wavelength?
- 2. In the visible range of the electromagnetic spectrum, which color has the highest frequency? Violet
- 3. Which color has the most energy associated with it? Violet
- 4. Calculate the frequency of light that has a wavelength of 562 nm.

$$c = v\lambda$$
 rearrange: $v = c/\lambda$ $v = \frac{(2.998 \times 10^8 \text{ m/s})}{(562 \text{ nm} \times \frac{1 \text{ m}}{1 \times 10^9 \text{ nm}})} = 5.33 \times 10^{14} \text{ Hz (recall Hz} = \frac{1}{s})$

5. Calculate the wavelength of light (in nm), with a frequency of 4.33×10^{14} Hz. What color might this be?

$$\lambda = c/v$$
 $\lambda = \frac{2.998 \times 10^{8 \text{ m/s}}}{4.33 \times 10^{14} \text{ s}^{-1}} = 6.92 \times 10^{-7} \text{ m x } \frac{1 \times 10^{9} \text{ nm}}{1 \text{ m}} = 692 \text{ nm}; \text{ red}$

6. Calculate the frequency of light with a wavelength $2.50 \times 10^{-7} \text{m}$.

$$v = c/\lambda$$
 $v = \frac{2.998 \times 10^{8 \text{ m/s}}}{2.50 \times 10^{-7} \text{m}} = 1.20 \times 10^{15} \text{ Hz}$

7. What is the energy (in Joules) of green light with a frequency of $5.26 \times 10^{14} \text{ hz}$?

E = hv
$$E = (6.626 \times 10^{-34} \text{ J s})(5.26 \times 10^{14} \text{s}^{-1}) = 3.49 \times 10^{-19} \text{ J}$$

8. What is the frequency of a wave with 8.35×10^{-18} J of energy?

E = hv
$$v = E/h$$
 $v = \frac{(8.35 \times 10^{-18} J)}{(6.626 \times 10^{-34} J \text{ s})} = 1.26 \times 10^{16} \text{ Hz}$

9. What is the energy of a wave with a wavelength of 5.62×10^{-7} m?

E = hv and
$$v = c / \lambda$$
 so, E = hc/ λ
$$E = \frac{(6.626x \cdot 10^{-34} Js)(\frac{2.998 \times 10^{\circ} m}{s})}{5.62 \times 10^{-7} m} = 3.53 \times 10^{-19} J$$

10. What is the wavelength of a $3.537 \times 10^{-19} \text{ J wave } (J = \text{Energy})$?

E = hv or E/h = v
$$v = \frac{3.537 \times 10^{-19} J}{6.626 \times 10^{-34} J s} = 5.338062179 \times 10^{14} \text{ s}^{-1} \text{ plug into } \lambda = c/v$$

$$\lambda = \frac{2.998 \times 10^8 m/s}{5.338062179 \times 10^{14} s^{-1}} = 5.62 \times 10^{-7} \text{ or } 562 \text{ nm (green light)}$$

11. Calculate the energy of the photon emitted when an electron transitions from the n = 3 state to the n = 1 state in a hydrogen atom.

Use the Rydberg equation:
$$E = 2.18 \times 10^{-18} J \left(\frac{1}{1^2} - \frac{1}{3^2} \right) = 1.94 \times 10^{-18} J$$

12. Calculate the wavelength of the photon emitted when an electron in a hydrogen atom transitions from energy level 4 to n = 3.

Use the Rydberg equation:
$$E = 2.18 \times 10^{-18} J \left(\frac{1}{3^2} - \frac{1}{4^2} \right) = 1.0 \pm 97222 \times 10^{-19} J \text{ (energy)}$$

E = hc/
$$\lambda$$
 so λ = hc/E = $\frac{(6.626x \, 10^{-34} Js)(\frac{2.998 \, x \, 10^8 m}{s})}{1.0597222 \, x \, 10^{-19} J}$ = 1.88x 10⁻⁶m

13. An electron moves with a velocity of 2.5 x 10⁸ cm/s. What is its wavelength?

Use De Broglie equation:
$$\lambda = h/mv = \frac{6.626 \times 10^{-34 / s}}{(9.10938 \times 10^{-31} kg)(\frac{2.5 \times 10^8 cm}{s})(\frac{1 m}{100 cm})} = 2.9 \times 10^{-10} m$$

Look at units...Remember J = kg m²/s² So,
$$\lambda = \frac{\frac{kg m^2}{s^2} *_S}{kg * \frac{m}{s}} = m$$

14. Calculate the wavelength (in nanometers) associated with a 1.10×10^2 g golf ball moving at 31.0 m/s (about 67 mph). How fast must the ball travel to have a wavelength of 5.65×10^{-3} nm?

$$\lambda = h/mv \qquad \lambda = \frac{6.626 \times 10^{-34/s}}{(110.g)(\frac{1 \log g}{1000 g})(\frac{31.0m}{s})} = 1.94 \times 10^{-34} \text{m}$$

$$v = h/m\lambda \qquad \qquad v = \frac{6.626 \times 10^{-34/s}}{(0.110 \log g)(5.65 \times 10^{-3} nm)(\frac{1 m}{1 \times 10^{9} nm})} = 1.07 \times 10^{-21} \text{ m/s}$$

15. State the four quantum numbers, then explain the possible values they may have and what they actually represent.

n – Principal Quantum Number: represents the energy level (periods 1-7)

l – Angular Momentum Quantum number: represents the shape of the orbital- s, p, d, f (0...n-1)

 m_l – Magnetic quantum number: number of orbitals possible. (-l,...0...+l)

 m_s – Spin Quantum number: direction of electron spin. (+1/2 or -1/2)

16. Which of the following sets of quantum numbers describe an impossible situation? Explain why.

a.
$$n = 2$$
, $l = 1$, $m_l = 2$, $m_s = +\frac{1}{2}$

$$l = 1$$
 then m_l can only = -1, 0, 1

b.
$$n = 5$$
, $l = 2$, $m_l = 1$, $m_s = -\frac{1}{2}$

c.
$$n = 6$$
, $l = 6$, $m_l = 0$, $m_s = -\frac{1}{2}$

$$n = 6$$
, then l can $= 5$ or less (s, p, d, f)

d.
$$n = 3$$
, $l = 2$, $m_l = 1$, $m_s = 0$

$$m_s$$
 can't = 0

e.
$$n = 4$$
, $l = 2$, $m_l = 1$, $m_s = +\frac{1}{2}$

17. Give the n and l values for the following orbitals

a. 1s
$$n=1$$
, $l=0$ b. 3s $n=3$, $l=0$ c. 2p $n=2$, $l=1$ d. 4d $n=4$, $l=2$ e. 5f $n=5$, $l=3$

c. 2p
$$n=2$$
, $l=1$

d. 4d n=4,
$$l=2$$
 e. 5f n=5, $l=3$

18. What is the ml values for the following types of orbitals?

19. How many possible orbitals are there for n =

b. 4
$$s=1$$
, $p=3$, $d=5$, $f=7=16$ total