Name: Pl	hysics 11
Lesson 2.2 – Newton's Second Law	
Newton's first law told us that if no net force acts on an object, its acceleration is	
So, it's fair to assume that if there is a net force (a.k.a. unbalanced force, resultant force), then th	ie
acceleration will be	
Newton's second law tells us how to calculate that acceleration:	
Newton's Second Law	
Take a look at the units on both sides	

Example: A 650 kg car accelerates at 4 m/s² south. What is the net force acting on it?

Example: Determine the magnitude and direction of the net force on the object below.

