

Hellerstein

Lecture 10: LIP, Semi-Joins + Adaptivity, Robustness

Context

- 1. More AdaptiveQP
 - a. Survey article on Adaptive QP from 2007
 - b. Less aggressive techniques than eddies, easier to integrate into Selinger/Cascades.
 - i. MidQuery Reoptimization (Kabra/DeWitt):
 - If we materialize a subexpression (a "stage"), can re-optimize the rest
 - Can "force" a materialization point if we like during optimization
 - ii. <u>IBM "progressive query optimization" (POP)</u>: use streaming cardinality check to abort a "stage"
 - CHECK operator w.r.t. optimizer's original guess
 - LIP from Wisconsin (2017): today's reading
 - c. SkinnerDB from Cornell (2019)
 - i. RL approach to quickly try many different left-deep trees
 - ii. (RL + Eddies had been done previously)
- 2. Parametric Query Optimization

iii.

a. We have a cost formula for every plan as a function of its parameters (e.g. size of relation 1, size of relation 2, selectivity of predicate 1, etc). If this cost formula is linear, this is a

hyperplane

- Imagine we store all these hyperplanes, one per plan choice, in some kind of "index" (a convex polytope)
- c. Then we "query" this index for a given set of parameters by finding the lowest-cost plane at that setting of the parameters
- d. (Tiemo Bang uses this general idea in his Cloud Oracles work)
- Robust Q.O.

- a. IBM POP was designed for robustness: *validity range* of a selectivity estimate: outside this, the plan is suboptimal
 - i. Based on parametric query optimization
- b. Robust cost estimation, using sampling and confidence bounds to control errors of estimators.
- c. Plan Bouquets instead of cost estimation to minimize Maximum SubOptimality
- d. More references in LIP paper

4. Techniques

- a. SemiJoins commonly used for distributed databases
- Yannakakis' Algorithm is a technique to evaluate a large class of "easy" queries (technically, acyclic conjunctive queries) in time polynomial in the size of the query, input and output. (Applies to set-oriented relations!)
 - i. apply semijoins to each input relation so that it has no "dangling" tuples that have no impact on the output. (this is called a "full reducer")
 - May be >1 semijoin per input relation if it joins on >1 attribute!
 - ii. construct a join tree, push down projections as far as possible
 - iii. then each intermediate result will be O(|input|*|output|).

Proof: Consider some intermediate subtree $T = (S_1 \bowtie ... \bowtie S_n) \bowtie R$. Replace with $T' = \pi_{Y \cup Z}(T)$ where Y is the set of attributes in R, and Z is the set of attributes in the output other than Y. Clearly $T' \subseteq \pi_Y(T) \times \pi_Z(T)$. Now, $|\pi_Y(T)| \le |R|$ (input) and $\pi_Z(T) \le |output|$.

- c. Simple independent Job Shop scheduling
 - i. Imagine you have n independent *expensive filters*, each with *cost*_i and *selectivity*_i.
 - ii. Adjacent Sequence Interchange property: swap adjacent pairs to be ordered by *rank* improves cost
 - rank_i = (selectivity_i 1)/cost
 - Generally, the optimal order: increasing *rank*
- d. Ibaraki-Kameda: apply this to left-deep join trees. Consider R join S join T
 - i. for each leftmost table
 - remaining "half-joins" are like selections (selectivity may be >1)
 - order the half-joins by rank
 - save the result
 - ii. Chose the leftmost rank-ordered plan that's cheapest
- e. Krishnamurthy-Boral-Zaniolo:
 - i. Lots of redundant work in IK: two trees will share common "upstream suffixes"
 - ii. Removes this to get from $O(n^2 log n)$ to $O(n^2)$ algorithm

LIP

Stated goals: *robust* and *good* join order selection.

Focus: star schema

- One big Fact table, many Dimension tables
 - Key-Foreign Key relationships
- Queries are mostly left-deep trees
- The perfect setting for IK!
 - No need to choose a spanning tree or outermost table!

QP Tricks

- 1. For each dimension table D dynamically precompute BloomFilter, key
 - Cost is negligible relative to building hashtables
- 2. Rewrite query to include additional fact-table UDF selections based on Bloom filters
 - a. WHERE BloomCheck(F.fkey_D, BloomFilter_{D.key})
- 3. Do an eddy-like thing on the selections
 - a. Stream data, dynamically learn the selectivities and reorder while applying them
 - b. Work on tuple batches to keep bloom filter in cache for a while
 - batch_size = 64
 - while not done:
 - For each batch, run through current bloom filter order
 - a. Track result batch, count[f], miss[f] for each filter f
 - re-sort filters by selectivity
 - merge result_batch into results
 - double the batch size
 - c. Selections are easy to reorder relative to join: stateless, rank-ordered as in Predicate Migration
 - d. Will converge quickly (assertion: 3-4 doublings of batch size)
 - sampling bounds like Chebyshev
 - could work harder to bound confidence of each filter (explore/exploit tradeoff)

Why doesn't this require scanning tables multiple times?

- Going to build hashtables on inners anyway
- Adaptive QP on outer a la eddies

Bloom Filter Fun

- Note: BloomFilter merge is OR, which is associative/commutative/idempotent
 - o Forms a lattice
 - Trivially parallelizable
- Empirical analysis:
 - o identity hash function (w/modulus) worked fine
 - ~8 bits (1 Byte) of Bloom filter per tuple of input
 - Goal: fit a Bloom filter in processor cache
 - L1: 128 KB on an Apple M2. I.e. 128k tuples in bloom filter
 - L2: 16MB on an Apple M2. I.e. 16M tuples

Cost/Robustness Analysis

Start without LIP:

- Build costs are independent of order, so focus on Probes
- First n terms of geometric series $\Sigma ar^n = a^*(1-r^n)/(1-r)$

$$s_n = ar^0 + ar^1 + \dots + ar^{n-1}, \ rs_n = ar^1 + ar^2 + \dots + ar^n, \ s_n - rs_n = ar^0 - ar^n, \ s_n \left(1 - r\right) = a \left(1 - r^n\right), \ s_n = a \left(rac{1 - r^n}{1 - r}\right), ext{ for } r
eq 1.$$

- Now can bound cost of any plan
 - a = |F|
 - o $n = \sigma_{min}$ for lower bound, $n = \sigma_{max}$ for upper bound
- Could be a big range: Formula (7)

$$T(P_w) - T(P_b) = \sum_{i=1}^{n-1} \left(\sigma_{n'} ... \sigma_{(n-i+1)'} - \sigma_{1'} ... \sigma_{i'} \right) |F| \quad (7)$$

• Simplify in terms of σ_{max} - $\sigma_{min} = \sigma_{n'}$ - $\sigma_{1'}$

$$\sigma_{n'}\sigma_{(n-1)'}...\sigma_{(n-i+1)'} - \sigma_{1'}\sigma_{2'}...\sigma_{i'} \ge (\sigma_{n'} - \sigma_{1'})\sigma_{2'}...\sigma_{i'}$$

$$\ge (\sigma_{n'} - \sigma_{1'})\sigma_{1'}^{i-1}$$

Plugging into (7) we get Formula (8):

$$T(P_w) - T(P_b) \ge \sum_{i=1}^{n-1} \sigma_{1'}^{i-1} (\sigma_{n'} - \sigma_{1'}) |F|$$

$$= \frac{1 - \sigma_{\min}^{n-1}}{1 - \sigma_{\min}} (\sigma_{\max} - \sigma_{\min}) |F| \qquad (8)$$

A definition of Robustness:

- θ -fragile: diff between worst and best is at least θ
- $oldsymbol{ heta}$ -robust: diff between worst and best is at most $oldsymbol{ heta}$

normalized by |F| and the spread of selectivities:

$$\theta \le \frac{T(\mathcal{E}_w) - T(\mathcal{E}_b)}{(\sigma_{max} - \sigma_{min})|F|} \le \Theta, \qquad \sigma_{max} \ne \sigma_{min}$$
 (9)

Wrapping our head around this:

- high fragility (θ) means the worst plan is AWFUL.
- low robustness (Θ) means worst plan is close to optimal
- Now compare two optimization schemes O₁ and O₂
 - o If $\boldsymbol{\theta}$ for O_1 is less than θ for O_2 , O_1 is the clear winner
 - O₁ is LIP, O₂ is non-LIP

Why this normalization?

- |F|? a "per-tuple" definition
- $(\sigma_{max} \sigma_{min})$? Compare robustness of optimizer schemes in a query-independent way
- Assumptions here?

Robustness of LIP:

$$T(B_w) - T(B_b)$$

$$\leq \frac{1}{2}\sigma_1\sigma_2...\sigma_n\epsilon n(n+1) \left[\frac{1}{\sigma_{\min}} - \frac{1}{\sigma_{\max}} \right] |F| \quad (16)$$

Key Result: From Equation 16, it is clear that LIP with adaptive reordering is a Θ -robust evaluation strategy, for

$$\Theta = \frac{1}{2} \frac{\sigma_1 \sigma_2 ... \sigma_n}{\sigma_{\min} \sigma_{\max}} \epsilon n(n+1)$$
 (17)

• (17) follows:

$$\Theta_{\text{LIP}} = \frac{1}{2}\sigma_{1}\sigma_{2}...\sigma_{n}\epsilon n(n+1)|F| \cdot (\sigma_{max}-\sigma_{min})/\sigma_{min}\sigma_{max} \cdot \frac{1}{|F|}(\sigma_{max}-\sigma_{min})$$

$$= \frac{1}{2} \cdot \sigma_{1}\sigma_{2}...\sigma_{n}/\sigma_{min}\sigma_{max} \cdot \epsilon n(n+1)$$

Recall that without LIP we had:

$$\theta_{\text{NoLIP}} = (1 - \sigma_{\min}^{n-1})/(1 - \sigma_{\min})$$

Messy assertion:

From this discussion, it is clear that LIP theoretically guarantees robustness, whereas the naive evaluation strategy is likely to make plan selection much more fragile.

• What should this say? When is $\theta_{LIP} \le \theta_{NoLIP}$?

Evaluation Study

- Tune the Bloom filters
- Study how LIP does relative to all possible orders for independent predicates (nice)
 - Small dimension rows though: (integer, char, char)
- Model correlations. I was confused by the description here, and not convinced.
 - o I'd like to see an adversarial correlation workload. How wrong can LIP be?
 - Need to drive correlation across predicates
 - E.g. conditional prob:
 - if column x = TRUE, the best plan is filter 1, 2, 3, 4, 5, 6, ... n
 - if column x = FALSE, the best plan is filter n, n-1, ..., 3, 2, 1
 - Then I'd like to understand how we can turn knobs on data to induce a spectrum from worst to best scenario for LIP

Implemented in Quickstep (acquired by Pivotal) and SQLite!

- See SQLite: Past, Present and Future
- "SQLite's query planner uses a straightforward model to determine whether a Bloom filter should be constructed. For each inner table, the query planner generates the [LIP] Bloom filter logic if all of the following conditions are true:
 - a. The number of rows in the table is known by the query planner.
 - b. The expected number of searches exceeds the number of rows in the table.

c. Some searches are expected to find zero rows."

A Host of Questions

- On the limitations of LIP
 - o Correlation study: do you believe it? Adversarial data?
 - Beyond star schemas: Adversarial queries?
- How might we integrate LIP with more workloads
 - Can we predict early that LIP may fail?
 - o Can we do LIP on subqueries?
 - Access method alternatives?
 - o Integration with Cascades?
 - Integration with Eddies/Stems?