
505 Community Notes on Coq
Coq is a radically different programming environment than most of us are used to. This
document’s goal is to facilitate students in CSE 505 helping each other smooth out the
learning curve by documenting the relevant features of Coq in plain language, assuming
an audience with a traditional software engineering background.

Please edit this document and improve it! You can also leave comments about
what needs improving, or post in Mattermost for faster help.

Table of Contents
Table of Contents​ 1

Overview of Coq workflow​ 2

Commands (Vernacular)​ 3
Inductive​ 3
Definition​ 3
Fixpoint​ 4
Lemma​ 4
Proof​ 4
Qed​ 4
Theorem​ 4
Check​ 4
Print​ 4
Compute​ 5
Abort​ 5
Search​ 5
SearchAbout​ 5

Programs (Gallina)​ 5

Proofs and Tactics (Ltac)​ 5
apply​ 5
assumption (Coq)​ 6
auto (Coq)​ 6
cases (FRAP)​ 6

Example​ 6

destruct (Coq)​ 7
equality​ 7
exists (Coq)​ 7
eexists (Coq)​ 7
f_equal​ 8
induction​ 8
intro​ 8
intros​ 8
propositional (FRAP)​ 8
reflexivity​ 8
rewrite​ 8
simpl​ 9
subst​ 9
symmetry​ 9
try​ 9
semicolon (;)​ 10
period (.)​ 10
bullets (-, +, *)​ 10

Points of Confusion and General Advice​ 10

FRAP and Coq tactics translation​ 10

FAQs​ 11
How do I prove by contradiction?​ 11

Overview of Coq workflow
Using Coq is an interactive experience. Instead of a typical edit-compile-debug cycle,
we typically use an IDE to “step through” a Coq file line by line. The IDE highlights the
portion of the file that has been processed “so far”, and displays any relevant contextual
information. Especially when proving theorems, this interactive experience is
fundamental: proofs in Coq can usually only be understood by stepping through them
line by line.

Coq is not itself a programming language, but a system consisting of three languages:

1.​ Gallina, the language of programs.
2.​ Ltac, the tactic language, the language of proofs.
3.​ Vernacular, the command language.

A Coq file is really a sequence of commands, written in the Vernacular language. (This
is why the usual extension for Coq files is .v — ‘v’ for Vernacular.) Some commands
take arguments that are Gallina programs or Ltac proofs, so in the end, the file will be
a mix of all three languages

Commands (Vernacular)

Inductive
Inductive declares a new datatype by specifying its constructors.

Example:

Inductive bool : Type :=​
| true : bool​
| false : bool.

Define bool to be of type Type. The constructors true and false are the only ways
to make a value of type bool.

Definition
Define a (non-recursive) function or constant.

Example:

Definition andb (b1 : bool) (b2 : bool) : bool :=​
 match b1 with​
 | true => b2​
 | false => false​
 end.

Define andb to take two bool arguments (b1 and b2) and return a bool. andb
matches b1 against true and false (the constructors of the bool type). If b1 is true,
then return b2. If b1 is false, return false.

Fixpoint
Define a recursive function. Functions must terminate on all arguments.

Example:

Fixpoint add (n1 : nat) (n2 : nat) : nat :=​
 match n1 with​
 | O => n2​
 | S m1 => S (add m1 n2)​
 end.

Define add to take two nats (n1 and n2). If the first nat is 0, just return the second
nat (since 0 + anything = anything). Otherwise, add 1 to the recursive addition of
the first nat - 1 and the second nat.

Lemma
Declare a theorem which you try to prove.

Proof
Start a proof (after a Lemma/Theorem).

Qed
Ends a proof and “double checks” it; fails if there is anything left to prove.

Theorem
Synonym for Lemma, just communicates to the reader that it’s important!

Check
Show the type of an expression.

Print
Print the definition of a function or constant (can be ugly!)

Compute
Run an expression to its final value.

Abort
Give up on the current lemma or theorem.

Search
Search for a stdlib lemma with a shape (e.g., _ + _).

SearchAbout
Search for all proofs and definitions about a particular name.

Programs (Gallina)
●​ match — pattern matching, kind of like switch in other languages, choosing

among cases
●​ patterns
●​ “don’t care” pattern — a.k.a. wildcard, denoted by _, matches anything in a

pattern match
●​ variables
●​ Constructors - explain?
●​ function application (aka function call)

Proofs and Tactics (Ltac)

apply
Coq's apply tactic performs 'backwards reasoning' on the conclusion to be proved by
applying a known fact (a hypothesis or a previously proven theorem) whose conclusion
matches the conclusion. There are multiple forms:

●​ apply H—if H's conclusion matches the form of the conclusion to be proved,
replace the current conclusion with H's hypothesis.

●​ If a hypothesis has a forall you want to get rid of, you can combine it with
another hypothesis to get a simpler prop. E.g. `apply IH1 in H`.

https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacn.apply

assumption (Coq)
Coq's assumption tactic inspects the local context for a hypothesis whose type is
convertible to the goal. If such a hypothesis is found, the subgoal is proved. Otherwise it
fails.

auto (Coq)
Coq's auto tactic tries to guess what the next right step is in the proof. It first tries to use
the assumption tactic, followed by using intros.

cases (FRAP)
[Link to Ltac]
FRAP's cases tactic is similar to Coq's destruct tactic. Replace the goal with an
expression.

Example

(* `foo` is a truly dumb function... *)​
Definition foo(a : arith): nat :=​
 match a with​
 | Const _ => 0​
 | Plus _ _ => 0​
 | Times _ _ => 0​
 end.

​
(* ...and we can prove it! *)​
Lemma foo_is_a_dumb_function:​
 forall (a : arith),​
​ foo(a) = 0.​
Proof.​
 intros.​
 cases a.

​
 (* Here is our use of cases. It transforms our goal from:

 *​
 * a : arith​
 * ============================​
 * foo a = 0

 *​
 * to​
 *​

https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacn.assumption
https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacn.auto
https://github.com/achlipala/frap/blob/69de20dec86597534052615349203477b3612bc3/BasicSyntax.v#L229-L231
https://github.com/achlipala/frap/blob/69de20dec86597534052615349203477b3612bc3/FrapWithoutSets.v#L228-L240

 * n : nat​
 * ============================​
 * foo (Const n) = 0​
 * subgoal 2 is: foo (Plus a1 a2) = 0​
 * subgoal 3 is: foo (Times a1 a2) = 0​
 *)​
Abort.

destruct (Coq)
Coq's destruct tactic should be avoided in favor of FRAP's cases tactic.

equality
FRAP's equality tactic uses an E-graph to implement a complete decision procedure
for the theory of equality and uninterpreted functions. This allows Coq to conclude that
things like

Lemma eq_and_uninterpreted_funcs:​
 forall {A} (f : A -> A) (a : A) (b : A),​
​ a = b -> f a = f b.​
Proof.​
 equality.​
Qed.

In particular, the theory of equality and uninterpreted function allows Coq to prove terms
equal (a = b) by use of any of symmetry, transitivity, reflexivity, and congruence of
equality.

exists (Coq)
Coq's exists tactic is used to show that an inductive datatype I exists. exists can be
used only when I has a single construtor.

eexists (Coq)
 Coq’s eexists tactic operates the same as exists except in the case where it cannot
instantiate a variable. While exists will fail, eexists inserts a placeholder variable.

f_equal
reduce function and parameter equality to only different things

https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacn.destruct
https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacv.exists
https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacv.eexists

●​ E.g. to prove (func1 a1 a2) = (func2 b1 b2). If func1 = func2 and a1 =
b1, then the f_equal will reduce the goal to a2 = b2.

●​ Won’t work if you have a forall in your goal. In that case, try to use
congruence, or intro all variables first.

induction
Coq's induction tactic takes a single argument term that is of an Inductive type.
induction creates two subgoals for term: the base case and the inductive hypothesis,
each being used to prove the current goal.

intro
Among other things, the intro tactic applies to a goal that starts with a dependent
product (i.e., forall x: T, U). intro moves x into the local context (i.e., “above the
line”), and the new subgoal is U.

intros
The intros tactic repeats the intro tactic until it meets the head-constant.

propositional (FRAP)
FRAP's propositional tactic simplifies a goal into zero or more subgoals based on
propositional logic alone.

reflexivity
prove equality---you should prefer to use FRAP's equality

rewrite
Coq's rewrite tactic replaces a match in the current subgoal with either a previous
lemma or the inductive hypothesis

●​ If your current subgoal has a forall then rewrite will not work, instead use
intro x to remove the forall and then use rewrite some_lemma

●​ If you would like to only replace a match that is nested in another match, you can
specify the variable(s) that you want it to replace. For example, add (add a b)
c will be turned into add c (add a b) if you do rewrite add_comm. To turn add
(add a b) c into add (add b a) c, you can use rewrite (add_comm a b).

https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacn.induction
https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacn.intro
https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacv.intros
https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacn.rewrite

●​ rewrite <- l: rewrite with Lemma l from LHS to RHS.

simpl
This tactic tries to compute as much as possible of a function call. There is similar to
FRAP's more powerful simplify tactic

subst
Coq's subst tactic performs substitution on variables bound in a hypothesis. So if the
variable a is bound to an expression in the hypothesis, say via H: a = f x, and you
want to prove something relating a and f x, for instance, that g a = g (f x), you can
run the subst tactic to substitute f x in for a.

symmetry
The symmetry tactic replaces a goal x = y with y = x. E.g. if you have a lemma

lemma_1 : forall x y, f x = g y

and need to prove

g y = f x

use symmetry. apply lemma_1.

try
The try tactic squashes error from an incorrectly applied tactic. This can be useful if
you have cases with very similar tactics and want to be able to chain them.

Instead of

cases x.​
 - simplify. reflexivity. rewrite IHn. f_equal.​
 - simplify. rewrite IHn. f_equal.

You can write

cases x; simplify; try reflexivity; rewrite IHn; f_equal.

https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacn.subst

semicolon (;)
Sequence tactics a and b into a new tactic a; b. a; b first runs a on the current
subgoal, and then runs b on each subgoal generated by a.
If you know how many subgoals there are after one step (say 3), and you don’t want to
apply the same next step to them, you can use a vertical bar to separate subgoals: a;
[b | |].

period (.)

bullets (-, +, *)
Coq allows an optional syntax to denote a subgoal of the previous destruct/induction
command. Nested subgoals should alternate syntax

Points of Confusion and General Advice
●​ constructor — not OOP constructors - maybe explain it?
●​ induction before intro!
●​ know when you’re stuck
●​ Don’t use more than one induction per proof.

○​ prove a helper lemma
●​ “generalize the induction hypothesis”
●​ “;” vs “.”

○​ tactic1; tactic2. means “run tactic1 on the current goal, then run tactic2 on
every subgoal generated by tactic1”

○​ tactic1. tactic2. means “run tactic2 on the first subgoal generated by
tactic1”. (So they’re the same if tactic1 generates only one subgoal, but when it
generates more than one, semicolon runs on all of them)

FRAP and Coq tactics translation

At a high level, you can map several default Coq tactics to their nicer FRAP analogs:

●​ Coq's `cases` is kind of like FRAP's `destruct`
●​ Coq's `simpl` is kind of like FRAP's `simplify`
●​ Coq's `reflexivity` is kind of like FRAP's `equality`

●​ Coq's `lia` (or [deprecated] `omega`) is kind of like FRAP's `linear_arithmetic`
●​ Coq's `induction` is kind of like FRAP's `induct`

Questions:

What does “induct 1”. Mean?
Induct 1 means to induct on the first hypothesis.

Constructor v econstructor?
https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacv.econstructor

What does this mean in plain english? Example? The Coq documentation needs some improvements if is
supposed to be a usable system.

eapply

Apply replaces forward the premise with the conclusion

Econstruct

It would be nice to get a better explanation of the syntax rather than looking through random files.

{| variable := value|} translates to a record or struct of key values

Propositional splits and /\ into two subgoals

Invert when recursive and inductive
Unfold when not inductive

FAQs

How do I prove by contradiction?
todo

https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacv.econstructor

	505 Community Notes on Coq
	Table of Contents
	Overview of Coq workflow
	Commands (Vernacular)
	Inductive
	Definition
	Fixpoint
	Lemma
	Proof
	Qed
	Theorem
	Check
	Print
	Compute
	Abort
	Search
	SearchAbout

	Programs (Gallina)
	Proofs and Tactics (Ltac)
	apply
	assumption (Coq)
	auto (Coq)
	cases (FRAP)
	Example

	destruct (Coq)
	equality
	exists (Coq)
	eexists (Coq)
	f_equal
	induction
	intro
	intros
	propositional (FRAP)
	reflexivity
	rewrite
	simpl
	subst
	symmetry
	try
	semicolon (;)
	period (.)
	bullets (-, +, *)

	Points of Confusion and General Advice
	FRAP and Coq tactics translation
	FAQs
	How do I prove by contradiction?

