
Please Note: This document is a little out of date. See my short series of articles at Blogascript - 
starting with Objects and the Prototype Chain 
 
Again, this article is deprecated. The techniques within are valid, but do not represent best 
practice. 

Object-Oriented Programming in 
JavaScript 
Recently, I have been doing a lot of thinking about the object-oriented side of JavaScript. The 
depth of the problem isn’t something that comes up in many applications, simply because 
inheritance isn’t necessary for a lot of them. The ephemeral nature of JavaScript-based 
applications means that objects don’t necessarily stick around for long, and you may not even 
need more than one copy of many types of objects. 
 
I’ve avoided using the word instance in this case, as I believe that term applies to a class-based 
(or classical) paradigm of object oriented programming. JavaScript uses a prototype-based (or 
prototypal) paradigm of object oriented programming. I’d like to avoid comparing the prototypal 
paradigm with the classical paradigm, as it seems to muddy the waters. 
 

The Classical Problem 

JavaScript has already muddied the waters quite sufficiently by including the new keyword in 
the language. new is a construct of classical inheritance, used with classes, which serve as a 
kind of template for creating objects. new Animal() creates a new object of type Animal, given 
that there is a class with that name. 
 
At least, that’s what happens in the classical paradigm. What happens in JavaScript is different, 
due to its prototypal nature. Douglas Crockford describes it succinctly on his page about 
prototypal inheritance: 
 

[JavaScript] has a new operator, such that new f() produces a new object that 
inherits from f.prototype 

 
There is some amount of misdirection (as Crockford says - I think indirection is more fitting) 
involved in the use of new in JavaScript. Since JavaScript does not include classes, we must, 
instead, use functions which then act like classes when used with new. 
 

 

http://blog.javascriptroom.com/2013/01/14/objects-and-the-prototype-chain/


 
function Animal(p_legs, p_word) 

{ 

​ this.legs = p_legs; 

​ this.word = p_word; 

​ this.walk = function() { /* do stuff */ } 

​ this.speak = function() { /* do stuff */ } 

} 

 

Obviously, this is a pretty simple “class”, but let’s take a look at it. Let’s see what happens when 
we instantiate Animal. By Crockford’s logic, we should get a new object which inherits from 
Animal.prototype. But what is Animal.prototype? Where does it come from? 
 
It seems that Animal.prototype has members assigned to it via this, used within the function 
body of Animal. This adds to the indirection, as we’re not setting this.prototype.legs, we’re 
setting this.legs. Logically, it would seem that we’re trying to set a member on the function 
itself, but it turns out that we’re setting a member on the prototype. 
 
Inheritance is further complicated when trying to emulate a classical paradigm in JavaScript. 
Since there is no explicit way for a function to extend (in the classical way of thinking) another 
function, odd constructs must be used in order to achieve inheritance (and some of these 
constructs are not actually inheritance). I will leave further exploration of this pseudo-classical 
style of object oriented JavaScript up to you, as it is beyond my intent to explore the prototypal 
nature of JavaScript. Suffice to say it takes a simple concept and turns it on its side, introducing 
unnecessary code as well as unnecessary complexity to the process of writing object oriented 
JavaScript. 
 
The moral of the story, of course, is to avoid new, and take advantage of the flexibility and 
simplicity of object-oriented JavaScript. 
 

Object Literals 
The easiest way to create an object in JavaScript is simply to do it. 
 
Yes. Really. Just create an object, as a one-off collection of names and values, usable 
immediately without any further complication. 
 

 



 
​ var lion = { 

​ ​ legs: 4, 

​ ​ word: ‘roar’, 

​ ​ walk: function() { }, 

​ ​ speak: function() { } 

​ }; 

 
And that’s all there is to creating a lion. Simple, right? Use the object literal notation { }, with 
some properties inside it - names and values are separated by colons, and each pair is 
separated from the next by a comma. 
 
This is great for one-off objects, and it could be all you ever need, if you tend to work on simple 
applications that require no repetition of functionality. If, however, you are looking at more 
complex applications, you won’t want to hard-code each of your objects whenever you need 
one. You’ll want to avoid code repetition, and be able to create various animals whenever you 
need them. This is where the prototype comes in. 
 

The Prototype and Object.create() 
When a property of an object is accessed, there is a look up process that occurs. The object 
itself is first examined to see if it contains whichever property is being accessed. If the property 
is found, then that property is used. If it is not, JavaScript turns to the prototype chain. 
 
Each object that contains any inherited properties has a property which represents the 
prototype. This prototype is simply another object, which contains its own properties, including 
(potentially) another prototype. 
 
When an object does not have the property that is being accessed, JavaScript looks at its 
prototype. If the prototype doesn’t have that property, then its prototype is accessed, and so on 
and so forth until the property is found, or there are no more prototypes to search. 
 
Given this model, it is easy to see how an object would inherit properties from another object 
through the prototype chain. It’s really a very simple concept. 
 
However, many JavaScript engines do not allow us to set the prototype of an object, so we have 
to use a different method of creating objects which inherit from other objects. This method is 
Object.create(), and it creates a new object which has a prototype equal to its first argument. It 
may be better explained by example. 
 
Let’s say we wanted to create some animals. Not just the lion we previously created, but 
several. Maybe a house cat, or a dog, or even a human. We’d want some common functionality 



amongst all of these, so we’ll use object oriented programming to create some animals. 
 
​ var animal = { 

​ ​ walk: function() 

​ ​ { 

​ ​ ​ var s = ‘’, i = 0; 

​ ​ ​ for (; i < legs; i++) 

​ ​ ​ { 

​ ​ ​ ​ s += ‘step ‘; 

​ ​ ​ } 

​ ​ ​ console.log(s); 

​ ​ }, 

​ ​ speak: function() 

​ ​ { 

​ ​ ​ console.log(word); 

​ ​ } 

} 

 
And there we have a generic animal. It can become anything it wants to, really. Now, we just 
need some more specific animals. 
 
​ var lion = Object.create(animal); 

​ lion.legs = 4; 

​ lion.word = ‘roar’; 

 

​ var houseCat = Object.create(animal); 

​ houseCat.legs = 4; 

​ houseCat.word = ‘meow’; 

 

​ var dog = Object.create(animal); 

​ dog.legs = 4; 

​ dog.word = ‘meow’; 

 

​ var human = Object.create(animal); 

​ human.legs = 2; 

​ human.word = ‘hello’; 

 

Look at all those animals. If we examine the objects, we’ll see that each has their own 
properties for legs and word, as well as a prototype, which contains walk and speak. 
When we try to make one of our animals speak, we simply call lion.speak(). JavaScript looks at 
lion, sees it doesn’t have a property speak, and checks the prototype. The prototype (animal) 
does have speak, so it gets called. In the body of that function, this refers to lion, and not 
animal. Again, JavaScript checks lion, and sees the value for word, which then gets logged to 



the console. 

Old Browsers 
Before I continue, a bit of a disclaimer. While all modern browsers implement Object.create(), 
some older ones do not. So, Crockford suggests a bit of a shim. Unfortunately, it uses new, but 
it also means that we don’t have to: 
 

if (typeof Object.create !== 'function') 

{ 

​ Object.create = function (o) 

​ { 

​ ​ function F() {}; 

​ ​ F.prototype = o; 

​ ​ return new F(); 

​ }; 

} 

 

Polymorphism 
One of the most important concepts in object oriented design is the concept of polymorphism, or 
the ability to vary the functionality of objects between inheritance levels. If a function needs to 
do something different for an object further down the prototype chain than it does for an object 
at a higher level, then it should be able to. 
 
And because of the prototype chain, this becomes very easy. We can give our human a 
different way of speaking than other animals. 
 

​ human.speak = function() 

​ { 

​ ​ console.log(this.word + ‘, dude’); 

​ } 

 

We now have a human surfer. When we call human.speak(), JavaScript looks at human, and 
sees that it does, in fact, have a property called speak. So, it gets called as a function, and our 
human adds ‘, dude’ to his favorite word. 

A Step Further 
We now have all these great animals to play with. We can make them speak, and we can make 
them walk. But they’re kind of just generic animals. What if you want a dog named spot, or a 



houseCat named mittens? 
 
Just make more of them. 
 
​ var spot = Object.create(dog); 

​ var mittens = Object.create(houseCat); 

 

You can do this as many times as you like, and all of these will be separate objects which share 
the properties of dog, or cat, or lion, or human, all accessed automatically through the 
prototype chain. 
 
There is something to be careful about, though. If you change dog, then spot won’t be the 
same anymore. The prototype will have been altered. Similarly, if you change animal, then 
everything that has animal in its prototype chain will be affected. 
 
These changes may not be noticeable if you’ve taken advantage of polymorphism. If you have 
made the above change to human and made a new human.speak property, then changing 
animal.speak will not have any effect on any calls to human.speak. Calls to dog.speak or 
lion.speak, however, will be affected. This applies to all properties - not just those properties 
that happen to be functions. If we set dog.legs to 3, then all of our dogs will only have three 
legs. 
 

On Design Patterns 
In the above code, I have used the most basic of the design patterns associated with object 
oriented programming in JavaScript. This is what I’ve been calling explicit declaration. This is 
the simplest, most straightforward, and (I think) purest form of object creation in JavaScript. 
However, there are two other design patterns that are perfectly valid: factories, and initialization 
functions. 
 
A factory is, intuitively, a function that makes objects. Let’s see one in action: 
 

 



 
​ function makeAnimal(p_legs, p_word) 

​ { 

​ ​ var obj = Object.create(animal); 

​ ​ obj.legs = p_legs; 

​ ​ obj.word = p_word; 

 

​ ​ return obj; 

​ } 

 

This is a simple enough pattern, based on the concept of code reuse. In previous examples, I 
was repeating code to set the necessary values on my new objects, and using three lines every 
time I created a new object. Simply calling makeAnimal() removes that excess code in favor of 
a simple function call. The other benefit of factories, beyond the savings in lines of code, is the 
fact that the factory function itself creates a closure around the object creation process. This 
closure can simulate private variables, if you choose to add functions (and not just data) to the 
new object. 
 

function makeAnimal(p_legs, p_word) 

​ { 

​ ​ var x = 17; 

​ ​ var obj = Object.create(animal); 

​ ​ obj.legs = p_legs; 

​ ​ obj.word = p_word; 

​ ​ obj.getX = function() 

​ ​ { 

​ ​ ​ return x; 

​ ​ } 

 

​ ​ return obj; 

​ } 

 

The variable x is completely hidden in the closure. However, using this technique also reduces 
the need for the prototype at all, and tends to lean toward the pseudo-classical paradigm. We 
might as well be creating an object literal in this factory, or using new with a 
constructor-function. 
 
My favorite solution is the use of initialization functions. I prefer them over explicit declaration 
and factories because they are contained within the object itself (or its prototype chain, 
depending on inheritance and polymorphism), and can save a few lines of code. 
 

var animal = { 

​ initialize: function(p_legs, p_word) 



​ { 

​ ​ this.legs = p_legs; 

​ ​ this.word = p_word; 

​ }, 

​ ​ walk: function() 

​ ​ { 

​ ​ ​ var s = ‘’, i = 0; 

​ ​ ​ for (; i < legs; i++) 

​ ​ ​ { 

​ ​ ​ ​ s += ‘step ‘; 

​ ​ ​ } 

​ ​ ​ console.log(s); 

​ ​ }, 

​ ​ speak: function() 

​ ​ { 

​ ​ ​ console.log(word); 

​ ​ } 

} 

 

Creating a new animal is now two lines instead of the three for explicit declaration (though 
factories still have it beat in this area). initialize, however, has the advantage of being part of 
the object itself. It can thus be modified through polymorphism if necessary, and the interface for 
object creation will not change (where as you need a new factory for each new type of object). 
 
In any case, with some clever conditionals, each of these techniques can be made to set only 
the values we need to set for a particular object, saving on memory usage. 
 
Depending on the complexity of your objects, you may find that one of these options is better 
than other. Don’t be surprised if you find yourself using a different design pattern for each 
problem you come across. 
 

On Terminology 
Toward the beginning of this article, I mentioned that instance was an inappropriate term for the 
objects that result from prototypal inheritance. Indeed, the term is a holdover from the classical 
paradigm, and does not completely describe what these new objects are. dog is not an instance 
of animal. Neither is spot an instance of dog. 
 
In the classical paradigm, a new object created from a class has (on its own) the properties 
defined in the class. However, in the prototypal paradigm (as implemented by JavaScript), an 
object created with Object.create is, instead, its own object with a prototype equal to the first 
argument of the function. It is a blank object which inherits its properties. 



 
And that is where the fundamental differences lie. In the classical paradigm, classes inherit from 
one another, and then objects are created based on those classes. In the prototypal paradigm, 
objects inherit from other objects, and that’s it. In the purely prototypal (and less confusing) 
implementation of object oriented programming in JavaScript, there is nothing similar to a class. 
 
The problem then becomes “What do we call these new objects that inherit from old objects?” 
 
Well, child seems an obvious choice: “dog is a child of animal.” This seems descriptive enough. 
And this term is used throughout articles on wikipedia that refer to prototypal inheritance. 
 
I would like to suggest reversing the phrasing, though, and simply stating the prototype of the 
current object: “animal is the prototype of dog.” 
 

Good Practice 
There is one area of this article that may be shot down as “bad practice”, and I would like to 
acknowledge this while I am able to eloquently word my response. 
 
The creation of spot with a prototype of dog means that the prototype of spot contains data 
that is not specific to spot. This affects the execution of its functions, as it may change at any 
time. I have heard it said that storing this kind of data in the prototype is not the suggested 
practice. 
I, however, would like to suggest that it is essential to one of the main benefits of prototypal 
inheritance - flexibility. 
 

The Benefits 

In the prototypal paradigm, if you create an object, and you need more of them, you simply 
make them (or, rather, make objects that inherit from that object). This - instantly, and without 
any further initialization - gives you access to all the data and functionality inside the prototype 
object. There is no need to create class upon class upon subclass, or even prototype object 
upon prototype object upon prototype object. You can simply create objects, use them, and then 
create more like them (and continue the process with those, if you please). 
 
The other main benefit, as I see it, is actually the simplicity. Attempting to re-create a classical 
paradigm in JavaScript has been a long and arduous process for me, and not completely 
successful. However, having discovered the correct way of taking advantage of the prototypal 
paradigm, I can say that it was a great relief. Inheritance became simple - a process of creating 
more objects. It is honestly mind-boggling how simple it can be when new is not involved. 
 



Contact: 
Questions and comments can be sent to ryan.kinal@gmail.com. For filtering purposes, please 
include “OOJS” in the subject line. 

mailto:ryan.kinal@gmail.com

	Object-Oriented Programming in JavaScript 
	The Classical Problem 
	Object Literals 
	The Prototype and Object.create() 
	Old Browsers 
	Polymorphism 
	A Step Further 
	On Design Patterns 
	On Terminology 
	Good Practice 
	The Benefits 
	Contact: 


