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Lecture 10: LIP, Semi-Joins + Adaptivity, 
Robustness 

Context 
1.​ More AdaptiveQP 

a.​ Survey article on Adaptive QP from 2007 
b.​ Less aggressive techniques than eddies, easier to integrate into 

Selinger/Cascades. 
i.​ MidQuery Reoptimization (Kabra/DeWitt): 

●​ If we materialize a subexpression (a “stage”), can re-optimize the 
rest 

●​ Can “force” a materialization point if we like during optimization 
ii.​ IBM “progressive query optimization” (POP):  use streaming cardinality 

check to abort a “stage” 
●​ CHECK operator w.r.t. optimizer’s original guess 

iii.​ LIP from Wisconsin (2017): today’s reading 
c.​ SkinnerDB from Cornell (2019) 

i.​ RL approach to quickly try many different left-deep trees 
ii.​ (RL + Eddies had been done previously) 

2.​ Parametric Query Optimization 
a.​ We have a cost formula for every plan as a function of its parameters (e.g. size of 

relation 1, size of relation 2, selectivity of predicate 
1, etc). If this cost formula is linear, this is a 
hyperplane 

b.​ Imagine we store all these hyperplanes, one per 
plan choice, in some kind of “index” (a convex 
polytope) 

c.​ Then we “query” this index for a given set of 
parameters by finding the lowest-cost plane at that 
setting of the parameters 

d.​ (Tiemo Bang uses this general idea in his Cloud Oracles work) 
3.​ Robust Q.O. 

https://www.cs.umd.edu/~amol/papers/fnt-aqp.pdf
https://dl.acm.org/doi/pdf/10.1145/1007568.1007642?casa_token=iWZbVHombmAAAAAA:7-5SmZQiLSaB0GqJ8ilWwQCmi03AQorvc7qmwEPoNXicnLjchSHCtHnRCAr_Uxac6Bxf1TOR__A
https://dl.acm.org/doi/pdf/10.14778/3090163.3090167
https://arxiv.org/abs/1901.05152
https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/content/pdf/10.1007/s007780050037.pdf&casa_token=tyTpBc8MKqgAAAAA:QDLpQSA8dcPIwbtVhgyRh3M38OOabVVbB7r0a8v08z7Lp9LA7lAabvRKNa1Wf5zkfgndsZo6B2WdZqI
https://www.cidrdb.org/cidr2024/papers/p47-bang.pdf


a.​ IBM POP was designed for robustness: validity range of a selectivity estimate: 
outside this, the plan is suboptimal 

i.​ Based on parametric query optimization 
b.​ Robust cost estimation, using sampling and confidence bounds to control errors 

of estimators. 
c.​ Plan Bouquets instead of cost estimation to minimize Maximum SubOptimality 
d.​ More references in LIP paper 

4.​ Techniques 
a.​ SemiJoins commonly used for distributed databases 
b.​ Yannakakis’ Algorithm is a technique to evaluate a large class of “easy” queries 

(technically, acyclic conjunctive queries) in time polynomial in the size of the 
query, input and output. (Applies to set-oriented relations!) 

i.​ apply semijoins to each input relation so that it has no “dangling” tuples 
that have no impact on the output. (this is called a “full reducer”) 

●​ May be >1 semijoin per input relation if it joins on >1 attribute! 
ii.​ construct a join tree, push down projections as far as possible 
iii.​ then each intermediate result will be O(|input|*|output|). 

Proof: Consider some intermediate subtree T = (S1 ⨝ … ⨝ Sn) ⨝ R .  Replace 
with T’ = 𝜋Y ⋃ Z(T) where Y is the set of attributes in R, and Z is the set of attributes 
in the output other than Y. Clearly T’ ⊆ 𝜋Y(T) × 𝜋Z(T). Now, |𝜋Y(T)| ≤ |R| (input) 
and 𝜋Z(T) ≤ |output|. 

c.​ Simple independent Job Shop scheduling 
i.​ Imagine you have n independent expensive filters, each with costi and 

selectivityi.  
ii.​ Adjacent Sequence Interchange property: swap adjacent pairs to be 

ordered by rank improves cost 
●​ ranki = (selectivityi - 1)/cost 
●​ Generally, the optimal order: increasing rank 

d.​ Ibaraki-Kameda: apply this to left-deep join trees. Consider R join S join T 
i.​ for each leftmost table 

●​ remaining “half-joins” are like selections (selectivity may be >1) 
●​ order the half-joins by rank 
●​ save the result 

ii.​ Chose the leftmost rank-ordered plan that’s cheapest 
e.​ Krishnamurthy-Boral-Zaniolo: 

i.​ Lots of redundant work in IK: two trees will share common “upstream 
suffixes” 

ii.​ Removes this to get from O(n2logn) to O(n2) algorithm 
 

LIP 
Stated goals: robust and good join order selection. 
 

https://dl.acm.org/doi/pdf/10.1145/1066157.1066172?casa_token=tnjsOHb6mhEAAAAA:fr1V8K1zS9p6wsrNZs4FixG8vCl6LjiBtXiyZYcfD1RYGwy9dfzIfBid1Xnm5I8fPE79EqSNL1Y
https://dl.acm.org/doi/pdf/10.1145/2588555.2588566?casa_token=cAs5BCs0f0QAAAAA:guDne64MUybKmBl05sz7pCze_2j2enKYB1Jp-kGvxN9p7fH0Hz4AVHbSUztZJ7p219sPjruk0BI


Focus: star schema 
●​ One big Fact table, many Dimension tables 

○​ Key-Foreign Key relationships 
●​ Queries are mostly left-deep trees 
●​ The perfect setting for IK! 

○​ No need to choose a spanning tree or outermost table! 

QP Tricks 
1.​ For each dimension table D dynamically precompute BloomFilterD.key 

a.​ Cost is negligible relative to building hashtables 
2.​ Rewrite query to include additional fact-table UDF selections based on Bloom filters  

a.​ WHERE BloomCheck(F.fkeyD, BloomFilterD.key) 
3.​ Do an eddy-like thing on the selections 

a.​ Stream data, dynamically learn the selectivities and reorder while applying them 
b.​ Work on tuple batches to keep bloom filter in cache for a while 

■​ batch_size = 64 
■​ while not done: 

●​ For each batch, run through current bloom filter order 
a.​ Track result_batch, count[f], miss[f] for each filter f 

●​ re-sort filters by selectivity 
●​ merge result_batch into results 
●​ double the batch size 

c.​ Selections are easy to reorder relative to join: stateless, rank-ordered as in 
Predicate Migration 

d.​ Will converge quickly (assertion: 3-4 doublings of batch size) 
■​ sampling bounds like Chebyshev 
■​ could work harder to bound confidence of each filter (explore/exploit 

tradeoff) 
 
Why doesn’t this require scanning tables multiple times? 

●​ Going to build hashtables on inners anyway 
●​ Adaptive QP on outer a la eddies 

 
Bloom Filter Fun 

●​ Note: BloomFilter merge is OR, which is associative/commutative/idempotent 
○​ Forms a lattice 
○​ Trivially parallelizable 

●​ Empirical analysis: 
○​ identity hash function (w/modulus) worked fine 
○​ ~8 bits (1 Byte) of Bloom filter per tuple of input 

■​ Goal: fit a Bloom filter in processor cache 
■​ L1: 128 KB on an Apple M2. I.e. 128k tuples in bloom filter 
■​ L2: 16MB on an Apple M2. I.e. 16M tuples 



Cost/Robustness Analysis 
Start without LIP: 

●​ Build costs are independent of order, so focus on Probes 
●​ First n terms of geometric series Σarn = a*(1-rn)/(1-r) 

○​  
●​ Now can bound cost of any plan 

○​ a = |F| 
○​ n = σmin for lower bound, n = σmax for upper bound 

●​ Could be a big range: Formula (7) 

 
○​ Simplify in terms of σmax - σmin = σn’ - σ1’ 

 
○​ Plugging into (7) we get Formula (8): 

 
A definition of Robustness: 

●​ 𝜃-fragile: diff between worst and best is at least 𝜃 
●​ 𝜣-robust: diff between worst and best is at most 𝜣 

normalized by |F| and the spread of selectivities:

 
Wrapping our head around this:  

●​ high fragility (𝜃) means the worst plan is AWFUL. 
●​ low robustness (𝜣) means worst plan is close to optimal 
●​ Now compare two optimization schemes O1 and O2 

○​ If 𝜣 for O1 is less than 𝜃 for O2, O1 is the clear winner 
○​ O1 is LIP, O2 is non-LIP 

 
Why this normalization? 

https://en.wikipedia.org/wiki/Geometric_series


●​ |F|? a “per-tuple” definition 
●​ (σmax - σmin)? Compare robustness of optimizer schemes in a query-independent way 
●​ Assumptions here? 

 
Robustness of LIP: 

●​  
●​ (17) follows:​

𝜣LIP = 1/2σ1σ2…σnϵn(n+1)|F| ⋅ (σmax-σmin)/σminσmax  ⋅ 1/|F|(σmax-σmin)​
=  ½ ⋅ σ1σ2…σn/σminσmax ⋅ ϵn(n+1) 

●​ Recall that without LIP we had:​
𝜃NoLIP = (1 - σmin

n-1)/(1 - σmin) 
●​ Messy assertion:​

From this discussion, it is clear that LIP theoretically guarantees robustness, whereas 
the naive evaluation strategy is likely to make plan selection much more fragile. 

○​ What should this say? When is 𝜣LIP <= 𝜃NoLIP? 

Evaluation Study 
●​ Tune the Bloom filters 
●​ Study how LIP does relative to all possible orders for independent predicates (nice) 

○​ Small dimension rows though: (integer, char, char) 
●​ Model correlations. I was confused by the description here, and not convinced. 

○​ I’d like to see an adversarial correlation workload. How wrong can LIP be? 
■​ Need to drive correlation across predicates 
■​ E.g. conditional prob: 

●​ if column x = TRUE, the best plan is filter 1, 2, 3, 4, 5, 6, … n 
●​ if column x =  FALSE, the best plan is filter n, n-1, …, 3, 2, 1 

○​ Then I’d like to understand how we can turn knobs on data to induce a spectrum 
from worst to best scenario for LIP 

Implemented in Quickstep (acquired by Pivotal) and SQLite! 
●​ See SQLite: Past, Present and Future 
●​ “SQLite’s query planner uses a straightforward model to determine whether a Bloom 

filter should be constructed. For each inner table, the query planner generates the [LIP] 
Bloom filter logic if all of the following conditions are true: 

a.​ The number of rows in the table is known by the query planner. 
b.​ The expected number of searches exceeds the number of rows in the table. 

https://jigneshpatel.org/publ/SQLite_LIP.pdf


c.​ Some searches are expected to find zero rows.” 
 

A Host of Questions 
●​ On the limitations of LIP 

○​ Correlation study: do you believe it? Adversarial data? 
○​ Beyond star schemas: Adversarial queries? 

●​ How might we integrate LIP with more workloads 
○​ Can we predict early that LIP may fail? 
○​ Can we do LIP on subqueries? 
○​ Access method alternatives? 
○​ Integration with Cascades? 
○​ Integration with Eddies/Stems? 
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