2 éme Bac (PC)

النشاط الإشعاعي

Www.AdrarPhysic.Com

التمرين 1

عرف المفاهيم التالية:

النويدة - النظائر - نشاط عينة مشعة - النشاط الإشعاعي - فصيلة مشعة - عمر النصف.

التمرين 2

 $\frac{234}{92}U$ وعط تركيب النويدتين التاليتين $\frac{238}{92}U$ و النويدتين التاليتين (1

2) ماذا تمثل هاتان النويدتان ؟

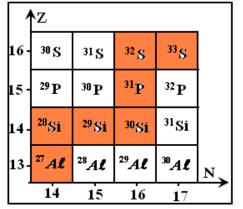
التمرين 4 _______ التفتتات التالية مع تحديد رموز النويدات المتولدة مستعينا بالجدول أسفله .______

 $^{238}_{-92}U$ التفتت $oldsymbol{lpha}$ للأورانيوم 238

$$^{14}_{7}N^{*}$$
 فقدان الإثارة للأزوت /4

 $^{19}_{10}Ne$ التقتت $oldsymbol{eta}^+$ التقتت $oldsymbol{eta}^+$

____ التمرين 5 ____


يحتوي الفوسفور الطبيعي على النظير P المستقر بالمقابل النظير المحصل عليه اصطناعيا إشعاعي النشاط وينتج عن تفتته نواة الكبريت مع انبعاث إلكترون .

ا باعتمادك على المخطط جانيه والممثل لجزء من مخطط سيغري
$$(N,Z)$$
 إعط مخطط سيغري P إعط مخطط وتركيب نواة الفوسفور .

(3) الفوسفور 30 هو أيضاً إشعاعي النشاط .
 (3) هل يمكن التنبؤ بنوع النشاط الإشعاعي للفوسفور 30 ؟

$$^{32}P$$
 النفتتين الحاصلين للنظيرين (N,Z) مثل على المخطط (2.3

 $m{p}$ و أكتب معادلة تفتت الفوسفور $m{q}$.

التمرين 6

 $t_{1/2} = 8,1 jours$ عمر النصف لليود $I^{131}I$ المستعمل في الطب هو

1) أحسب ثابتة النشاط الإشعاعي λ لليود 131 .

$$m=6g$$
 حسب عدد النوى الموجود في عينة من اليود 131 كتلتها 3 0) أحسب النشاط الإشعاعي لهذه العينة .

 $N_A = 6.02.10^{23} \, mo\,

end{4}^{-1}$ نعطى : الكتلة المولية للبود 131 : $M\left(I\right) = 131g\,.m\, o\,

end{4}^{-1}$: نعطى : الكتلة المولية للبود 131

تتفتت نواة الراديوم ²²⁶ Ra التعطي نواة الرادون ²²⁶ Rn

1) أكتب معادلة هذا التفتت محددا نوع النشاط الاشعاعي لنواة الراديوم.

- $t_{1/2} = 1620$ ans عمر النصف لنواة الراديوم 226 هو (2
- مرف عمر النصف وأوجد تعبيره بدلالة λ ثابتة النشاط الاشعاعي.
 - λ استنثج قيمة الثابته λ
- $m_0 = 0.1g$ نتوفر عند اللحظة t = 0 على عينة من الراديوم 226 كتلتها (3
 - . المدة الزمنية اللازمة لتقتت 15% من هذه العينة (1.3) أحسب t_1 المدة الزمنية اللازمة لتقتت
 - . t=0 الموجود في العينة عند اللحظة N_0 الموجود في العينة عند اللحظة
- . t_1 أحسب النشاط الإشعاعي a_0 لهذه العينة عند اللحظة t=0 ثم أحسب النشاط الإشعاعي عند اللحظة t_1
 - ا عدد النوى المتبقية عند اللحظة t_1

 $N_{_A} = 6,02.10^{23} \, mo\,
m
m e^{-1}$ نعطي : ثابتة أفوكادرو

التمرين 8 _

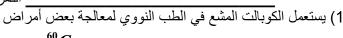
يستعمل اليود 131 ، وهو إشعاعي النشاط $m{\beta}^-$ ، في الميدان الطبي للحصول على صورة إشعاعية لعضو من جسم الإنسان . حيث تُضخ جرعة من اليود الإشعاعي في جسم الإنسان ويعين موضع ذرات اليود (في الغدة الدرقية مثلاً) بقياس تدفق الإشعاعات المنبعثة .

يعطى المخطط جانبه تغيرات Ln(a) بدلالة الزمن حيث a هي النشاط الإشعاعي للعينة المضخة في الجسم عند اللحظة

$$M\left(I\right)=131g.mo
ho^{-1}$$
 : 131 ليود 131 الكتلة المولية لليود

$$N_{_A} = 6,02.10^{23} mo\,
lap{8}^{-1}$$
 : ثابتة أفوكادرو

 $|_{51}Sb|_{52}Te|_{53}I|_{54}Xe|$. Let $|_{53}I|_{54}Xe|_{5$


1) أعط رمز نويدة اليود 131 وتركيب النواة التي تمثلها .

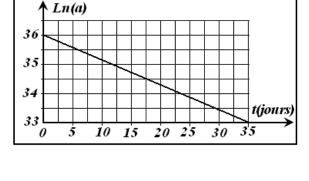
- 2) ما هي الدقيقة المنبعثة خلال تفتت نويدة اليود 131 ؟ أكتب معادلة التفتت النووي لنويدة اليود 131 وتعرف على النويدة المتولدة .
 - t=0 العينة عند اللحظة a_0 العينة عند اللحظة (3

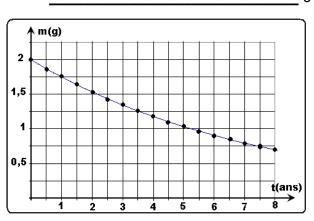
اعتماد المخطط السابق ، أوجد التعبير العددي للدالة Ln(a) = f(t) ثم عين قيمة ثابتة النشاط الإشعاعي λ لليود 131 (4

- استنتج قيمة عمر النصف $t_{1/2}$
- 6) عين قيمة **m** كتلة عينة اليود المُضخة في جسم الإنسان

التمرين 9

السرطان . يفسر النشاط الإشعاعي لنويدة الكوبالت ^{60}Co نتحول السرطان .


تلقائي لنوترون ${}^{1}n$ إلى بروتون ${}^{1}p$. ثلقائي لنوترون معللا جوابك، نوع النشاط الإشعاعي لنويدة الكوبالت (2.1) معادلة هذا التقتت وتعرف على النويدة المتولدة من


بين النويدتين التاليتين Fe : بين النويدتين التاليتين

2) بين أن قانون التناقص الإشعاعي يمكن أن يكتب على الشكل:

الكتلة المتبقية من عينة من الكوبالت عند $m=m_0e^{-\lambda.t}$

t=0 كتلة العينة عند أصل التواريخ مt=0

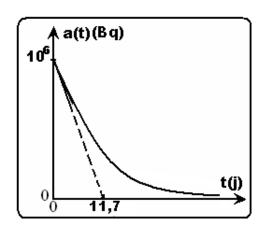
 $m = \frac{m_0}{2^n}$ عرف عمر النصف $t_{1/2}$ وبين أنه في لحظة $t_{1/2}$ ، يصبح تعبير قانون التناقص الإشعاعي هو : (3) عرف عمر النصف $t_{1/2}$ وبين أنه في لحظة $t_{1/2}$. يصبح تعبير قانون التناقص الإشعاعي هو : (4)

4) يمثل الشكل المقابل، منحنى تغيرات m كتلة الكوبالت المتبقية في العينة بدلالة الزمن.

 $t_1 = 10,5$ ans عين مبيانيا $t_{1/2}$ ، عمر النصف للكوبالت ، ثم استنتج ألكتابة الكتلة المتبقية من الكوبالت عند اللحظة (1.4)

 $m=rac{m_0}{e}$: عند لحظة تاريخها au= au بين أنه عند لحظة تاريخها t= au بحيث t= au بحيث بحيث المحافة المحافة عند لحظة t= au بحيث t= au

. t= au عند اللحظة t=0 يقطع محور الزمن عند النقطة m=f(t) يين أن المماس للمنحنى


و جد تعبير a_0 نشاط الكوبالت عند اللحظة t=0 بدلالة au و m_0 عدد أفوكادرو والعدد الكتلى A للكوبالت t=0

 $N_{\perp}=6.02 imes10^{23}\,mo
ho^{-1}$ استنتج قدمة النشاط الاشعاعي a للكه بالتي عند الله عالي عند الله الما عند الما الما عند الما الما عند الما ع

. A '	توبالك عند اللحظة ٢٠٠٠ . (تعظي	5.4) استنتج فيمة النساط الإسعاعي الما
2 éme Bac		
(PC)	النشاط الإشعاعي	Www.AdrarPhysic.Com

_ التمرين 1 _

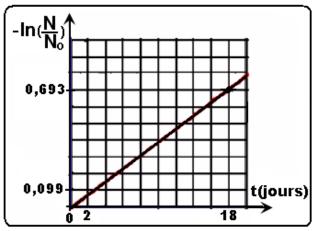
. يمثل المنحنى التالي تغيرات النشاط الإشعاعي $m{a}$ لعينة من اليود 131 بدلالة الزمن $m{\beta}^-$ اليود 131 بدلالة الزمن

معادلة التحول النووي لليود مستعينا بالجدول التالي : $5_3 \overline{I}_{53} \overline{I}_{54} \overline{Xe}_{53}$ عرف نشاط عينة مشعة وحدد وحدته في النظام العالمي للوحدات .

- 3) حدد مبيانيا ثابتة الزمن au واستنتج كلا من λ ثابتة النشاط الإشعاعي و $t_{1/2}$ عمر النصف .
- 4)أوجد a_0 قيمة النشاط الإشعاعي للعينة عند أصل التواريخ واستنتج a_0 عدد نوى اليود الأصلية .
 - au و t و t و a_0 کتب تعبیر کل من a(t) و a(t) و اکتب تعبیر کل من (5
 - الستنتج. t = 1an عند اللحظة N و a الستنتج. (6

التمرين 2 _

التوريوم 727 نظير مشع لعنصر التوريوم ، خلال تفتتها تبعث دقائق ألفا . التوريوم 90 كتب معادلة تفتت هذه النواة ثم تعرف على النواة المتولدة من خلال الجدول التالي :


 $_{85}$ At $|_{86}$ Rn $|_{87}$ Fr $|_{88}$ Ra $|_{89}$ Ac

 $m_0=1\mu g$ الموجود في عينة من التوريوم كتلتها N_0 الموجود في التوريوم كتلتها (2

 $m_P = m_n = 1,67 \times 10^{-27} \, \text{Kg}$

نتوفر في البداية على عينة تحتوي على N_0 نويدة مشعة من التوريوم وعند اللحظة t يصبح عدد النويدات هو N . يمثل المبيان t

$$-\ln\left(rac{N}{N_0}
ight) = f(t)$$
 التالي تغير ات الدالة :

- 1.3) أكتب قانون التناقص الإشعاعي .2.3) إعط تعريف عمر النصف لنواة مشعة ثم بين أنه

 $t_{1/2} = \frac{\ln 2}{\lambda}$ ير تبط بثابتة النشاط الإشعاعي λ بالعلاقة : 3.3) اعتمادا على المدان (3.3)

3.3) اعتمادا على المبيان ، حدد ثابتة النشاط الإشعاعي ثم عمر النصف.

تدخل علماء الأثار الذين أكدوا أن الرجلين عاشا بأوروبا خلال الفترة الممتدة ما بين 60000- سنة و 30000- سنة . طرحت عدة أسئلة على الباحثين ، خصوصا أن الرجلين من صنفين مختلفين . هل عاشا في نفس الفترة ؟ هل قتل أحدهما الآخر ؟ هل يتعلق الأمر بجريمة قتل خصوصا وأن جمجمة أندير (الرجل1) تحمل آثارا للضرب تؤكد ذلك للإجابة على هذه التساؤلات استعمل الباحثون طريقة التأريخ بالكربون 14.

دراسة الكربون 14

في الطبيعة ، يوجد الكربون على شكل نظيرين ${}^{12}C_{6}$ في الغلاف الجوي العلوي ،يصطدم النوترون الناتج عن الأشعة الكونية بنواة الأزوت 14 $m{\beta}^-$ التي تتحول إلى نواة الكربون14 $m{\epsilon}^{(14}C$ ،هذا الكربون إشعاعي النشاط مع انبعاث دقيقة أخرى . 14 اكتب معادلة التحول النووي الموافقة لتكون الكربون 14 في المغلاف الجوي . تعرف على الدقيقة المنبعثة منه معللا جوابك .

- 2.1) أكتب معادلة التفتت $oldsymbol{eta}^-$ للكربون 14 . (3.1) عمر النصف للكربون 14 هو 5570 سنة . عرف عمر النصف .
- يسمى N_0 عدد النوى المشعة التي تتواجد عند اللحظة t=0 والتي نعتبرها أصلا للتورايخ . λ
- أ) أوجد تعبير عدد النوى N للكربون المتبقي بدلالة N_0 في اللحظات : N_0 في اللحظات N_0 للكربون المتبقى المتبقى أ
 - N_0 \longrightarrow 10cm مثل مبیانیا تغیرات N بدلالة الزمن باستعمال السلم $t_{1/2}$ \longrightarrow 2cm با مثل مبیانیا تغیرات N بدلالة الزمن باستعمال السلم $t_{1/2}$

اً عيد الناقص الإشعاعي الموافق للمبيان السابق ثم أوجد العلاقة بين عمر النصف $t_{1/2}$ والثابتة الإشعاعية λ أحسب قيمة (5.1) العددية

2) التأريخ بالكربون 14

$$\frac{N\binom{14}{6}C}{N\binom{12}{6}C} = Cste$$

ما دامت المادة حية فإن التبادلات الغازية المرتبطة بالكائن الحي (حيوان أو نبات) تجعل أن النسبة الكائن الحي ، تنتهي التبادلات ، الشيء الذي يقود إلى تناقص النسبة السابقة .

- N(t) عرف النشاط الإشعاعي a(t) ثم إعط تعبيره بدلالة الثابتة الإشعاعية λ وعدد النوى (1.2)
 - 2.2) أثبت المعادلة التفاضلية التي تعطي عدد النوى N(t) بدلالة الزمن . 3.2) تحقق من كون علاقة التناقص الإشعاعي هي حل للمعادلة التفاضلية .

طبيعة العينة المختارة	N $/N_{ m 0}$ انسبة
عظام جمجمة أندير (الرجل1)	1,64.10 ⁻²
عظام جمجمة سبياند (الرجل2)	1,87.10 ⁻²

4.2) أعطى تحليل عظام الجمجمتين النتائج التالية:

أ) انطلاقا من نتائج التحليل ، حدد عمر عظام جمجمة الرجل1 .
 ب) هل تتطابق هذه النتيجة مع الأخبار المقدمة من طرف العلماء ؟
 ج) باستعمال النتيجة الثانية ، هل يمكن الجزم بأن الرجل2 اغتال الرجل1 ؟

Www.AdrarPhysic.Com