

CS286 2024

Hellerstein

Lecture 10: LIP, Semi-Joins + Adaptivity,
Robustness

Context
1.​ More AdaptiveQP

a.​ Survey article on Adaptive QP from 2007
b.​ Less aggressive techniques than eddies, easier to integrate into

Selinger/Cascades.
i.​ MidQuery Reoptimization (Kabra/DeWitt):

●​ If we materialize a subexpression (a “stage”), can re-optimize the
rest

●​ Can “force” a materialization point if we like during optimization
ii.​ IBM “progressive query optimization” (POP): use streaming cardinality

check to abort a “stage”
●​ CHECK operator w.r.t. optimizer’s original guess

iii.​ LIP from Wisconsin (2017): today’s reading
c.​ SkinnerDB from Cornell (2019)

i.​ RL approach to quickly try many different left-deep trees
ii.​ (RL + Eddies had been done previously)

2.​ Parametric Query Optimization
a.​ We have a cost formula for every plan as a function of its parameters (e.g. size of

relation 1, size of relation 2, selectivity of predicate
1, etc). If this cost formula is linear, this is a
hyperplane

b.​ Imagine we store all these hyperplanes, one per
plan choice, in some kind of “index” (a convex
polytope)

c.​ Then we “query” this index for a given set of
parameters by finding the lowest-cost plane at that
setting of the parameters

d.​ (Tiemo Bang uses this general idea in his Cloud Oracles work)
3.​ Robust Q.O.

https://www.cs.umd.edu/~amol/papers/fnt-aqp.pdf
https://dl.acm.org/doi/pdf/10.1145/1007568.1007642?casa_token=iWZbVHombmAAAAAA:7-5SmZQiLSaB0GqJ8ilWwQCmi03AQorvc7qmwEPoNXicnLjchSHCtHnRCAr_Uxac6Bxf1TOR__A
https://dl.acm.org/doi/pdf/10.14778/3090163.3090167
https://arxiv.org/abs/1901.05152
https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/content/pdf/10.1007/s007780050037.pdf&casa_token=tyTpBc8MKqgAAAAA:QDLpQSA8dcPIwbtVhgyRh3M38OOabVVbB7r0a8v08z7Lp9LA7lAabvRKNa1Wf5zkfgndsZo6B2WdZqI
https://www.cidrdb.org/cidr2024/papers/p47-bang.pdf

a.​ IBM POP was designed for robustness: validity range of a selectivity estimate:
outside this, the plan is suboptimal

i.​ Based on parametric query optimization
b.​ Robust cost estimation, using sampling and confidence bounds to control errors

of estimators.
c.​ Plan Bouquets instead of cost estimation to minimize Maximum SubOptimality
d.​ More references in LIP paper

4.​ Techniques
a.​ SemiJoins commonly used for distributed databases
b.​ Yannakakis’ Algorithm is a technique to evaluate a large class of “easy” queries

(technically, acyclic conjunctive queries) in time polynomial in the size of the
query, input and output. (Applies to set-oriented relations!)

i.​ apply semijoins to each input relation so that it has no “dangling” tuples
that have no impact on the output. (this is called a “full reducer”)

●​ May be >1 semijoin per input relation if it joins on >1 attribute!
ii.​ construct a join tree, push down projections as far as possible
iii.​ then each intermediate result will be O(|input|*|output|).

Proof: Consider some intermediate subtree T = (S1 ⨝ … ⨝ Sn) ⨝ R . Replace
with T’ = 𝜋Y ⋃ Z(T) where Y is the set of attributes in R, and Z is the set of attributes
in the output other than Y. Clearly T’ ⊆ 𝜋Y(T) × 𝜋Z(T). Now, |𝜋Y(T)| ≤ |R| (input)
and 𝜋Z(T) ≤ |output|.

c.​ Simple independent Job Shop scheduling
i.​ Imagine you have n independent expensive filters, each with costi and

selectivityi.
ii.​ Adjacent Sequence Interchange property: swap adjacent pairs to be

ordered by rank improves cost
●​ ranki = (selectivityi - 1)/cost
●​ Generally, the optimal order: increasing rank

d.​ Ibaraki-Kameda: apply this to left-deep join trees. Consider R join S join T
i.​ for each leftmost table

●​ remaining “half-joins” are like selections (selectivity may be >1)
●​ order the half-joins by rank
●​ save the result

ii.​ Chose the leftmost rank-ordered plan that’s cheapest
e.​ Krishnamurthy-Boral-Zaniolo:

i.​ Lots of redundant work in IK: two trees will share common “upstream
suffixes”

ii.​ Removes this to get from O(n2logn) to O(n2) algorithm

LIP
Stated goals: robust and good join order selection.

https://dl.acm.org/doi/pdf/10.1145/1066157.1066172?casa_token=tnjsOHb6mhEAAAAA:fr1V8K1zS9p6wsrNZs4FixG8vCl6LjiBtXiyZYcfD1RYGwy9dfzIfBid1Xnm5I8fPE79EqSNL1Y
https://dl.acm.org/doi/pdf/10.1145/2588555.2588566?casa_token=cAs5BCs0f0QAAAAA:guDne64MUybKmBl05sz7pCze_2j2enKYB1Jp-kGvxN9p7fH0Hz4AVHbSUztZJ7p219sPjruk0BI

Focus: star schema
●​ One big Fact table, many Dimension tables

○​ Key-Foreign Key relationships
●​ Queries are mostly left-deep trees
●​ The perfect setting for IK!

○​ No need to choose a spanning tree or outermost table!

QP Tricks
1.​ For each dimension table D dynamically precompute BloomFilterD.key

a.​ Cost is negligible relative to building hashtables
2.​ Rewrite query to include additional fact-table UDF selections based on Bloom filters

a.​ WHERE BloomCheck(F.fkeyD, BloomFilterD.key)
3.​ Do an eddy-like thing on the selections

a.​ Stream data, dynamically learn the selectivities and reorder while applying them
b.​ Work on tuple batches to keep bloom filter in cache for a while

■​ batch_size = 64
■​ while not done:

●​ For each batch, run through current bloom filter order
a.​ Track result_batch, count[f], miss[f] for each filter f

●​ re-sort filters by selectivity
●​ merge result_batch into results
●​ double the batch size

c.​ Selections are easy to reorder relative to join: stateless, rank-ordered as in
Predicate Migration

d.​ Will converge quickly (assertion: 3-4 doublings of batch size)
■​ sampling bounds like Chebyshev
■​ could work harder to bound confidence of each filter (explore/exploit

tradeoff)

Why doesn’t this require scanning tables multiple times?

●​ Going to build hashtables on inners anyway
●​ Adaptive QP on outer a la eddies

Bloom Filter Fun

●​ Note: BloomFilter merge is OR, which is associative/commutative/idempotent
○​ Forms a lattice
○​ Trivially parallelizable

●​ Empirical analysis:
○​ identity hash function (w/modulus) worked fine
○​ ~8 bits (1 Byte) of Bloom filter per tuple of input

■​ Goal: fit a Bloom filter in processor cache
■​ L1: 128 KB on an Apple M2. I.e. 128k tuples in bloom filter
■​ L2: 16MB on an Apple M2. I.e. 16M tuples

Cost/Robustness Analysis
Start without LIP:

●​ Build costs are independent of order, so focus on Probes
●​ First n terms of geometric series Σarn = a*(1-rn)/(1-r)

○​
●​ Now can bound cost of any plan

○​ a = |F|
○​ n = σmin for lower bound, n = σmax for upper bound

●​ Could be a big range: Formula (7)

○​ Simplify in terms of σmax - σmin = σn’ - σ1’

○​ Plugging into (7) we get Formula (8):

A definition of Robustness:

●​ 𝜃-fragile: diff between worst and best is at least 𝜃
●​ 𝜣-robust: diff between worst and best is at most 𝜣

normalized by |F| and the spread of selectivities:

Wrapping our head around this:

●​ high fragility (𝜃) means the worst plan is AWFUL.
●​ low robustness (𝜣) means worst plan is close to optimal
●​ Now compare two optimization schemes O1 and O2

○​ If 𝜣 for O1 is less than 𝜃 for O2, O1 is the clear winner
○​ O1 is LIP, O2 is non-LIP

Why this normalization?

https://en.wikipedia.org/wiki/Geometric_series

●​ |F|? a “per-tuple” definition
●​ (σmax - σmin)? Compare robustness of optimizer schemes in a query-independent way
●​ Assumptions here?

Robustness of LIP:

●​
●​ (17) follows:​

𝜣LIP = 1/2σ1σ2…σnϵn(n+1)|F| ⋅ (σmax-σmin)/σminσmax ⋅ 1/|F|(σmax-σmin)​
= ½ ⋅ σ1σ2…σn/σminσmax ⋅ ϵn(n+1)

●​ Recall that without LIP we had:​
𝜃NoLIP = (1 - σmin

n-1)/(1 - σmin)
●​ Messy assertion:​

From this discussion, it is clear that LIP theoretically guarantees robustness, whereas
the naive evaluation strategy is likely to make plan selection much more fragile.

○​ What should this say? When is 𝜣LIP <= 𝜃NoLIP?

Evaluation Study
●​ Tune the Bloom filters
●​ Study how LIP does relative to all possible orders for independent predicates (nice)

○​ Small dimension rows though: (integer, char, char)
●​ Model correlations. I was confused by the description here, and not convinced.

○​ I’d like to see an adversarial correlation workload. How wrong can LIP be?
■​ Need to drive correlation across predicates
■​ E.g. conditional prob:

●​ if column x = TRUE, the best plan is filter 1, 2, 3, 4, 5, 6, … n
●​ if column x = FALSE, the best plan is filter n, n-1, …, 3, 2, 1

○​ Then I’d like to understand how we can turn knobs on data to induce a spectrum
from worst to best scenario for LIP

Implemented in Quickstep (acquired by Pivotal) and SQLite!
●​ See SQLite: Past, Present and Future
●​ “SQLite’s query planner uses a straightforward model to determine whether a Bloom

filter should be constructed. For each inner table, the query planner generates the [LIP]
Bloom filter logic if all of the following conditions are true:

a.​ The number of rows in the table is known by the query planner.
b.​ The expected number of searches exceeds the number of rows in the table.

https://jigneshpatel.org/publ/SQLite_LIP.pdf

c.​ Some searches are expected to find zero rows.”

A Host of Questions
●​ On the limitations of LIP

○​ Correlation study: do you believe it? Adversarial data?
○​ Beyond star schemas: Adversarial queries?

●​ How might we integrate LIP with more workloads
○​ Can we predict early that LIP may fail?
○​ Can we do LIP on subqueries?
○​ Access method alternatives?
○​ Integration with Cascades?
○​ Integration with Eddies/Stems?

	Lecture 10: LIP, Semi-Joins + Adaptivity, Robustness
	Context
	LIP
	QP Tricks
	Cost/Robustness Analysis
	Evaluation Study
	Implemented in Quickstep (acquired by Pivotal) and SQLite!
	A Host of Questions

