
Actions from Data Views: Adding
images to the Media Library
<!-- @begin notes →

Notes Part 1

https://docs.google.com/document/d/1BwsiVbo1T46KYpb0N-dCV0y
3REC0_YFKNH3D0yPo8Cs/edit

https://developer.wordpress.org/news/2024/08/27/using-data-views-
to-display-and-interact-with-data-in-plugins/

<!-- @end notes →

It’s been almost a month since Using Data Views to display and interact with
data in plugins was published. In that post, you discovered how to create a
plugin that displays a React app in the WordPress admin to list a dataset of
pictures using Data Views. With the `DataViews` component, you were able to
display a dataset of images and provide your users with a nice UI to display,
sort, search, and filter the list of photos.

In the previous post, you learned how to:

●​ Add a custom React app to the admin screens.
●​ Leverage the DataViews component to display datasets.

With the User Interface ready for the user to display, sort, search, and filter a
list of pictures, it's time to take the Data Views actions further and provide
users with tools to, among other things, add any images listed directly to the
Media Library.

In this article, you'll build:

●​ Actions that enable users to upload selected images directly to the
Media Library.

https://docs.google.com/document/d/1BwsiVbo1T46KYpb0N-dCV0y3REC0_YFKNH3D0yPo8Cs/edit
https://docs.google.com/document/d/1BwsiVbo1T46KYpb0N-dCV0y3REC0_YFKNH3D0yPo8Cs/edit
https://developer.wordpress.org/news/2024/08/27/using-data-views-to-display-and-interact-with-data-in-plugins/
https://developer.wordpress.org/news/2024/08/27/using-data-views-to-display-and-interact-with-data-in-plugins/
https://developer.wordpress.org/news/2024/08/27/using-data-views-to-display-and-interact-with-data-in-plugins/
https://developer.wordpress.org/news/2024/08/27/using-data-views-to-display-and-interact-with-data-in-plugins/

None

●​ Actions that open modal windows containing intermediate dialogs to
launch specific operations.

●​ A user-friendly interface that offers real-time feedback, keeping users
informed about the processes being executed.

<note callout>
After laying the groundwork for using Data Views, this post explores the actions you
can take with them. These include interacting with WordPress media through the
REST API, creating notification boxes, displaying modal windows, and using other
UI components,
</note callout>

Here’s a video showing what the features you’ll add to the app in this article
will look like:

<insert video>

Before you start
In this article, you'll build on the project started in the previous article,
continuing from where we left off.

To get the project at the starting point of the project for this article, you can do
the following:

git clone
git@github.com:wptrainingteam/devblog-dataviews-plugin.git
git checkout part1

<tip callout>
The final code of the project explained in this article is available on GitHub.
Throughout the article, you’ll find links to specific commits corresponding to the
changes being explained, to help you track the project’s progress.
</tip callout>

https://developer.wordpress.org/news/2024/08/27/using-data-views-to-display-and-interact-with-data-in-plugins/
https://github.com/wptrainingteam/devblog-dataviews-plugin/tree/part1
mailto:git@github.com
https://github.com/wptrainingteam/devblog-dataviews-plugin
https://github.com/wptrainingteam/devblog-dataviews-plugin/commits/main/

JavaScript

Action to add images to the Media Library
At its current state, the project has only one action to display the images in
full size. Let’s now create a new action to upload images to the Media Library.

Add the following code to the `actions` array that is passed to the `actions`
prop of the `Dataviews` component:

[src/App.js]

const actions = [

{
id: 'upload-media',

​ label: __('Upload Media'),
​ isPrimary: true,
​ icon: 'upload',
​ supportsBulk: true,
​ callback: (images) => {
​ ​ images.forEach((image) => {
​ ​ ​ console.log(`Image to upload: ${
image.slug }`);
​ ​ });
​ },
},
...

]

This new action will enable multi-selection in the Dataviews UI. For now,
when the action is triggered, it will log a message to the console for every
image selected.

<tip callout>
Remember to have `npm start` (which is the alias of "npm run start") running to
automatically generate the project's build version when a file changes.
</tip callout>

https://github.com/wptrainingteam/devblog-dataviews-plugin/commit/aabaf177fc9bfe6b6bfe8f1181aff0c68a78badd
https://github.com/wptrainingteam/devblog-dataviews-plugin/commit/450b50f72d775ad16fc9836919a1ae201435bf60

The only action currently defined for this project (`see-original`) was defined
through the properties 'id,' 'label,' and 'callback'. As you can see above, the
definition of this new 'upload-media', action uses some additional properties
such as:

-​ `isPrimary` - By setting this property to `true` this action will become
the default action for each item.

-​ `supportsBulk` - You can enable multi-selection of items by setting this
property to `true`. With this setting enabled you can perform the action
on several items at the same time.

-​ `icon` - icon to show for primary actions.

Notice how the callback function of this action is now prepared to act on one
or more items by using `forEach` to perform some logic on each one of the
items selected.

<info callout>
Check here the complete list of properties that can be used to define actions for the
Dataviews items.
</info callout>

Now that the 'upload-media' action is created, let’s take some time to consider
the steps needed to upload an image to the Media Library given a URL.

1- Download the image from the provided URL and convert it to a blob
2- Create a FormData object with the image blob that can be sent as the

body of the POST request
3- Send a POST request with apiFetch to the proper endpoint of the

WordPress REST API to add the image to the Media Library

Basically, you'll need to make a POST request to a specific REST API URL,
including data with the image in binary format. To do this, some preliminary
steps are required to prepare the data for the REST API request.

Add these steps as comments of the `forEach` callback to have them as a
reference as we add the logic for each step:

https://developer.wordpress.org/news/2024/08/27/using-data-views-to-display-and-interact-with-data-in-plugins/#the-actions
https://developer.wordpress.org/block-editor/reference-guides/packages/packages-dataviews/#actions-object
https://developer.mozilla.org/en-US/docs/Web/API/Blob
https://developer.mozilla.org/en-US/docs/Web/API/FormData
https://developer.wordpress.org/rest-api/
https://github.com/wptrainingteam/devblog-dataviews-plugin/commit/acb8ffa638e9bca1afb39da3f181b9e66b212b86

JavaScript

[src/App.js]

const actions = [

{
id: 'upload-media',

​ ...,
​ callback: (images) => {
​ ​ images.forEach((image) => {

// 1- Download the image and convert it
to a blob

​ ​ ​ // 2- Create FormData with the image blob
​ ​ ​ // 3- Send the request to the WP REST API
with apiFetch
​ ​ });
​ },
},
...

]

Download the image and convert it to a blob

The image URL for each item is available at `image.urls.raw`, so you could
use the browser’s native `fetch` method to download each image and convert
the response to a blob.

<note callout>
To send an image in a POST request, you need to convert it into a format that can be
transmitted over the network. A common format for this is a binary large object
(Blob).
</note callout>

Add this code to the forEach’s callback function:

[src/App.js]

https://developer.mozilla.org/en-US/docs/Web/API/Window/fetch
https://developer.mozilla.org/en-US/docs/Web/API/Blob
https://developer.mozilla.org/en-US/docs/Web/API/Blob
https://github.com/wptrainingteam/devblog-dataviews-plugin/commit/1a449cb3be89de20c113dcbe00cb4903d950c0b1

JavaScript

images.forEach(async (image) => {

// 1- Download the image and convert it to a blob
​ const responseRequestImage = await fetch(image.urls.raw
);
​ const blobImage = await responseRequestImage.blob();
​ ...
})

Since `fetch` is an asynchronous method that returns a promise, you can
declare the `forEach` callback as an `async` function . This allows you to use
the `await` operator and avoid promise chains to handle the promise
responses.

The successful response from `fetch` is encapsulated in a Response instance,
which includes a `blob()` method. This method allows you to directly
generate a blob from the response.

Create FormData with the image blob

With the image in blob format, the next step is to prepare the data to be sent
in an HTTP request to the REST API. One way to send data in a POST request
is to use a `FormData` object as the request body.

<info callout>
Methods like fetch (or WordPress’ `apiFetch`) can use a `FormData` object as the
request body. This data is encoded and transmitted with the `Content-Type` set to
`multipart/form-data`
</info callout>

Add this code to the `forEach`’s callback function:

[src/App.js]

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await
https://developer.mozilla.org/en-US/docs/Web/API/Response
https://developer.mozilla.org/en-US/docs/Web/API/Response/blob
https://developer.mozilla.org/en-US/docs/Web/API/FormData
https://github.com/wptrainingteam/devblog-dataviews-plugin/commit/273658720dbf832eddcf4a0db8a4542e4a315767

JavaScript

images.forEach(async (image) => {
​ ...

// 2- Create FormData with the image blob
​ const formDataWithImage = new FormData();
​ formDataWithImage.append(
​ ​ 'file',
​ ​ blobImage,
​ ​ `${ image.slug }.jpg`
​);
​ ...
})

The code above creates a new `FormData` object, appending a `file` field
containing the image in blob format.

<info callout>
A `FormData` object represents HTML form data. From the server's perspective, it
would be as if you submit the data from an HTML form.
</info callout>

Send the request to the WP REST API

At this point, everything is ready to do the REST API request with the
`apiFetch` method.

<info callout>
`apiFetch` is a wrapper around `window.fetch` that offers several advantages when
making requests to the WP REST API, such as automatically completing the Base
URL for the REST API endpoint and including the `nonce` in the request headers.
</info callout>

Go to the beginning of `App.js` and import `apiFetch` method from
`@wordpress/api-fetch`:

https://developer.mozilla.org/en-US/docs/Web/API/FormData/append
https://developer.wordpress.org/rest-api/using-the-rest-api/authentication/

JavaScript

JavaScript

[src/App.js]

import apiFetch from "@wordpress/api-fetch";

Now add this code to the `forEach`’s callback function:

[src/App.js]

images.forEach(async (image) => {
​ ...

// 3- Send the request to the WP REST API with apiFetch
await apiFetch({

path: "/wp/v2/media",
method: "POST",
body: formDataWithImage,

})
​ .then(console.log)
​ ...
})

The code above uses `apiFetch` to do a (POST) request to the ` wp/v2/media`
endpoint. As documented in the REST API Handbook, you can create a Media
Item in the WordPress installation via POST requests to the `/wp/v2/media`
endpoint.

<info callout>
Public REST API has been part of the core since WP 4.7
</info callout>

Your Data Views now includes a new feature that allows you to upload
displayed photos directly to the Media Library. You can upload images
individually or select multiple images for bulk uploading.

https://github.com/wptrainingteam/devblog-dataviews-plugin/commit/a8dc7151c9fcdb4d0bc06569df813c54d391c91c
https://developer.wordpress.org/rest-api/reference/
https://developer.wordpress.org/rest-api/reference/media/#create-a-media-item
https://developer.wordpress.org/rest-api/reference/media/#create-a-media-item
https://make.wordpress.org/core/2016/12/05/wordpress-4-7-field-guide/

However, the feedback the user is getting about the upload process isn't great,
as it only provides a message in the console. Let's work on improving this user
experience.

Notification boxes with the outcome of the upload processes

WordPress provides a notification system that can be managed via the Notices
Store. A good approach to interact with the Notices UI, is to wrap your React
component with the `withNotices` Higher-Order Component.

By wrapping your `App` component with `withNotices`, the `App` component
will receive the additional props `noticeOperations` and `noticeUI`:

-​ `noticeOperations` is an object that contains the `createNotice` method
(among others), which you can use to generate a specific notification
box.

https://developer.wordpress.org/block-editor/how-to-guides/notices/#notices-in-the-block-editor
https://developer.wordpress.org/block-editor/reference-guides/data/data-core-notices/
https://developer.wordpress.org/block-editor/reference-guides/data/data-core-notices/
https://developer.wordpress.org/block-editor/reference-guides/components/with-notices/
https://developer.wordpress.org/block-editor/reference-guides/data/data-core-notices/#createnotice

JavaScript

JavaScript

JavaScript

-​ ` noticeUI` is the Notice React component that will be displayed when a
notification box is created.

Go to the beginning of `App.js` and import `withNotices` method from
"@wordpress/components":

[src/App.js]

import { withNotices } from "@wordpress/components";

Go to the line that starts the definition of your `App.js` and replace it with the
following code:

[src/App.js]

const App = withNotices(({ noticeOperations, noticeUI }) => {
const { createNotice } = noticeOperations;
...

});

You can use the `createNotice ` method destructured from `noticeOperations`
to create notification boxes that will appear wherever you place the `noticeUI`
component on your React App’s screen. These notification boxes can be used
to provide information to the user about the success or failure of images
uploaded to the Media Library.

Chain the following `then` and `catch` methods to the `apiFetch` call to
handle the success or error of the API request, using the yet-to-be-defined
`onSuccessMediaUpload` and `onErrorMediaUpload` functions:

[src/App.js]

 await apiFetch({

https://github.com/wptrainingteam/devblog-dataviews-plugin/commit/0e0059f6dbe5361d383a7adfa6243426fd8dabe1
https://github.com/wptrainingteam/devblog-dataviews-plugin/commit/0e0059f6dbe5361d383a7adfa6243426fd8dabe1
https://github.com/wptrainingteam/devblog-dataviews-plugin/commit/0e0059f6dbe5361d383a7adfa6243426fd8dabe1
https://github.com/wptrainingteam/devblog-dataviews-plugin/commit/0e0059f6dbe5361d383a7adfa6243426fd8dabe1
https://developer.wordpress.org/block-editor/reference-guides/data/data-core-notices/#createnotice
https://github.com/wptrainingteam/devblog-dataviews-plugin/commit/0e0059f6dbe5361d383a7adfa6243426fd8dabe1

JavaScript

 path: "/wp/v2/media",
 method: "POST",
 body: formDataWithImage,
 })
 // 5- Capture the success and error responses of
the REST API request
 .then(onSuccessMediaUpload)
 .catch(onErrorMediaUpload);
 });

Now, add the following code to the App component (and before the call of
these functions) with the `onSuccessMediaUpload` and
`onErrorMediaUpload’ functions definitions:

[src/App.js]

const onSuccessMediaUpload = (oImageUploaded) => {
 const title = oImageUploaded.title.rendered;
 createNotice({
 status: "success",
 content: __(`${title}.jpg successfully uploaded to Media
Library!`),
 isDismissible: true,
 });
 };

 const onErrorMediaUpload = (error) => {
 console.log(error);
 createNotice({
 status: "error",
 content: __("An error occurred!"),
 isDismissible: true,
 });
 };

https://github.com/wptrainingteam/devblog-dataviews-plugin/commit/0e0059f6dbe5361d383a7adfa6243426fd8dabe1

JavaScript

The `onSuccessMediaUpload` receives the object returned by the
"/wp/v2/media" endpoint with the details of the image successfully uploaded.
With this info you can generate a `success` box informing the user about the
success of the image upload.

If the upload operation fails, the `onErrorMediaUpload` will receive the
specific error that prompted the failure of the upload operation. Inside this
function you can also call a `error` box to notify the user that something went
wrong.

To display the notification boxes triggered by the `createNotice` methods,
add the `noticeUI` component to the return of the `App` component:

[src/App.js]

return (
 <>
 {noticeUI}
 <DataViews
 ...
 />
 </>
);

<info callout>
React components can only return one parent element, so you can use the
`Fragment` component to group your elements together.
</info callout>

Since notification boxes will appear at the top of the screen, you can add the
following code at the start of the 'upload-media' callback to scroll to the top
each time this action is triggered, ensuring users don't miss any notifications:

[src/App.js]

https://developer.wordpress.org/reference/classes/wp_rest_attachments_controller/prepare_item_for_response/
https://developer.wordpress.org/reference/classes/wp_rest_attachments_controller/prepare_item_for_response/
https://github.com/wptrainingteam/devblog-dataviews-plugin/commit/0e0059f6dbe5361d383a7adfa6243426fd8dabe1
https://react.dev/reference/react/Fragment
https://github.com/wptrainingteam/devblog-dataviews-plugin/commit/0e0059f6dbe5361d383a7adfa6243426fd8dabe1
https://github.com/wptrainingteam/devblog-dataviews-plugin/commit/0e0059f6dbe5361d383a7adfa6243426fd8dabe1

JavaScript

JavaScript

window.scrollTo(0, 0);

A Spinner to indicate uploading processes in progress

A good UI element that could be added is an indicator of uploading processes
in progress. The `Spinner` component from WordPress components is perfect
for this.

But before using the Spinner component, some logic needs to be added to
ensure it is displayed only while upload processes are running. To monitor
the ongoing upload processes, you can use a state variable that holds an array
of all the uploads in progress.

Keeping track of the upload processes using state variables

Include the following code at the start of your App component to add a state
variable using `useState`:

[src/App.js]

const [isUploadingItems, setIsUploadingItems] = useState([]);

The `isUploadingItems` state variable will keep track of the upload operations
in progress. Every time a new image starts its upload process, its slug will be
added to the `isUploadingItems` array. And every time a new image is
successfully uploaded, its slug will be removed from the `isUploadingItems`
array.

Add the following code at the beginning of the `forEach` callback (inside the
`upload-media` callback):

https://github.com/wptrainingteam/devblog-dataviews-plugin/commit/c046c5808e704409f9d717311abed4cac8f0af0b
https://react.dev/reference/react/useState
https://github.com/wptrainingteam/devblog-dataviews-plugin/commit/c046c5808e704409f9d717311abed4cac8f0af0b

JavaScript

JavaScript

[src/App.js]

setIsUploadingItems((prevIsUploadingItems) => [
 ...prevIsUploadingItems,
 image.slug,
]);

The code above adds every image’s slug being selected for upload to the
`isUploadingItems` state variable array.

To remove an image’s slug from the `isUploadingItems` state variable array
when it has been successfully uploaded or emptying it completely when an
error occurs you can add the following pieces of code to the
`onSuccessMediaUpload` and `onErrorMediaUpload` functions.

[src/App.js]

const onSuccessMediaUpload = (oImageUploaded) => {
 ...
 setIsUploadingItems((prevIsUploadingItems) =>
 prevIsUploadingItems.filter((slugLoading) => slugLoading
!== title)
);

 ...
 };​
​
const onErrorMediaUpload = (error) => {
 setIsUploadingItems([]);
 ...
 };

https://github.com/wptrainingteam/devblog-dataviews-plugin/commit/c046c5808e704409f9d717311abed4cac8f0af0b

JavaScript

JavaScript

Displaying the Spinner component

While the `isUploadingItems` state variable array is not empty, the Spinner
component should be displayed to indicate to the user that there’s some
uploading process in progress.

Navigate to the top of App.js and import the Spinner component from
@wordpress/components:

[src/App.js]

import { Spinner } from "@wordpress/components";

Finally, to display the `Spinner` component based on the the existence of any
image being uploaded add the following code to the return of the `App`
component:

[src/App.js]

return (
 <>
 {!!isUploadingItems.length && <Spinner />}
 ...
 <DataViews
 ...
 />
 </>
);

Action with Modal window
Remember the action you created in the previous article to display an image
in full size? What about improving this action to show a modal so users can
choose the size of the image they want to open in a new window?

https://github.com/wptrainingteam/devblog-dataviews-plugin/commit/c046c5808e704409f9d717311abed4cac8f0af0b
https://github.com/wptrainingteam/devblog-dataviews-plugin/commit/c046c5808e704409f9d717311abed4cac8f0af0b

JavaScript

Data Views actions provide a mechanism to display a Modal window when
triggered. Through the `RenderModal` property you can define a React
component that will be displayed upon the action call as a Modal window.
When the `RenderModal` property is provided, the `callback` property is
ignored.

A `modalHeader` property can also be defined to set a header text for the
Modal window.

You could replace the 'see-original' action definition with the following code:

[src/App.js]

{
​ id: 'see-original',
​ label: __('See Original'),
​ modalHeader: __('See Original Image', 'action label'),
​ RenderModal: ({ items: [item], closeModal }) => {
​ ​ return (
​ ​ ​ <div>
​ ​ ​ ​ <button
​ ​ ​ ​ ​ onClick={ () => {
​ ​ ​ ​ ​ ​ closeModal();
​ ​ ​ ​ ​ ​ window.open(item.urls.raw,
'_blank');
​ ​ ​ ​ ​ } }
​ ​ ​ ​ >
​ ​ ​ ​ ​ Open original image in new window
​ ​ ​ ​ </button>
​ ​ ​ </div>
​ ​);
​ },
}

The code above would open a modal when the action is triggered over an
image and provide a button to open the original image in a new window. This

JavaScript

JavaScript

is the same behavior defined in the previous version via `callback` but with a
Modal window in between.

Let’s make this Modal window nicer and more interesting by providing a
Dropdown so users can select the size of the image to be opened in a new
window.

First, import some components to be used in the modal window:

[src/App.js]

import {
​ SelectControl,
​ Button,
​ __experimentalText as Text,
​ __experimentalHStack as HStack,
​ __experimentalVStack as VStack,

...
} from '@wordpress/components';​

<info callout>
The SelectControl, Button, Text, HStack and VStack are WordPress components
available for WordPress development with React. You can find live examples of these
components and others in the Gutenberg Storybook.
</info callout>

Next, use the following code to define the 'see-original' action:

[src/App.js]

{
​ id: 'see-original',
​ label: __('See Original'),
​ modalHeader: __('See Original Image', 'action label'),
​ RenderModal: ({ items: [item], closeModal }) => {
​ ​ const [size, setSize] = useState('raw');

https://github.com/wptrainingteam/devblog-dataviews-plugin/commit/ab230e15077872852b7a0fb252793e5952d29fb8
https://developer.wordpress.org/block-editor/reference-guides/components/select-control/
https://developer.wordpress.org/block-editor/reference-guides/components/button/
https://developer.wordpress.org/block-editor/reference-guides/components/text/
https://developer.wordpress.org/block-editor/reference-guides/components/h-stack/
https://developer.wordpress.org/block-editor/reference-guides/components/v-stack/
https://wordpress.github.io/gutenberg/?path=/docs/docs-introduction--page
https://github.com/wptrainingteam/devblog-dataviews-plugin/commit/ab230e15077872852b7a0fb252793e5952d29fb8

​ ​ return (
​ ​ ​ <VStack spacing="5">
​ ​ ​ ​ <Text>
​ ​ ​ ​ ​ { `Select the size you want to open
for "${ item.slug }"` }
​ ​ ​ ​ </Text>
​ ​ ​ ​ <HStack justify="left">
​ ​ ​ ​ ​ <SelectControl
​ ​ ​ ​ ​ ​ __nextHasNoMarginBottom
​ ​ ​ ​ ​ ​ label="Size"
​ ​ ​ ​ ​ ​ value={ size }
​ ​ ​ ​ ​ ​ options={ Object.keys(
item.urls)
​ ​ ​ ​ ​ ​ ​ .filter((url) => url
!== 'small_s3')
​ ​ ​ ​ ​ ​ ​ .map((url) => ({
​ ​ ​ ​ ​ ​ ​ ​ label: url,
​ ​ ​ ​ ​ ​ ​ ​ value: url,
​ ​ ​ ​ ​ ​ ​ })) }
​ ​ ​ ​ ​ ​ onChange={ setSize }
​ ​ ​ ​ ​ />
​ ​ ​ ​ </HStack>
​ ​ ​ ​ <HStack justify="right">
​ ​ ​ ​ ​ <Button
​ ​ ​ ​ ​ ​ __next40pxDefaultSize
​ ​ ​ ​ ​ ​ variant="primary"
​ ​ ​ ​ ​ ​ onClick={ () => {
​ ​ ​ ​ ​ ​ ​ closeModal();
​ ​ ​ ​ ​ ​ ​ window.open(item.urls[
size], '_blank');
​ ​ ​ ​ ​ ​ } }
​ ​ ​ ​ ​ >
​ ​ ​ ​ ​ ​ Open image from original
location
​ ​ ​ ​ ​ </Button>
​ ​ ​ ​ </HStack>
​ ​ ​ </VStack>
​ ​);
​ },

},

The code above uses the `SelectControl` component to display the sizes
available for each image from the object with the info for each photo. The
image size selected is stored in the `size` state variable through the `setSize`
function.

The Button component’s `onClick` calls the closeModal (available via props)
and then opens the selected image (with the selected `size`) in a new window.

Now, when you click on the 'see-original' action on an image you should a
modal window like the following one:

Full implementation and output

At this point, the final `src/App.js` file of the project should look like this:

https://github.com/wptrainingteam/devblog-dataviews-plugin/blob/ab230e15077872852b7a0fb252793e5952d29fb8/src/App.js

JavaScript

[src/App.js]

import { DataViews, filterSortAndPaginate } from
'@wordpress/dataviews';
import { getTopicsElementsFormat } from './utils';
import { useState, useMemo } from '@wordpress/element';
import {
​ SelectControl,
​ Button,
​ __experimentalText as Text,
​ __experimentalHStack as HStack,
​ __experimentalVStack as VStack,
​ Spinner,
​ withNotices,
} from '@wordpress/components';

import { __ } from '@wordpress/i18n';
import apiFetch from '@wordpress/api-fetch';

import './style.scss';

// source "data" definition
import { dataPhotos } from './data';

// "defaultLayouts" definition
const primaryField = 'id';
const mediaField = 'img_src';

const defaultLayouts = {
​ table: {
​ ​ layout: {
​ ​ ​ primaryField,
​ ​ },
​ },
​ grid: {
​ ​ layout: {
​ ​ ​ primaryField,
​ ​ ​ mediaField,
​ ​ },
​ },

};

// "fields" definition
const fields = [
​ {
​ ​ id: 'img_src',
​ ​ label: __('Image'),
​ ​ render: ({ item }) => (
​ ​ ​ <img alt={ item.alt_description } src={
item.urls.thumb } />
​ ​),
​ ​ enableSorting: false,
​ },
​ {
​ ​ id: 'id',
​ ​ label: __('ID'),
​ ​ enableGlobalSearch: true,
​ },
​ {
​ ​ id: 'author',
​ ​ label: __('Author'),
​ ​ getValue: ({ item }) =>
​ ​ ​ `${ item.user.first_name } ${
item.user.last_name }`,
​ ​ render: ({ item }) => (
​ ​ ​ <a target="_blank" href={ item.user.url }
rel="noreferrer">
​ ​ ​ ​ { item.user.first_name } {
item.user.last_name }
​ ​ ​
​ ​),
​ ​ enableGlobalSearch: true,
​ },
​ {
​ ​ id: 'alt_description',
​ ​ label: __('Description'),
​ ​ enableGlobalSearch: true,
​ },
​ {

​ ​ id: 'topics',
​ ​ label: __('Topics'),
​ ​ elements: getTopicsElementsFormat(dataPhotos),
​ ​ render: ({ item }) => {
​ ​ ​ return (
​ ​ ​ ​ <div className="topic_photos">
​ ​ ​ ​ ​ { item.topics.map((topic) => (
​ ​ ​ ​ ​ ​ <span key={ topic }
className="topic_photo_item">
​ ​ ​ ​ ​ ​ ​ { topic.toUpperCase() }
​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​)) }
​ ​ ​ ​ </div>
​ ​ ​);
​ ​ },
​ ​ filterBy: {
​ ​ ​ operators: ['isAny', 'isNone', 'isAll',
'isNotAll'],
​ ​ },
​ ​ enableSorting: false,
​ },
​ {
​ ​ id: 'width',
​ ​ label: __('Width'),
​ ​ getValue: ({ item }) => parseInt(item.width),
​ ​ enableSorting: true,
​ },
​ {
​ ​ id: 'height',
​ ​ label: __('Height'),
​ ​ getValue: ({ item }) => parseInt(item.height),
​ ​ enableSorting: true,
​ },
];
const App = withNotices(({ noticeOperations, noticeUI }) =>
{
​ const { createNotice } = noticeOperations;

​ const [isUploadingItems, setIsUploadingItems] =
useState([]);

​ // "view" and "setView" definition
​ const [view, setView] = useState({
​ ​ type: 'table',
​ ​ perPage: 10,
​ ​ layout: defaultLayouts.table.layout,
​ ​ fields: [
​ ​ ​ 'img_src',
​ ​ ​ 'id',
​ ​ ​ 'alt_description',
​ ​ ​ 'author',
​ ​ ​ 'topics',
​ ​ ​ 'width',
​ ​ ​ 'height',
​ ​],
​ });

​ // "processedData" and "paginationInfo" definition
​ const { data: processedData, paginationInfo } = useMemo(
() => {
​ ​ return filterSortAndPaginate(dataPhotos, view,
fields);
​ }, [view]);

​ const onSuccessMediaUpload = (oImageUploaded) => {
​ ​ const title = oImageUploaded.title.rendered;
​ ​ setIsUploadingItems((prevIsUploadingItems) =>
​ ​ ​ prevIsUploadingItems.filter(
​ ​ ​ ​ (slugLoading) => slugLoading !== title
​ ​ ​)
​ ​);

​ ​ createNotice({
​ ​ ​ status: 'success',
​ ​ ​ // translators: %s is the image title
​ ​ ​ content:
​ ​ ​ ​ `${ title }.jpg ` +

​ ​ ​ ​ __('successfully uploaded to Media
Library'),
​ ​ ​ isDismissible: true,
​ ​ });
​ };

​ const onErrorMediaUpload = (error) => {
​ ​ setIsUploadingItems([]);
​ ​ console.log(error);
​ ​ createNotice({
​ ​ ​ status: 'error',
​ ​ ​ content: __('An error occurred!'),
​ ​ ​ isDismissible: true,
​ ​ });
​ };

​ // "actions" definition
​ const actions = [
​ ​ {
​ ​ ​ id: 'upload-media',
​ ​ ​ label: __('Upload Media'),
​ ​ ​ isPrimary: true,
​ ​ ​ icon: 'upload',
​ ​ ​ supportsBulk: true,
​ ​ ​ callback: (images) => {
​ ​ ​ ​ images.forEach(async (image) => {
​ ​ ​ ​ ​ // 1- Download the image and
convert it to a blob
​ ​ ​ ​ ​ const responseRequestImage = await
fetch(image.urls.raw);
​ ​ ​ ​ ​ const blobImage = await
responseRequestImage.blob();

​ ​ ​ ​ ​ // 2- Create FormData with the
image blob
​ ​ ​ ​ ​ const formDataWithImage = new
FormData();
​ ​ ​ ​ ​ formDataWithImage.append(
​ ​ ​ ​ ​ ​ 'file',

​ ​ ​ ​ ​ ​ blobImage,
​ ​ ​ ​ ​ ​ `${ image.slug }.jpg`
​ ​ ​ ​ ​);

​ ​ ​ ​ ​ // 3- Send the request to the WP
REST API with apiFetch
​ ​ ​ ​ ​ await apiFetch({
​ ​ ​ ​ ​ ​ path: '/wp/v2/media',
​ ​ ​ ​ ​ ​ method: 'POST',
​ ​ ​ ​ ​ ​ body: formDataWithImage,
​ ​ ​ ​ ​ }).then(console.log);
​ ​ ​ ​ });
​ ​ ​ },
​ ​ },
​ ​ {
​ ​ ​ id: 'see-original',
​ ​ ​ label: __('See Original'),
​ ​ ​ modalHeader: __('See Original Image', 'action
label'),
​ ​ ​ RenderModal: ({ items: [item], closeModal }
) => {
​ ​ ​ ​ const [size, setSize] = useState('raw'
);
​ ​ ​ ​ return (
​ ​ ​ ​ ​ <VStack spacing="5">
​ ​ ​ ​ ​ ​ <Text>
​ ​ ​ ​ ​ ​ ​ { `Select the size you
want to open for "${ item.slug }"` }
​ ​ ​ ​ ​ ​ </Text>
​ ​ ​ ​ ​ ​ <HStack justify="left">
​ ​ ​ ​ ​ ​ ​ <SelectControl
​ ​ ​ ​ ​ ​ ​ ​
__nextHasNoMarginBottom
​ ​ ​ ​ ​ ​ ​ ​ label="Size"
​ ​ ​ ​ ​ ​ ​ ​ value={ size }
​ ​ ​ ​ ​ ​ ​ ​ options={
Object.keys(item.urls)
​ ​ ​ ​ ​ ​ ​ ​ ​ .filter((
url) => url !== 'small_s3')

​ ​ ​ ​ ​ ​ ​ ​ ​ .map((url)
=> ({
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ label:
url,
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ value:
url,
​ ​ ​ ​ ​ ​ ​ ​ ​ })) }
​ ​ ​ ​ ​ ​ ​ ​ onChange={ setSize
}
​ ​ ​ ​ ​ ​ ​ />
​ ​ ​ ​ ​ ​ </HStack>
​ ​ ​ ​ ​ ​ <HStack justify="right">
​ ​ ​ ​ ​ ​ ​ <Button
​ ​ ​ ​ ​ ​ ​ ​
__next40pxDefaultSize
​ ​ ​ ​ ​ ​ ​ ​ variant="primary"
​ ​ ​ ​ ​ ​ ​ ​ onClick={ () => {
​ ​ ​ ​ ​ ​ ​ ​ ​ closeModal();
​ ​ ​ ​ ​ ​ ​ ​ ​ window.open(
item.urls[size], '_blank');
​ ​ ​ ​ ​ ​ ​ ​ } }
​ ​ ​ ​ ​ ​ ​ >
​ ​ ​ ​ ​ ​ ​ ​ Open image from
original location
​ ​ ​ ​ ​ ​ ​ </Button>
​ ​ ​ ​ ​ ​ </HStack>
​ ​ ​ ​ ​ </VStack>
​ ​ ​ ​);
​ ​ ​ },
​ ​ },
​];
​ return (
​ ​ <>
​ ​ ​ { !! isUploadingItems.length && <Spinner /> }
​ ​ ​ { noticeUI }
​ ​ ​ <DataViews
​ ​ ​ ​ data={ processedData }
​ ​ ​ ​ fields={ fields }
​ ​ ​ ​ view={ view }

​ ​ ​ ​ onChangeView={ setView }
​ ​ ​ ​ defaultLayouts={ defaultLayouts }
​ ​ ​ ​ actions={ actions }
​ ​ ​ ​ paginationInfo={ paginationInfo }
​ ​ ​ />
​ ​ </>
​);
});

export default App;

The DataViews project is now complete!

Go to your Admin panel and open the 'Add Media from Third Party Service'
subpage under the 'Media' Settings. You should observe the following
behavior:

●​ In table mode, each image has a primary 'Upload Media' action,
displayed as an icon when hovered.

●​ Clicking the three-dot button on an image reveals two actions: 'Upload
Media' and 'See Original.'

●​ You can select multiple images and perform the 'Upload Media' action
on all of them simultaneously.

●​ Notification boxes appear once an image upload process is complete.
●​ A spinner icon is shown while images are being uploaded.
●​ The “See Original” action displays a Modal Windows allowing the user

to choose the size of the image to be opened in a new window.

<info callout>
The full code of this project is available here. There’s also a live demo of the project
powered by Playground.
</info callout>

https://github.com/wptrainingteam/devblog-dataviews-plugin
https://playground.wordpress.net/?blueprint-url=https://raw.githubusercontent.com/wptrainingteam/devblog-dataviews-plugin/main/_playground/blueprint.json
https://playground.wordpress.net/docs

Wrapping up

This article concludes a two-part series exploring the potential of the
DataViews component:

-​ Using Data Views to display and interact with data in plugins covered
the foundational concepts for getting started with Data Views.

-​ Actions from Data Views: Adding images to the Media Library (this
article) got deeper into Data Views actions and the types of tasks that
can be triggered through them.

If you’re interested in following the progress of this feature, you can check the
issues with “[Feature] Data Views” label in the gutenberg repo. This
component also has biweekly updates, which are shared on
https://make.wordpress.org/design/tag/dataviews/.

The @wordpress/dataviews package is a new tool that opens possibilities for
plugin developers, and WordPress Core developers working on this feature
would love to hear from you. Have you used it and found it interesting? Or ran
into something you weren't able to do? Please share your thoughts in the
comments or the Gutenberg repo as Issues.

https://developer.wordpress.org/news/2024/08/27/using-data-views-to-display-and-interact-with-data-in-plugins/
https://github.com/WordPress/gutenberg/issues?q=is%3Aopen+is%3Aissue+label%3A%22%5BFeature%5D+Data+Views%22
https://make.wordpress.org/design/tag/dataviews/
https://www.npmjs.com/package/@wordpress/dataviews/v/0.2.0
https://github.com/WordPress/gutenberg/issues?q=is%3Aopen+is%3Aissue+label%3A%22%5BFeature%5D+Data+Views%22

	Actions from Data Views: Adding images to the Media Library
	Before you start
	Action to add images to the Media Library
	
	Download the image and convert it to a blob
	Create FormData with the image blob
	Send the request to the WP REST API

	Notification boxes with the outcome of the upload processes
	
	A Spinner to indicate uploading processes in progress
	Keeping track of the upload processes using state variables
	Displaying the Spinner component

	Action with Modal window
	
	Full implementation and output
	Wrapping up

