ES2015 and beyond performance plan

Attention: Shared Google-externally
Authors: adamk@chromium.org, bmeurer@chromium.org

Last updated: 2018/10/31

This document describes the proposed plan to improve the performance of new features
introduced in ES2015 and beyond. There are a couple of features that are fine by default,
because they are merely syntactic sugar for an already optimized feature, but there are quite a
few new features that need a separate optimization plan. This document mostly serves as a
central place to point to relevant tracking bugs and design documents, it's intended to be a living
document so it must be kept up-to-date as we go and address the various issues.

Classes
Class literals

Subclassing
Optimizing derived leaf constructors
Super property access

Reduce megamorphicity for super class methods
Default derived class constructor (super with spread)

Collections

Maps & Sets
Map.Set}.prototype.forEach

Iterators
Array destructuring
Array and String iterators
Collection iterators
for-of

Eliminate the iterator/iterator result allocations

Generators
Make generators optimizable

Optimize JSGeneratorObject creation.

Async/await

Promises

RegExp

Modules

mailto:adamk@chromium.org
mailto:bmeurer@chromium.org

Variable access
Prescanning for module requests

Arrow functions
Short living closures are never optimized

Spread operator
Spread calls
Array spreads

Let and const

Well known symbols

@@haslinstance

Proxies
[[Call]] and [[Construct]]
Get

[[Set]]

Object builtins
Object.create
Object.assign
Object.keys
Object.values and Object.entries

Reflect builtins
Reflect.apply and Reflect.construct

Array builtins

Array.from
Inlining higher-order Array builtins

TypedArrays
The TypedArray subclass constructors

Super slow copyWithin builtins
TypedArray.prototype.set builtin is slow

ArrayBuffer.isView is slow
TypedArray.prototype[@@toStringTaq] is slow

Destructuring and default parameters
Rest parameters

Tagged Template Literals

Computed property names

Obiject rest/spread properties

Additional action items

Classes

Owner: bmeurer@chromium.org
Tracking bug: https://bugs.chromium.org/p/v8/issues/detail ?7id=5455

The design document outlines a couple of ideas how to improve the general performance of
classes and related operations.

Class literals

Status: Started
Owner: ishell@chromium.org
Tracking bug: https://bugs.chromium.org/p/v8/issues/detail ?id=5799

Class literals go through TurboFan, but cannot really be optimized at this point. It's unclear what
the impact of this would be.

Subclassing

Status: Done
Owner: tebbi@chromium.org
Tracking bug: https://bugs.chromium.org/p/v8/issues/detail ?id=6237

Currently TurboFan cannot inline derived class constructors due to a bug in the inlining logic,
which needs proper handling. This should be fixed soon. Besides that, we don’t yet have
new. target feedback for leaf constructors, making it impossible to properly optimize the
JSCreate nodes when they are not inlined. We should consider collecting new. target
feedback on super constructor calls.

Optimizing derived leaf constructors

Status: Done

Owner: bmeurer@chromium.org
Tracking bug: https://bugs.chromium.org/p/v8/issues/detail?id=6679 (design document)

mailto:bmeurer@chromium.org
https://bugs.chromium.org/p/v8/issues/detail?id=5455
https://docs.google.com/document/d/1iCdbXuGVV8BK750wmP32eF4sCrnZ8y3Qlz0JiaLh9j8
mailto:ishell@chromium.org
https://bugs.chromium.org/p/v8/issues/detail?id=5799
mailto:tebbi@chromium.org
https://bugs.chromium.org/p/v8/issues/detail?id=6237
mailto:bmeurer@chromium.org
https://bugs.chromium.org/p/v8/issues/detail?id=6679
https://docs.google.com/document/d/1iCdbXuGVV8BK750wmP32eF4sCrnZ8y3Qlz0JiaLh9j8/edit#

Again considering the following example:

class A {
constructor (x) { this.x = x; }

}i

class B extends A {
constructor (x) { super(x); }

}i

To inline the super call in the B constructor we need to add cal11C support for super, but
even then we only have the JSFunction constant for new. target, which get’s us to inlining
the JscallcConstruct, but we still need some additional magic to be able to also inline the
JSCreate node.

This could be fixed by tracking the new.target as feedback on the Call1IcC for Construct
and ConstructWithSpread bytecodes.

Super property access

Status: Available
Contact(s): bmeurer@chromium.org, adamk@chromium.org

Super property access that doesn't result in a method call doesn't go through the IC system: it's
always a runtime call. Unclear what the impact of this is (intuition is that method calls are the
majority use case), but it might be nice to avoid a performance cliff here.

Reduce megamorphicity for super class methods

Status: Available
Contact(s): jarin@chromium.org, bmeurer@chromium.org

For super class methods property access to this is likely megamorphic, but we could have a
smarter way to access the field, since it's usually at the same offset for all subclasses. This
would also help with classical class-like ES5 code, for example the TypeScript compiler.

Default derived class constructor (super with spread)

Status: In progress

Owner: petermarshall@chromium.org

Design document: here

Tracking bug: https://bugs.chromium.org/p/v8/issues/detail?id=5659

mailto:bmeurer@chromium.org
mailto:adamk@chromium.org
mailto:jarin@chromium.org
mailto:bmeurer@chromium.org
mailto:petermarshall@chromium.org
https://docs.google.com/document/d/1ycc2k_j_BL9uzmW13Qdqhn09jZsFDNcCWVSqbB2vLHg
https://bugs.chromium.org/p/v8/issues/detail?id=5659

The default derived constructor desugars to spread/rest, as per the spec. This is extremely slow,
however, compared to more straight-forward implementations. This also introduces a hidden
performance cliff, as the writer of the JS code can’t even see the spread call (and implied
iteration). One real-life example of this cliff being hit is in NodeJS.

Collections

Maps & Sets

Status: In progress

Contact: gsathya@chromium.org
Tracking bug: https://bugs.chromium.org/p/v8/issues/detail?id=5717

Design documents: problem statement, SmallOrderedHashTable

Current implementation is written mainly in JS, with special intrinsics like
$ FixedArrayGet/% FixedArraySet to optimize loading and limit allocations. Still runs
into problems with type pollution, though. Rewriting as TurboFan stubs would allow the removal
of the scary intrinsics and avoiding the type feedback issues. We should also consider using
linear search for small Maps and Sets, and only start hashing once we grow beyond a certain
threshold.

One main goal here is to remove the ¢ FixedArray intrinsics/runtime functions that leak
internal V8 data structures to JavaScript code, which is very dangerous in general (we’ve had a
couple of serious crashers and security exploit due to leaking internal data structures in the
past).

It seems like some popular libraries are already using Maps and Sets heavily (w/ polyfill for older
browsers), i.e. see https://twitter.com/sebmarkbage/status/822116812640792576.

{Map,Set}.prototype.forEach

Status: Available
Contact: bmeurer@chromium.org

Currently the forEach methods are implemented in the CSA, but TurboFan doesn’t know
anything about them. It should be fairly easy to support an inlined version, especially since
Maps and Sets are way simpler than Arrays.

lterators

Iterators are considered oo slow to be usable, in combination with both for-of and spread.

https://github.com/nodejs/node/pull/8738
mailto:gsathya@chromium.org
https://bugs.chromium.org/p/v8/issues/detail?id=5717
https://docs.google.com/a/chromium.org/document/d/1E39ZJBOBAqiTJknIQhdrdpBNuIRteJtsFeOrA-mCI6Y/edit?usp=sharing
https://docs.google.com/document/d/1teU7QS65DR6H8sBF-E8VmPfSv-koxjA31hDEJx8Ovmk/edit
https://twitter.com/sebmarkbage/status/822116812640792576
mailto:bmeurer@chromium.org
https://twitter.com/rikarends/status/782238933832830976

Array destructuring

Status: Investigating

Owner: bmeurer@chromium.org
Document: bit.ly/array-destructuring-for-multi-value-returns

This came up recently in light of React hook announcement.

Array and String iterators

Status: Done
Owner: bmeurer@chromium.org

Tracking bug: https://bugs.chromium.org/p/v8/issues/detail?7id=5388 (Array and String iterators)
Implementor(s): caitp@igalia.com

The design document outlines a plan for Array and String iterators. The implementation of String
iterators is mostly done (and optimized) already, thanks to Caitlin Potter. The initial version
(without escape analysis in TurboFan) already gave a 1.7x speedup for the string iteration (see
results here).

The Array iterators proposal was implemented by Caitlin Potter, and have huge speed-ups
coupled with TurboFan’s Escape Analysis

Collection iterators

Status: Done
Owner: bmeurer@chromium.org
Tracking bug: crbug.com/v8/6571 (Map and Set iterators)

The design document outlines a plan for both Map and Set iterators. The implementation follows
along the lines of the ideas used to boost the Array iterator implementation in the past. It's
mostly independent of the redesign of Maps and Sets.

for-of

Status: Done

Owner: bmeurer@chromium.org
Tracking bug: https://bugs.chromium.org/p/v8/issues/detail?id=3822 (overall for-of performance)

TurboFan can optimize for-of and inline @Riterator and next function calls; needs more
work on the escape analysis and maybe some love for the try-finally.

mailto:bmeurer@chromium.org
http://bit.ly/array-destructuring-for-multi-value-returns
mailto:bmeurer@chromium.org
https://bugs.chromium.org/p/v8/issues/detail?id=5388
mailto:caitp@igalia.com
https://docs.google.com/document/d/13z1fvRVpe_oEroplXEEX0a3WK94fhXorHjcOMsDmR-8
https://twitter.com/caitp88
https://docs.google.com/document/d/13z1fvRVpe_oEroplXEEX0a3WK94fhXorHjcOMsDmR-8#heading=h.9h9aqpl3okby
https://docs.google.com/document/d/13z1fvRVpe_oEroplXEEX0a3WK94fhXorHjcOMsDmR-8#heading=h.257vjo4kg61s
https://twitter.com/caitp88
mailto:bmeurer@chromium.org
https://bugs.chromium.org/p/v8/issues/detail?id=6571
https://docs.google.com/document/d/13z1fvRVpe_oEroplXEEX0a3WK94fhXorHjcOMsDmR-8
mailto:bmeurer@chromium.org
https://bugs.chromium.org/p/v8/issues/detail?id=3822

Eliminate the iterator/iterator result allocations

Status: In progress (part of the escape analysis work)

Owner: tebbi@chromium.org
Tracking bug: https://bugs.chromium.org/p/v8/issues/detail ?id=5448

TurboFan should be able to completely eliminate the allocations for both the iterator (less
important) and the iterator result objects (very important), when the calls to @eiterator and
next are being inlined into the function.

Generators

Status: In progress
Tracking bug: https://bugs.chromium.org/p/v8/issues/detail ?id=6351
Contact: adamk@chromium.org

Make generators optimizable

Status: Done

Owners: neis@chromium.org, bmeurer@chromium.org

Starting with V8 5.6 generators will go through Ignition+TurboFan only and thus will be fully
optimized by TurboFan. Once we have this running in the wild we might want to check the
performance again.

Optimize JSGeneratorObject creation.

Status: Done

Tracking bug: https://bugs.chromium.org/p/v8/issues/detail ?7id=6352
Contact: mvstanton@chromium.org

Currently the JSGeneratorObjects are always created via a «call to the
$CreateJSGeneratorObject runtime function, which is not really efficient.

Async/await

Status: Under investigation.

Tracking bug: https://bugs.chromium.org/p/v8/issues/detail ?2id=5639
Owners: jgruber@chromium.org, bmeurer@chromium.org

Design document: here (not a design document yet, collecting ideas for now)

mailto:tebbi@chromium.org
https://bugs.chromium.org/p/v8/issues/detail?id=5448
https://bugs.chromium.org/p/v8/issues/detail?id=6351
mailto:adamk@chromium.org
mailto:neis@chromium.org
mailto:bmeurer@chromium.org
https://bugs.chromium.org/p/v8/issues/detail?id=6352
mailto:mvstanton@chromium.org
https://bugs.chromium.org/p/v8/issues/detail?id=5639
mailto:jgruber@chromiun.org
mailto:bmeurer@chromium.org
https://docs.google.com/document/d/17pYKnsbEROiK6qsz_lB-Tf_iipS0VjfD8k_Nl1o3az0

Async functions are desugared to generators and thus will be optimized in V8 5.6 as well. There
may be a bunch of things we can do on top of the general generator mechanism in Ignition and
especially in TurboFan to squeeze better performance out of those (ping
bmeurer@chromium.org if you’re interested in investigating this). Some ideas:

e Create a version of PerformPromiseThen which does not involve allocating an unused
return value (see hitps:/github.com/tc39/ecma262/issues/694, although this could be
done without spec changes t00).

e Consider if there are cases where the promise machinery can be entirely omitted in favor
of just scheduling a microtask to get the right timing. These cases might not be
interesting in the real world though (e.g. await 1).

This is also closely related to the work on Promises (ping gsathya@chromium.org for details on
the Promise work).

In order to make sure we address the right issues, we need to come up with micro and macro
benchmarks.

Promises

Status: Done
Owner(s): gsathya@chromium.org, adamk@chromium.org
Tracking bug: https://bugs.chromium.org/p/v8/issues/detail ?id=5343

JavaScript implementation has had optimization work done on it in Q2 and Q3, driven by the
Bluebird benchmark. Much low-hanging fruit was identified, as were cases where we were
allocating more things than necessary. A rewrite using the CodeStubAssembler is now
complete.

RegExp

Status: Done
Owner(s): bmeurer@chromium.org, jgruber@chromium.org, yangguo@chromium.org
Tracking bug: https://bugs.chromium.org/p/v8/issues/detail?id=5339

The RegExp implementation is currently being rewritten to recover the performance loss that we
had to take to ship RegExp subclassing initially with the JavaScript builtin based
implementation. The new implementation should enable us to add more features w/o regressing
performance of older features, and even improve the performance of the existing features
(design document).

mailto:bmeurer@chromium.org
https://github.com/tc39/ecma262/issues/694
mailto:gsathya@chromium.org
mailto:gsathya@chromium.org
mailto:adamk@chromium.org
https://bugs.chromium.org/p/v8/issues/detail?id=5343
https://docs.google.com/document/d/1Ss1nYnZRlU4xO4H-pJz0XClZXD0nmhB2XmS3TQWbTkk/edit?ts=57c46edc
mailto:bmeurer@chromium.org
mailto:jgruber@chromium.org
mailto:yangguo@chromium.org
https://bugs.chromium.org/p/v8/issues/detail?id=5339
https://docs.google.com/document/d/1MuqFjsfaRPL2ZqzVoeMRqtcAmcJSwmHljTbRIctVVUk

Modules

Design document (needs updating to match implementation)
Tracking bug: https://bugs.chromium.org/p/v8/issues/detail ?id=1569

Variable access
Status: In progress

Owner(s): adamk@chromium.org, neis@chromium.org

Initial implementation uses runtime calls which do dictionary lookups for import/export variable
loads/stores. But storage of each variable is in an individual Cell, and the plan is to add IC code
to handle these loads/stores. More design necessary, will likely pull in verwaest, ishell, bmeurer.

Prescanning for module requests

Status: Available
Owner(s): adamk@chromium.org, neis@chromium.org

Current API requires modules to be fully parsed before embedder can determine which other
modules need to be fetched. Ideally we should be able to notify the embedder while parsing that
we've hit a module specifier, allowing preloading of resources in parallel with parsing (analogous
to how the HTML parser handles prescanning of URLs in HTML). This is is likely to happen only
after Blink fully implements <script type="module">.

Arrow functions

Status: Needs TurboFan investigation
Owner(s): bmeurer@chromium.org, mstarzinger@chromium.org
Design document: here (general TurboFan inlining)

Arrow functions are a neat way to create closures; all the optimizations that apply to normal
functions also apply to arrow functions. However for arrow functions the most common use case
is probably passing that to some other function, thus we should really make inlining based on
SharedFunctionInfo+LiteralsArray+NativeContext work, where we are currently
limited to inline only concrete closures. The same applies to other short-living closures in
general, i.e. also using function syntax.

https://docs.google.com/document/d/1VYhL9qCQTUiMQp-fsHIH9eGjINz68PEFFH2uV7B1KYw/edit
https://bugs.chromium.org/p/v8/issues/detail?id=1569
mailto:adamk@chromium.org
mailto:neis@chromium.org
mailto:adamk@chromium.org
mailto:neis@chromium.org
mailto:bmeurer@chromium.org
mailto:mstarzinger@chromium.org
https://docs.google.com/document/d/1l-oZOW3uU4kSAHccaMuUMl_RCwuQC526s0hcNVeAM1E

Short living closures are never optimized

Status: Done

Owner: leszeks@chromium.org
Tracking bug: https://bugs.chromium.org/p/v8/issues/detail ?id=5512

Short running closures that are called only once will not get optimized at all in V8, unless they
contain a loop into which we OSR. This is pretty bad for closure based programming and gets
worse with arrow functions as a neat syntax for that.

Spread operator

Status: In progress

Contact: bmeurer@chromium.org

The ... operator is currently desugared in the Parser, but not in a really efficient way. Investing
some time here might give us a pretty big boost in performance (we seem to be orders of
magnitude slower in most cases, compared to a very naive ES5 version). This is a main blocker
for adoption in the wild.

Spread calls

Status: In progress

Owner: petermarshall@chromium.org
Tracking bug: https://bugs.chromium.org/p/v8/issues/detail ?id=5511

There’s an investigation and a design document for spread calls.

Array spreads

Status: Needs investigation
Owner: petermarshall@chromium.org
Tracking bug: https://bugs.chromium.org/p/v8/issues/detail?id=5940

See the Design Document for more details.

Currently array spreads in the form [a,...b] desugar to an inline for-of using
$AppendElement to actually append the elements to the array. This is fairly inefficient and
cannot be optimized really. Ideally we'd use a KEYED STORE_IC for this, but there’s currently
no way to tell it not to lookup in the prototype chain. So either unify that, or introduce a custom
IC like we did for computed property names.

mailto:leszeks@chromium.org
https://bugs.chromium.org/p/v8/issues/detail?id=5512
mailto:bmeurer@chromium.org
mailto:petermarshall@chromium.org
https://bugs.chromium.org/p/v8/issues/detail?id=5511
https://docs.google.com/document/d/1DWPizOSKqHhSJ7bdEI0HIVnner84xToEKUYqgXm3g30
mailto:petermarshall@chromium.org
https://bugs.chromium.org/p/v8/issues/detail?id=5940
https://docs.google.com/document/d/1jdXwOT_eYUsALvZOOwQQ2gr5pG70thLA8gWy3K-aaZs/edit?usp=sharing

One option would be to introduce an APPEND ELEMENT IC that deals with exactly this case,
which is fairly simple as it only deals with JSArray and only appends.

Let and const

Status: Needs investigation
Owner: adamk@chromium.org
Tracking bug: https://bugs.chromium.org/p/v8/issues/detail ?7id=5460

Currently 1et and const mostly trigger TurboFan, which still seems to be perceived as slower
than Crankshaft in many cases. In addition to that there may be some TDZ checks that we don’t
properly eliminate in TurboFan (or Ignition), so there are probably a couple of low hanging fruits
to pick. Additionally, for loops with let or const bindings generate a large amount of AST and
extra scopes; there might be wins by teaching the backends how to handle this instead.
caitp@chromium.org is investigating this on the frontend side: If a loop variable does not escape
from the loop body via capture or eval, and evaluation of the loop body is not suspended by
yield or await, then it's safe to avoid context allocating these loop variables (and should also be
safe to avoid the strange desugaring).

Well known symbols

@@haslinstance

Status: Done
Owner: bmeurer@chromium.org
Tracking bug: https://bugs.chromium.org/p/v8/issues/detail ?7id=5640

Currently as soon as anyone installs an @@hasInstance property anywhere, we disable
basically all optimizations for the instanceof operator. That's far more aggressive than it has
to be. For example, we could utilize the GetPropertyStub to speed up the baseline case of
instanceof even when @e@hasInstance properties are present. Likewise we could inline calls
to @@hasInstance for JSInstanceOf during JSNativeContextSpecialization in
TurboFan and recognize the special Function.prototype[@R@hasInstance] builtin in the
JSBuiltinReducer. This way we don’t have this terrible performance cliff with
@@hasInstance.

Proxies

Status: Assigned

mailto:adamk@chromium.org
https://bugs.chromium.org/p/v8/issues/detail?id=5460
https://github.com/nodejs/node/pull/8906#issuecomment-251126670
mailto:caitp@chromium.org
mailto:bmeurer@chromium.org
https://bugs.chromium.org/p/v8/issues/detail?id=5640

Owners: bmeurer@chromium.org, franzih@chromium.org
Tracking bug: https://bugs.chromium.org/p/v8/issues/detail ?id=6557

In general the performance of proxies is perceived as pretty bad in the wild. We could do a lot
by at least not leaving JavaScript land for every proxy operation, i.e. utilizing the newly
introduced GetPropertyStub more often.

[[Call]] and [[Construct]]

Status: Done

Owners: bmeurer@chromium.org, franzhi@chromium.org
Tracking bug: https://bugs.chromium.org/p/v8/issues/detail ?7id=6558

The Call and Construct builtins always go to C++ whenever they hit a JSProxy instance. We
could easily optimize this utilizing the new GetPropertyStub and handle proxies in
JavaScript land, which removes the cost of calling back to JavaScript land from C++. This could
easily be a factor of 2-3 improvement alone.

[[Get]]

Status: Done
Owners: bmeurer@chromium.org, franzih@chromium.org
Tracking bug: https://bugs.chromium.org/p/v8/issues/detail?id=6559

Currently property access via JSProxy objects is handled through C++ runtime functions, which
is pretty slow, especially if there's a "get" trap on the handler. With the GetPropertyStub and the
CodeStubAssembler technology it should be fairly straight-forward to implement support for
[[Get]] on proxy instances w/o going through the C++ runtime (always).

[[Set]]

Status: Done
Owners: bmeurer@chromium.org, franzih@chromium.org
Tracking bug: https://bugs.chromium.org/p/v8/issues/detail ?7id=6560

Same as for [[Get]] above.

Object builtins

Status: Available
Contact: bmeurer@chromium.org
Tracking bug: https://bugs.chromium.org/p/v8/issues/detail?id=5989

mailto:bmeurer@chromium.org
mailto:franzih@chromium.org
https://bugs.chromium.org/p/v8/issues/detail?id=6557
mailto:bmeurer@chromium.org
mailto:franzhi@chromium.org
https://bugs.chromium.org/p/v8/issues/detail?id=6558
mailto:bmeurer@chromium.org
mailto:franzih@chromium.org
https://bugs.chromium.org/p/v8/issues/detail?id=6559
mailto:bmeurer@chromium.org
mailto:franzih@chromium.org
https://bugs.chromium.org/p/v8/issues/detail?id=6560
mailto:bmeurer@chromium.org
https://bugs.chromium.org/p/v8/issues/detail?id=5989

The ES2015 and later language revisions added various important builtins on the Object
constructor, some of them like Object.assign, Object.create, Or Object.keys are
used quite heavily in certain use cases. We should do a proper analysis and add missing
optimizations of the baseline and even some fast-paths where appropriate.

Object.create
Status: Done

Owner(s): bmeurer@chromium.org, cbruni@chromium.org

The baseline implementation is now in the CodeStubAssembler, and there’s even support for
inlining Object.create (null) directly into TurboFan code.

Object.assign

Status: Available
Contact: verwaest@chromium.org
Tracking bug: https://bugs.chromium.org/p/v8/issues/detail?id=5988

The Object.assign builtin is very popular in React/Redux applications, where spread
properties are commonly used for state management. Babel translates them to
Object.assign calls. Some fast-path for Object.assign ({}, a) would thus help a lot.

Object.keys

Status: Available
Contact: bmeurer@chromium.org
Tracking bug: https://bugs.chromium.org/p/v8/issues/detail ?id=6805

The Object.keys built-in already includes a proper fast-path in the CodeStubAssembler,
but that fast-path still copies the enum cache keys to a new FixedArray and allocates a
JSArray. It might be possible to make the enum cache keys copy-on-write thus avoiding the
copying, and avoid the allocation of the JSArray by inlining it into TurboFan and letting the
escape analysis deal with it.

Object.values and Object.entries

Status: Available

Contact: bmeurer@chromium.org
Tracking bug: https://bugs.chromium.org/p/v8/issues/detail ?id=6804

mailto:bmeurer@chromium.org
mailto:cbruni@chromium.org
mailto:verwaest@chromium.org
https://bugs.chromium.org/p/v8/issues/detail?id=5988
https://tc39.github.io/ecma262/#sec-object.assign
mailto:bmeurer@chromium.org
https://bugs.chromium.org/p/v8/issues/detail?id=6805
https://tc39.github.io/ecma262/#sec-object.keys
mailto:bmeurer@chromium.org
https://bugs.chromium.org/p/v8/issues/detail?id=6804

Both the Object.values and Object.entries built-ins seems to be unnecessarily slow,
which might be due to the fact that they are currently implemented in C++, even the fast-path.
Maybe porting at least the fast-path to CSA could reduce the 14x / 2x slowdown shown in the
micro-benchmark in the tracking bug.

Reflect builtins

Status: Available
Contact: bmeurer@chromium.org
Tracking bug: http://crbug.com/v8/5996

With ES2015 we got a whole set of new builtins on the Reflect object. Some of these like
Reflect.apply and Reflect.construct already have a fast baseline implementation,
and just lack some dedicated fast-paths (i.e. for arguments / rest parameters). Others like
Reflect.set or Reflect.has probably need some investigation for the baseline
implementation first.

Reflect.apply and Reflect.construct

Status: Done

Owner: bmeurer@chromium.org
Tracking bug: http://crbug.com/v8/5995

We have fast-paths for Function.prototyvpe.apply with arguments / rest parameters, and
the same fast-paths should be implemented for Reflect.applyv and Reflect.construct.
See the relevant part of the design document for details.

Array builtins

Status: Started
Contact: danno@chromium.org, mvstanton@chromium.org
Tracking bug: https://bugs.chromium.org/p/v8/issues/detail ?id=1956

See the design document for details.

The performance of various Array builtins like forEach, map and filter is way worse than the
performance of a naive ES3 version, |.e. a simple for loop.

Array.from

Status: Investigating

Owner: danno@chromium.org

https://tc39.github.io/ecma262/#sec-object.values
https://tc39.github.io/ecma262/#sec-object.entries
mailto:bmeurer@chromium.org
http://crbug.com/v8/5996
mailto:bmeurer@chromium.org
http://crbug.com/v8/5995
https://tc39.github.io/ecma262/#sec-function.prototype.apply
https://tc39.github.io/ecma262/#sec-reflect.apply
https://tc39.github.io/ecma262/#sec-reflect.construct
https://docs.google.com/document/d/1DvDx3Xursn1ViV5k4rT4KB8HBfBb2GdUy3wzNfJWcKM/edit#heading=h.xh0pxk5cwpj9
mailto:danno@chromium.org
mailto:mvstanton@chromium.org
https://bugs.chromium.org/p/v8/issues/detail?id=1956
https://docs.google.com/document/d/1cwAfNUaU7qq8LKyNXQJhWDeFo5UhHfQ6dENd6sFNfAM
mailto:danno@chromium.org

Tracing bug: https://bugs.chromium.org/p/v8/issues/detail?id=6597

See https://twitter.com/robpalmer2/status/885830194799534081 for the context. The idea is to
port the Array.from builtin to the CodeStubAssembler and make sure that
Array.from(a) is roughly on-par with a.slice () performance-wise.

Inlining higher-order Array builtins

Status: Available

Contact: danno@chromium.org mvstanton@chromium.org
Tracking bug: https://bugs.chromium.org/p/v8/issues/detail ?id=2229

See the design document for details.

In order to really achieve peak performance with the forEach, filter, map, etc. builtins,
compared to simple for loops, we will need to inline them into TurboFan optimized code. With
[+TF launching in M59, this will finally allow us to reach parity.

TypedArrays

Status: Investigating

Owner: bmeurer@chromium.org
Tracking bug: https://bugs.chromium.org/p/v8/issues/detail ?id=5929

TypedArrays and ArrayBuffers are not well optimized yet. For example we still don’t inline
TypedArray constructor with (compile time) known arguments. Also the baseline case for the
constructors and many utility methods is usually easily pollutable with type feedback because
we share the same implementation with all TypedaArrays and the regular JavaScript arrays
and array-like objects. Having dedicated TurboFan builtins here, and thinking about inlinable
fast paths would probably help a lot.

The TypedArray subclass constructors

Status: Started

Owner: petermarshall@chromium.org
Bug: https://bugs.chromium.org/p/v8/issues/detail?id=5977

The various typed array constructors are currently written in a weird mix of JavaScript,
Crankshaft intrinsics and C++ runtime functions. This is security nightmare and not really
efficient either. All of those should be ported to CSA (maybe with some parts just written in C++
completely).

https://bugs.chromium.org/p/v8/issues/detail?id=6597
https://twitter.com/robpalmer2/status/885830194799534081
mailto:danno@chromium.org
mailto:mvstanton@chromium.org
https://bugs.chromium.org/p/v8/issues/detail?id=2229
https://docs.google.com/document/d/1rvLINa8IX3MhubFxdUKYie4ZeEoDF63NkI278XCeHKE
mailto:bmeurer@chromium.org
https://bugs.chromium.org/p/v8/issues/detail?id=5929
mailto:petermarshall@chromium.org
https://bugs.chromium.org/p/v8/issues/detail?id=5977

We are starting with porting %TypedArraylnitialize.

Super slow copyWithin builtins

Status: Started

Owner: caitp@chromium.org
Bug: https://bugs.chromium.org/p/v8/issues/detail?id=5925

TypedArray.prototype.copyWithin shares the generic code with
Array.prototype.copyWithin and is thus unnecessarily slow. It should be rewritten as
C++ builtin and just call memmove under the hood. That should make it easily 1000-2000x

faster. Ported to C++ in https://codereview.chromium.org/2671233002.

TypedArray.prototype.set builtin is slow

Status: Started
Owner: franzih@chromium.org

Bug: https://bugs.chromium.org/p/v8/issues/detail ?id=5925 (design document)

Similarly, TypedArray.prototype.set is also unnecessarily slow, and could benefit from
using memmove for the most common cases, see comments on this bug report.

ArrayBuffer.isView is slow

Status: Done
Owner: bmeurer@chromium.org
Bug: https://bugs.chromium.org/p/v8/issues/detail?id=6868

The ArrayBuffer.isView builtin is used by Node.js core to detect TypedArrays and
DataViews as mentioned in nodejs/node#15663.

TypedArray.prototype[@@toStringTag] is slow

Status: Done

Owner: bmeurer@chromium.org
Bug: https://bugs.chromium.org/p/v8/issues/detail?id=6874

The TypedArrayv.prototyvpe[Symbol.toStringTag] getter is currently the best (and as
far as | can tell only definitely side-effect free) way to check whether an arbitrary object is a
TypedArray (either generally TypedArray or a specific one like Uint8Array). Using the
getter is thus emerging as the general pattern to detect TypedArrays, even Node.js now

adapted it starting with nodejs/node#15663, for the isTypedArray and isUint8Array type
checks.

mailto:caitp@chromium.org
https://bugs.chromium.org/p/v8/issues/detail?id=5925
https://codereview.chromium.org/2671233002
mailto:franzih@chromium.org
https://bugs.chromium.org/p/v8/issues/detail?id=5925
https://docs.google.com/document/d/1jRwYzAKn0m0_OX35SSmnZEJq8ZjDKE4je_vb9mviUt8
https://bugs.chromium.org/p/v8/issues/detail?id=5925#c12
mailto:bmeurer@chromium.org
https://bugs.chromium.org/p/v8/issues/detail?id=6868
https://github.com/nodejs/node/pull/15663#issuecomment-333063048
mailto:bmeurer@chromium.org
https://bugs.chromium.org/p/v8/issues/detail?id=6874
https://tc39.github.io/ecma262/#sec-get-%typedarray%.prototype-@@tostringtag
https://github.com/nodejs/node/pull/15663
https://github.com/nodejs/node/blob/f547db131f527528d60c8bcc60cb43462937a794/lib/internal/util/types.js#L24-L26
https://github.com/nodejs/node/blob/f547db131f527528d60c8bcc60cb43462937a794/lib/internal/util/types.js#L28-L30

Destructuring and default parameters

Status: Done
Owner: franzih@chromium.org

Destructuring is more or less completely handled within the Parser and can lead to arbitrary
large ASTs, which can cause a serious performance hit in some cases, for example a simple
one line destructuring can render a (short) function completely un-inlinable. We need to
investigate how to reduce the overhead and how we can optimize common destructuring
patterns in TurboFan.

Also there’s some feedback that destructuring causes deopts. This is caused by the try-catch
statement that we must add, which causes Crankshaft to bailout from compilation. Not a
problem anymore with TurboFan.

Looking at more specific benchmarks, see htips://fhinkel.github.io/six-speed, destructuring is
only slow for array patterns, and will improve as for-of performances improves.

Rest parameters

Status: Done
Owner: bmeurer@chromium.org, tebbi@chromium.org, petermarshall@chromium.org
Design document: here (also covering arguments object).

We could look into escape analyzing rest parameters in a bunch of easy cases, i.e. when all
uses either access the length or the elements. This might be related to optimizations for the
(strict) arguments object.

Tagged Template Literals

Status: Needs investigation
Contact: bmeurer@chromium.org

Currently, tagged template literals are not handled very efficiently, yet they are very useful in
practice. Fully optimizing them to compile away almost all the overhead is probably very difficult,
but we there seem to be a couple of low hanging fruits to significantly reduce the overhead.
Needs careful investigation.

https://twitter.com/nmarsup/status/783187496637267968
https://fhinkel.github.io/six-speed/
mailto:bmeurer@chromium.org
mailto:tebbi@chromium.org
mailto:petermarshall@chromium.org
https://docs.google.com/document/d/1DvDx3Xursn1ViV5k4rT4KB8HBfBb2GdUy3wzNfJWcKM
mailto:bmeurer@chromium.org
https://tc39.github.io/ecma262/#sec-tagged-templates
https://twitter.com/trueadm/status/783714847934582784
https://twitter.com/trueadm/status/783714847934582784

Computed property names

Status: Done

Owner: franzih@chromium.org

Design document: here

Tracking bug: https://bugs.chromium.org/p/v8/issues/detail ?id=5622

Currently computed property names in object literals are way slower than adding the property
with a dedicated keyed store (which is not semantically equivalent, but the naive way to do it
with ES5).

Object rest/spread properties

Status: Available
Contact: bmeurer@chromium.org
Tracking bug: https://bugs.chromium.org/p/v8/issues/detail ?id=5789

Additional action items

The Six speed table provides some interesting test cases for performance (rather outdated
data), which compares ES6 performance to the performance of the ES5 counterpart.

mailto:franzih@chromium.org
https://docs.google.com/document/d/1eH1R6_C3lRrLtXKw0jNqAsqJ3cBecrqqvfRzLpfq7VE
https://bugs.chromium.org/p/v8/issues/detail?id=5622
mailto:bmeurer@chromium.org
https://kpdecker.github.io/six-speed/

	ES2015 and beyond performance plan
	Classes
	Class literals
	Subclassing
	Optimizing derived leaf constructors
	Super property access
	Reduce megamorphicity for super class methods
	Default derived class constructor (super with spread)

	Collections
	Maps & Sets
	{Map,Set}.prototype.forEach

	Iterators
	Array destructuring
	Array and String iterators
	Collection iterators
	for-of
	Eliminate the iterator/iterator result allocations

	Generators
	Make generators optimizable
	Optimize JSGeneratorObject creation.

	Async/await
	Promises
	RegExp
	Modules
	Variable access
	Prescanning for module requests

	Arrow functions
	Short living closures are never optimized

	Spread operator
	Spread calls
	Array spreads

	Let and const
	Well known symbols
	@@hasInstance

	Proxies
	[[Call]] and [[Construct]]
	[[Get]]
	[[Set]]

	Object builtins
	Object.create
	Object.assign
	Object.keys
	Object.values and Object.entries

	Reflect builtins
	Reflect.apply and Reflect.construct

	Array builtins
	Array.from
	Inlining higher-order Array builtins

	TypedArrays
	The TypedArray subclass constructors
	Super slow copyWithin builtins
	TypedArray.prototype.set builtin is slow
	ArrayBuffer.isView is slow
	TypedArray.prototype[@@toStringTag] is slow

	Destructuring and default parameters
	Rest parameters
	Tagged Template Literals
	Computed property names
	Object rest/spread properties
	Additional action items

