3.6 Summary of Derivatives for Polynomial Functions

With these rules you can find the derivative of any polynomial function without limits, often in a single step.

Constant Rule -
$$f(x) = k \longrightarrow f'(x) =$$

Ex: $f(x) = 4 \Rightarrow f'(x) =$

Power Rule -
$$f(x) = x^n \longrightarrow f'(x) =$$

Ex: $f(x) = x^5 \Leftrightarrow f'(x) =$

Constant Multiple Rule -
$$f(x) = kg(x) \longrightarrow f'(x) =$$

Ex: $f(x) = 3x^{10} \Rightarrow f'(x) =$

Sum/Difference Rule -
$$f(x) = g(x) \pm h(x) \longrightarrow f'(x) =$$

Ex: $f(x) = x^3 + 4x^2 \Rightarrow f'(x) =$

Ex 1 Find $f'(x)$

(a)
$$f(x) = x^3 + x^2 + x + 1$$
 (b) $f(x) = 3x^2 + 5x$ (c) $f(x) = \sqrt{x} + \frac{1}{x}$ hint: $f(x) = x^{\frac{1}{2}} + x^{-1}$

Ex 2 Find the equation of the tangent to $f(x) = x^3 - 3x^2 - 2x + 5$ at the point (0,5).