Name:	Date:
Period:	AP Environmental Science

APES Abridged

- 1. Ionizing radiation: enough energy to knock electrons from atoms forming ions, capable of causing cancer (gamma, X-rays, UV)
- 2. High Quality Energy: organized & concentrated, can perform useful work (fossil fuel & nuclear)
- 3. Low Quality Energy: disorganized, dispersed (heat in ocean or air wind, solar)
- 4. First Law of Thermodynamics: energy is neither created nor destroyed, but may be converted from one form to another
- 5. Second Law of Thermodynamics: when energy is changed from one form to another, some useful energy is always degraded into lower quality energy (usually heat)
- 6. Natural radioactive decay: unstable radioisotopes decay releasing gamma rays, alpha & beta particles
- 7. Half life: the time it takes for ½ the mass of a radioisotope to decay
- 8. Estimate of how long a radioactive isotope must be stored until it decays to a safe level: approximately half-lives
- 9. Nuclear Fission: nuclei of isotopes split apart when struck by neutrons
- 10. Nuclear Fusion: 2 isotopes of light elements (H) forced together at high temperatures till they fuse to form a heavier nucleus. Expensive, break even point not reached yet
- 11. Ore: a rock that contains a large enough concentration of a mineral making it profitable to mine
- 12. Organic fertilizer: slow acting & long lasting because the organic remains need time to be decomposed
- 13. Best solution to Energy shortage: conservation and increase efficiency
- 14. Surface mining: cheaper & can remove more mineral, less hazardous to workers
- 15. Humus: organic, dark material remaining after decomposition by microorganisms
- 16. Leaching: removal of dissolved materials from soil by water moving downwards
- 17. Illuviation: deposit of leached material in lower soil layers (B)
- 18. Loam: perfect agricultural soil with equal portions of sand, silt, clay
- 19. Conservation: allows the use of resources in a responsible manner
- 20. Preservation: setting aside areas & protecting them from human activities
- 21. Parts of the hydrologic cycle: evaporation, transpiration, runoff, condensation, precipitation, infiltration
- 22. Aquifer: any water bearing layer in the ground
- 23. Cone of depression: lowering of the water table around a pumping well
- 24. Salt water intrusion: near the coast, overpumping of groundwater causes saltwater to move into the aquifer
- 25. ENSO: El Nino Southern Oscillation, see-sawing of air pressure over the S. Pacific
- 26. During an El Nino year: trade winds weaken & warm water sloshed back to SA
- 27. During a Non El Nino year: Easterly trade winds and ocean currents pool warm water in the western Pacific, allowing upwelling of nutrient rich water off the West coast of South America

- 28. Effects of El Nino: upwelling decreases disrupting food chains, N US has mild winters, SW US has increased rainfall, less Atlantic Hurricanes
- 29. Nitrogen fixing: because atmospheric N cannot be used directly by plants it must first be converted into ammonia by bacteria (rhizobium)
- 30. Ammonification: decomposers convert organic waste into ammonia
- 31. Nitrification: ammonia is converted to nitrate ions (NO-3)
- 32. Assimilation: inorganic N is converted into organic molecules such as DNA/amino acids & proteins
- 33. Denitrification: bacteria convert ammonia back into N
- 34. Phosphorus does not circulate as easily as N because: it does not exist as a gas, but is released by weathering of phosphate rocks
- 35. Sustainability: the ability to meet humanity's current needs without compromising the ability of future generations to meet their needs
- 36. Excess phosphorus is added to aquatic ecosystems by: runoff of animal wastes, fertilizer, discharge of sewage Photosynthesis: plants convert atmospheric C (CO₂) into complex carbohydrates (glucose C₆H₁₂O₆)
- 37. Aerobic respiration: oxygen consuming producers, consumers & decomposers break down complex organic compounds & convert C back into CO2
- 38. Largest reservoirs of C: carbonate rocks first, oceans second
- 39. Biotic/abiotic: living & nonliving components of an ecosystem
- 40. Producer/Autotroph: photosynthetic life
- 41. Fecal coliform/Enterococcus: : indicator of sewage contamination
- 42. Energy flow in food webs: only 10% of the usable energy is transferred because usable energy lost as heat (2nd law), not all biomass is digested & absorbed, predators expend energy to catch prey
- 43. Chlorine: (good>disinfection of water)(bad>forms trihalomethanes)
- 44. Primary succession: development of communities in a lifeless area not previously inhabited by life (lava)
- 45. Secondary succession: life progresses where soil remains (clear cut forest, fire)
- 46. Cogeneration: using waste heat to make electricity
- 47. Mutualism: symbiotic relationship where both partners benefit
- 48. Commensalism: symbiotic relationship where one partner benefits & the other is unaffected
- 49. Parasitism: relationship in which one partner obtains nutrients at the expense of the host
- 50. Biome: large distinct terrestrial region having similar climate, soil, plants & animals
- 51. Carrying capacity: the number of individuals that can be sustained in an area
- 52. R strategist: reproduce early, many small unprotected offspring
- 53. K strategist: reproduce late, few, cared for offspring
- 54. Positive feedback: when a change in some condition triggers a response that intensifies the changing condition (EX: warmer Earth snow melts less sunlight is reflected & more is absorbed, therefore warmer earth)
- 55. Natural selection: organisms that possess favorable adaptations pass them onto the next generation

- 56. Malthus: said human population cannot continue to increase..consequences will be war, famine & disease
- 57. Doubling time: rule of 70 70 divided by the percent growth rate
- 58. Replacement level fertility: the number of children a couple must have to replace themselves (2.1 developed, 2.7 developing)
- 59. World Population is: 6 1/2 billion
- 60. US Population: 300 million
- 61. Preindustrial stage: birth & death rates high, population grows slowly, infant mortality high
- 62. Transitional stage: death rate lower, better health care, population grows fast
- 63. Industrial stage: decline in birth rate, population growth slows
- 64. Postindustrial stage: low birth & death rates
- 65. Age structure diagrams: (broad base, rapid growth)(narrow base, negative growth)(uniform shape, zero growth)
- 66.1st & 2nd most populated countries: China & India
- 67. Most important thing affecting population growth: low status of women
- 68. Ways to decrease birth rate: family planning, contraception, economic rewards & penalties
- 69. Percent water on earth by type: 97.5% seawater, 2.5% freshwater
- 70. Salinization of soil: in arid regions, water evaporates leaving salts behind
- 71. Ways to conserve water: (agriculture, drip/trickle irrigation)(industry,recyling)(home, use gray water, repair leaks, low flow fixtures)
- 72. Point vs non-point sources: (Point, from specific location such as pipe)(Non-point, from over an area such as runoff)
- 73. BOD: biological oxygen demand, amount of dissolved oxygen needed by aerobic decomposers to break down organic materials
- 74. Eutrophication: rapid algal growth caused by an excess of N & P
- 75. Hypoxia: when aquatic plants die, the BOD rises as aerobic decomposers break down the plants, the DO drops & the water cannot support life
- 76. Minamata Disease: mental impairments caused by mercury
- 77. Primary air pollutants: produced by humans & nature (CO,CO2,SO2,NO,hydrocarbons, particulates)
- 78. Negative feedback: when a changing in some condition triggers a response that counteracts the changed condition (EX: warmer earth more ocean evaporation more stratus clouds less sunlight reaches the ground therefore cooler Earth)
- 79. Particulate matter (source, effect, reduction): (burning fossil fuels & diesel exhaust) (reduces visibility & respiratory irritation) (filtering, electrostatic precipitators, alternative energy)
- 80.Nitrogen Oxides: (Source: auto exhaust) (Effects: acidification of lakes, respiratory irritation, leads to smog & ozone) (Equation for acid formation: NO + O2 = NO2 + H2O = HNO3) (Reduction: catalytic converter)
- 81. Sulfur oxides: (Source: coal burning) (Effects: acid deposition, respiratory irritation, damages plants) (Equation for acid formation: SO2 + O2 = SO3 + H2O = H2SO4) (Reduction: scrubbers, burn low sulfur fuel)

- 82. Carbon oxides: (Source: auto exhaust, incomplete combustion) (Effects: CO binds to hemoglobin reducing blood's ability to carry O, CO2 contributes to global warming) (Reduction: catalytic converter, emission testing, oxygenated fuel, mass transit)
- 83. Ozone: (Formation: secondary pollutant, NO2+UV=NO+O O+O2=O3, with VOC's) (Effects: respiratory irritant, plant damage) (Reduction: reduce NO emissions & VOCs)
- 84. Radon: radioactive gas, formed from the decay of Uranium, causes lung cancer and is a problem in the Reading Prong
- 85. Photochemical smog: formed by chemical reactions involving sunlight (NO, VOC,O)
- 86. Acid deposition: caused by sulfuric and nitric acids resulting in lowered pH of surface waters
- 87. Greenhouse gases: (Examples: H2O, CO2, O3, methane (CH4), CFC's) (EFFECT: they trap outgoing infrared (heat) energy causing earth to warm
- 88. Effects of global warming: rising sealevel (thermal expansion), extreme weather, droughts (famine), extinctions
- 89. Ozone depletion caused by: CFC's, methyl chloroform, carbon tetrachloride, halon, methyl bromide all of which attack stratospheric ozone
- 90. Effects of ozone depletion: increased UV, skin cancer, cataracts, decreased plant growth
- 91. Love Canal, NY: chemicals buried in old canal and school & homes built over it causing birth defects & cancer
- 92. Municpal solid waste is mostly: paper and most is landfilled
- 93. True cost / External costs: harmful environmental side effects that are not reflected in a products price
- 94. Sanitary landfill problems and solutions: (leachate, liner with collection system) (methane gas, collect gas and burn) (volume of garbage, compact & reduce)
- 95. Incineration advantages: volume of waste reduced by 90% & waste heat can be used
- 96. Incineration disadvantages: toxic emissions (polyvinyl chloride—dioxin), scrubbers & electrostatic precipitators needed, ash disposal (contains heavy metals)
- 97. Best way to solve waste problem: reduce the amounts of waste at the source
- 98. Keystone species: species whose role in an ecosystem are more important than others, ex sea otter
- 99. Indicator species: species that serve as early warnings that an ecosystem is being damaged ex trout
- 100. Most endangered species: have a small range, require large territory or live on an island
- 101. In natural ecosystems, 50-90% of pest species are kept under control by: predators, diseases, parasites
- 102. Major insecticide groups and examples: (chlorinated hydrocarbons, DDT) (organophosphates, malathion) (carbamates, aldicarb)
- 103. Pesticide pros: saves lives from insect transmitted disease, increases food supply, increases profits forfarmers
- 104. Pesticide cons: genetic resistance, ecosystem imbalance, pesticide treadmill, persistence, bioaccumulation, biological magnification
- 105. Natural pest control: better agricultural practices, genetically resistant plants, natural enemies, biopesticides, sex attractants

- 106. Electricity is generated by: using steam (from water boiled by fossils fuels or nuclear) or falling water to turn a generator
- 107. Petroleum forms from: microscopic aquatic organisms in sediments converted by heat & pressure into a mixture of hydrocarbons
- 108. Pros of petroleum: cheap, easily transported, high quality energy
- 109. Cons of petroleum: reserves depleted soon, pollution during drilling, transport and refining, burning makes CO₂
- 110. Steps in coal formation: peat, lignite, bituminous, anthracite
- 111. Major parts of a nuclear reactor: core, control rods, steam generator, turbine, containment building
- 112. Two most serious nuclear accidents: (Chernobyl, Ukraine) (Three Mile Island, PA)
- 113. Alternate energy sources: wind, solar, waves, biomass, geothermal, fuel cells
- 114. LD50: the amount of a chemical that kills 50% of the animals in a test population
- 115. Mutagen, Teratogen, Carcinogen: causes hereditary changes, Fetus deformities, cancer
- 116. Endangered species: North spotted Owl (loss of old growth forest), Bald Eagle (thinning of eggs caused by DDT), Piping Plover (nesting areas threatened by development)
- 117. LI Exotic species: gypsy moth, Asian Longhorned Beetle
- 118. Garret Hardin & The Tragedy of the Commons: Freedom to breed is bringing ruin to all. Global commons such as atmosphere & oceans are used by all and owned by none
- 119. Volcanoes and Earthquakes occur: at plate boundaries (divergent, spreading, mid-ocean ridges) (convergent, trenches) (transform, sliding, San Andreas)
- 120. Sources of mercury: burning coal, Compact Fluorescent bulbs
- 121. Major source of sulfur: burning coal
- 122. Threshold dose: the maximum dose that has no measurable effect

LAWS, LAWS & MORE LAWS

MINING

- 1. Surface Mining Control & Reclamation Act: requires coal strip mines to reclaim the land
- 2. Madrid Protocol: Moratorium on mineral exploration for 50 years in Antarctica WATER
- 3. Safe Drinking Water Act: set maximum contaminant levels for pollutants in drinking water that may

have adverse effects on human health

4. Clean Water Act: set maximum permissible amounts of water pollutants that can be discharged into

waterways..aim to make surface waters swimmable and fishable

- 5. Ocean Dumping Ban Act: bans ocean dumping of sewage sludge & industrial waste in the ocean AIR
- 6. Clean Air Act: Set emission standards for cars, and limits for release of air pollutants
- 7. Kyoto Protocol: controlling global warming by setting greenhouse gas emissions targets for developed

countries

8. Montreal Protocol: phaseout of ozone depleting substances

WASTE

- 9. Resource Conservation & Recovery Act: controls hazardous waste with a cradle to grave system
- 10. Comprehensive Environmental Response, Compensation & Liability Act: Superfund, designed to identify and clean up abandoned hazardous waste dump sites
- 11. Nuclear Waste Policy Act: US government must develop a high level nuclear waste site (Yucca Mtn)

LIFE

- 12. Endangered Species Act: identifies threatened and endangered species in the US, and puts their protection ahead of economic considerations
- 13. Convention on International Trade in Endangered Species: lists species that cannot be commercially

traded as live specimens or wildlife products

- 14. Magnuson- Stevens Act: Mangaement of marine fisheries
- 15. Food Quality Protection Act: set pesticide limits in food, & all active and inactive ingredients must be

screened for estrogenic/endocrine effects

GENERAL

- 16. National Environmental Policy Act: Environmental Impact Statements must be done before any project affecting federal lands can be started
- 17. Stockholm Convention on Persistent Organic Pollutants: Seeks to protect human health from the 12 most toxic chemicals (includes 8 chlorinated hydrocarbon pesticides / DDT can be used for malaria control)