Please Note: This document is a little out of date. See my short series of articles at Blogascript -
starting with Objects and the Prototype Chain

Again, this article is deprecated. The techniques within are valid, but do not represent best
practice.

Object-Oriented Programming in
JavaScript

Recently, | have been doing a lot of thinking about the object-oriented side of JavaScript. The
depth of the problem isn’t something that comes up in many applications, simply because
inheritance isn’'t necessary for a lot of them. The ephemeral nature of JavaScript-based
applications means that objects don’t necessarily stick around for long, and you may not even
need more than one copy of many types of objects.

I've avoided using the word instance in this case, as | believe that term applies to a class-based
(or classical) paradigm of object oriented programming. JavaScript uses a prototype-based (or
prototypal) paradigm of object oriented programming. I'd like to avoid comparing the prototypal
paradigm with the classical paradigm, as it seems to muddy the waters.

The Classical Problem

JavaScript has already muddied the waters quite sufficiently by including the new keyword in
the language. new is a construct of classical inheritance, used with classes, which serve as a
kind of template for creating objects. new Animal() creates a new object of type Animal, given
that there is a class with that name.

At least, that’s what happens in the classical paradigm. What happens in JavaScript is different,
due to its prototypal nature. Douglas Crockford describes it succinctly on his page about
prototypal inheritance:

[JavaScript] has a new operator, such that new f() produces a new object that
inherits from f.prototype

There is some amount of misdirection (as Crockford says - | think indirection is more fitting)
involved in the use of new in JavaScript. Since JavaScript does not include classes, we must,
instead, use functions which then act like classes when used with new.


http://blog.javascriptroom.com/2013/01/14/objects-and-the-prototype-chain/

function Animal(p_legs, p_word)

{
this.legs = p_legs;
this.word = p_word;
this.walk = function() { /* do stuff */ }
this.speak = function() { /* do stuff */ }
}

Obviously, this is a pretty simple “class”, but let’s take a look at it. Let's see what happens when
we instantiate Animal. By Crockford’s logic, we should get a new object which inherits from
Animal.prototype. But what is Animal.prototype? Where does it come from?

It seems that Animal.prototype has members assigned to it via this, used within the function
body of Animal. This adds to the indirection, as we’re not setting this.prototype.legs, we'’re
setting this.legs. Logically, it would seem that we're trying to set a member on the function
itself, but it turns out that we’re setting a member on the prototype.

Inheritance is further complicated when trying to emulate a classical paradigm in JavaScript.
Since there is no explicit way for a function to extend (in the classical way of thinking) another
function, odd constructs must be used in order to achieve inheritance (and some of these
constructs are not actually inheritance). | will leave further exploration of this pseudo-classical
style of object oriented JavaScript up to you, as it is beyond my intent to explore the prototypal
nature of JavaScript. Suffice to say it takes a simple concept and turns it on its side, introducing
unnecessary code as well as unnecessary complexity to the process of writing object oriented
JavaScript.

The moral of the story, of course, is to avoid new, and take advantage of the flexibility and
simplicity of object-oriented JavaScript.

Object Literals

The easiest way to create an object in JavaScript is simply to do it.

Yes. Really. Just create an object, as a one-off collection of names and values, usable
immediately without any further complication.



var lion = {
legs: 4,
word: ‘roar’,
walk: function() { 1},
speak: function() { }

}s

And that’s all there is to creating a lion. Simple, right? Use the object literal notation { }, with
some properties inside it - names and values are separated by colons, and each pair is
separated from the next by a comma.

This is great for one-off objects, and it could be all you ever need, if you tend to work on simple
applications that require no repetition of functionality. If, however, you are looking at more
complex applications, you won’t want to hard-code each of your objects whenever you need
one. You'll want to avoid code repetition, and be able to create various animals whenever you
need them. This is where the prototype comes in.

The Prototype and Object.create()

When a property of an object is accessed, there is a look up process that occurs. The object
itself is first examined to see if it contains whichever property is being accessed. If the property
is found, then that property is used. If it is not, JavaScript turns to the prototype chain.

Each object that contains any inherited properties has a property which represents the
prototype. This prototype is simply another object, which contains its own properties, including
(potentially) another prototype.

When an object does not have the property that is being accessed, JavaScript looks at its
prototype. If the prototype doesn’t have that property, then its prototype is accessed, and so on
and so forth until the property is found, or there are no more prototypes to search.

Given this model, it is easy to see how an object would inherit properties from another object
through the prototype chain. It’s really a very simple concept.

However, many JavaScript engines do not allow us to set the prototype of an object, so we have
to use a different method of creating objects which inherit from other objects. This method is
Object.create(), and it creates a new object which has a prototype equal to its first argument. It
may be better explained by example.

Let's say we wanted to create some animals. Not just the lion we previously created, but
several. Maybe a house cat, or a dog, or even a human. We’'d want some common functionality



amongst all of these, so we’ll use object oriented programming to create some animals.

var animal = {
walk: function()

{
var s = °, i = 9;
for (; i < legs; i++)
{
S += ‘step °;
}
console.log(s);
1>
speak: function()
{
console.log(word);
}

And there we have a generic animal. It can become anything it wants to, really. Now, we just
need some more specific animals.

var lion = Object.create(animal);
lion.legs = 4;
lion.word ‘roar’;

var houseCat = Object.create(animal);
houseCat.legs = 4;
houseCat.word = ‘meow’;

var dog = Object.create(animal);
dog.legs = 4;
dog.word = ‘meow’;

var human = Object.create(animal);
human.legs = 2;
human.word = ‘hello’;

Look at all those animals. If we examine the objects, we’ll see that each has their own
properties for legs and word, as well as a prototype, which contains walk and speak.

When we try to make one of our animals speak, we simply call lion.speak(). JavaScript looks at
lion, sees it doesn’t have a property speak, and checks the prototype. The prototype (animal)
does have speak, so it gets called. In the body of that function, this refers to lion, and not
animal. Again, JavaScript checks lion, and sees the value for word, which then gets logged to



the console.

Old Browsers

Before | continue, a bit of a disclaimer. While all modern browsers implement Object.create(),
some older ones do not. So, Crockford suggests a bit of a shim. Unfortunately, it uses new, but
it also means that we don’t have to:

if (typeof Object.create !== 'function')
{
Object.create = function (o)
{
function F() {};
F.prototype = o;
return new F();
s
}
Polymorphism

One of the most important concepts in object oriented design is the concept of polymorphism, or
the ability to vary the functionality of objects between inheritance levels. If a function needs to
do something different for an object further down the prototype chain than it does for an object
at a higher level, then it should be able to.

And because of the prototype chain, this becomes very easy. We can give our human a
different way of speaking than other animals.

human.speak = function()

{

console.log(this.word + ¢, dude’);

}

We now have a human surfer. When we call human.speak(), JavaScript looks at human, and
sees that it does, in fact, have a property called speak. So, it gets called as a function, and our
human adds °‘, dude’ to his favorite word.

A Step Further

We now have all these great animals to play with. We can make them speak, and we can make
them walk. But they’re kind of just generic animals. What if you want a dog named spot, or a



houseCat named mittens?
Just make more of them.

var spot = Object.create(dog);
var mittens = Object.create(houseCat);

You can do this as many times as you like, and all of these will be separate objects which share
the properties of dog, or cat, or lion, or human, all accessed automatically through the
prototype chain.

There is something to be careful about, though. If you change dog, then spot won'’t be the
same anymore. The prototype will have been altered. Similarly, if you change animal, then
everything that has animal in its prototype chain will be affected.

These changes may not be noticeable if you've taken advantage of polymorphism. If you have
made the above change to human and made a new human.speak property, then changing
animal.speak will not have any effect on any calls to human.speak. Calls to dog.speak or
lion.speak, however, will be affected. This applies to all properties - not just those properties
that happen to be functions. If we set dog.legs to 3, then all of our dogs will only have three
legs.

On Design Patterns

In the above code, | have used the most basic of the design patterns associated with object
oriented programming in JavaScript. This is what I've been calling explicit declaration. This is
the simplest, most straightforward, and (I think) purest form of object creation in JavaScript.
However, there are two other design patterns that are perfectly valid: factories, and initialization
functions.

A factory is, intuitively, a function that makes objects. Let’'s see one in action:



function makeAnimal(p_legs, p_word)

{
var obj = Object.create(animal);
obj.legs = p_legs;
obj.word = p_word;
return obj;
}

This is a simple enough pattern, based on the concept of code reuse. In previous examples, |
was repeating code to set the necessary values on my new objects, and using three lines every
time | created a new object. Simply calling makeAnimal() removes that excess code in favor of
a simple function call. The other benefit of factories, beyond the savings in lines of code, is the
fact that the factory function itself creates a closure around the object creation process. This
closure can simulate private variables, if you choose to add functions (and not just data) to the
new object.

function makeAnimal(p_legs, p_word)

{
var x = 17;
var obj = Object.create(animal);
obj.legs = p_legs;
obj.word = p_word;
obj.getX = function()
{

return Xx;

}
return obj;

}

The variable x is completely hidden in the closure. However, using this technique also reduces
the need for the prototype at all, and tends to lean toward the pseudo-classical paradigm. We
might as well be creating an object literal in this factory, or using new with a
constructor-function.

My favorite solution is the use of initialization functions. | prefer them over explicit declaration
and factories because they are contained within the object itself (or its prototype chain,
depending on inheritance and polymorphism), and can save a few lines of code.

var animal = {
initialize: function(p_legs, p_word)



this.legs = p_legs;
this.word = p_word;
1>
walk: function()
{
var s = °, i = 9;
for (; i < legs; i++)
{
S += ‘step °;
¥
console.log(s);
}s
speak: function()
{
console.log(word);
¥

}

Creating a new animal is now two lines instead of the three for explicit declaration (though
factories still have it beat in this area). initialize, however, has the advantage of being part of
the object itself. It can thus be modified through polymorphism if necessary, and the interface for
object creation will not change (where as you need a new factory for each new type of object).

In any case, with some clever conditionals, each of these techniques can be made to set only
the values we need to set for a particular object, saving on memory usage.

Depending on the complexity of your objects, you may find that one of these options is better
than other. Don’t be surprised if you find yourself using a different design pattern for each
problem you come across.

On Terminology

Toward the beginning of this article, | mentioned that instance was an inappropriate term for the
objects that result from prototypal inheritance. Indeed, the term is a holdover from the classical
paradigm, and does not completely describe what these new objects are. dog is not an instance
of animal. Neither is spot an instance of dog.

In the classical paradigm, a new object created from a class has (on its own) the properties
defined in the class. However, in the prototypal paradigm (as implemented by JavaScript), an
object created with Object.create is, instead, its own object with a prototype equal to the first
argument of the function. It is a blank object which inherits its properties.



And that is where the fundamental differences lie. In the classical paradigm, classes inherit from
one another, and then objects are created based on those classes. In the prototypal paradigm,
objects inherit from other objects, and that’s it. In the purely prototypal (and less confusing)
implementation of object oriented programming in JavaScript, there is nothing similar to a class.

The problem then becomes “What do we call these new objects that inherit from old objects?”

Well, child seems an obvious choice: “dog is a child of animal.” This seems descriptive enough.
And this term is used throughout articles on wikipedia that refer to prototypal inheritance.

I would like to suggest reversing the phrasing, though, and simply stating the prototype of the
current object: “animal is the prototype of dog.”

Good Practice

There is one area of this article that may be shot down as “bad practice”, and | would like to
acknowledge this while | am able to eloquently word my response.

The creation of spot with a prototype of dog means that the prototype of spot contains data
that is not specific to spot. This affects the execution of its functions, as it may change at any
time. | have heard it said that storing this kind of data in the prototype is not the suggested
practice.

I, however, would like to suggest that it is essential to one of the main benefits of prototypal
inheritance - flexibility.

The Benefits

In the prototypal paradigm, if you create an object, and you need more of them, you simply
make them (or, rather, make objects that inherit from that object). This - instantly, and without
any further initialization - gives you access to all the data and functionality inside the prototype
object. There is no need to create class upon class upon subclass, or even prototype object
upon prototype object upon prototype object. You can simply create objects, use them, and then
create more like them (and continue the process with those, if you please).

The other main benefit, as | see it, is actually the simplicity. Attempting to re-create a classical
paradigm in JavaScript has been a long and arduous process for me, and not completely
successful. However, having discovered the correct way of taking advantage of the prototypal
paradigm, | can say that it was a great relief. Inheritance became simple - a process of creating
more objects. It is honestly mind-boggling how simple it can be when new is not involved.



Contact:

Questions and comments can be sent to ryan.kinal@gmail.com. For filtering purposes, please
include “O0JS” in the subject line.


mailto:ryan.kinal@gmail.com

	Object-Oriented Programming in JavaScript 
	The Classical Problem 
	Object Literals 
	The Prototype and Object.create() 
	Old Browsers 
	Polymorphism 
	A Step Further 
	On Design Patterns 
	On Terminology 
	Good Practice 
	The Benefits 
	Contact: 


