WebAPIs and Viewports

bokan@chromium.org

Introduction

There are several APls in the web platform that refer to or return coordinates relative to the
“viewport”. Until recently, this was unambiguous and well-defined. With the “virtual viewport”
introduced in some browsers (IE, Chrome) due primarily to mobile pinch-zoom, there is no
longer one viewport - there’s now a “visual” as well as a “layout” viewport. See my demo page
for a visual demonstration of how these work.

Unfortunately, this means that APls referring to “viewport” are now somewhat ambiguous. Which
viewport should they refer to? For the most part, Chrome attempted to match IE/Edge, where
most of the scrolling and dimension APls are relative to the visual viewport while “client”
coordinates are considered relative to layout.

For example, window.scrollX will return the horizontal distance from the left edge of the visual
viewport to the left edge of the document. This means that on a non-scrollable page, if the user
zooms in and scrolls right, scrollX will be positive:

mailto:bokan@chromium.org
http://bokand.github.io/viewport/index.html

= aan
Page Scale
Browser
Implementation
* Chrome
Edge
T et
- — SE— Firefox
e FAA Deciafos Super Bovd, Ut conpme s ot 5, 20 Lo .
MK AN Deors fone | Sl.ltill 1

Forbes

Visual Viewport

Layout Viewport

Maost Pppular

Hign Lp For Jodar's Top Storss

HL im0 Speealing. S Furents Wl
7 bkt b

. =
=1 RTLEECUTRIRE T L BB B PR

Wt ™y T T e L]

s .
Wesich The dinn Saper Dol Comamitricls Aed Vite Far e el b, Y B
Wi anny = e

=l T P pudmane } laraidom
- e —
Wbl w1 Rl T R e B

However, MouseEvent.clientX will return the horizontal distance between the left edge of the
layout viewport and the mouse event location:

L TR LI 1 - = man

Page Scale

Browser
Implementation
* Chrome
Edge
R . = Firefox
XLIXA ‘No Deote i B e e Safari
yorbes. e B .
q (event.clientX, event.clientY
Visual Viewport
— . Layout Viewport

ickl
Most Phpular X Click!

Hign Lp For Jodar's Top Storss

i Dl --‘I‘nli:r.nl Laiwakis Drasiibe
Wleas e i HL im0 Speealing. S Furents Wl

Mirn't vars Qabe? dbankst o

Thisw Ta Sl Xiil® wamail Wity N W ariaa’s Mo 5
Ouraa 1hlk Gate vl Tarces

Wesich The dinn Saper Dol Comamitricls Aed Vite Far
Wi T R

-l
W hat ' T Kbl T ng K This dreowi oo T Me?

I’'m not sure how intentional this choice of mixing viewports for APls was. It’s turned out to be a
problem as many web developers will assume that the APlIs refer to the same viewport
(particularly on desktop pages which are rarely tested on mobile devices and don’t zoom - the
two viewports are essentially equivalent). For example, many pages make assumptions like:
window.scrollY + Element.getBoundingClientRect.y == verticalOffsetinDocument which is no

longer true. This has led to a long tail of bugs.

“Inert Visual Viewport”

Chrome tried to solve this discrepancy by making all APlIs relative to the layout viewport. In
effect, this made pinch-zoom invisible to web pages. As far as the page knew, the user was
always looking at the page fully zoomed-out.

http://crbug.com/489206

This has the advantage that the page never changes due to pinch-zoom and it becomes a
browser-side user feature rather than part of the web platform. The way we think of pinch-zoom
in Chrome is that it's mostly an accessibility and legacy page feature used for non-mobile ready
pages. If a site wants to enable richer zoom interaction (e.g. Google Maps), it can implement it
itself using touch events and CSS transforms. The design of the browser’s pinch-zoom being
entirely off-thread driven means that interacting with it from JS leads to bad user experiences
and should be avoided.

Chrome shipped the “inert-visual-viewport” change in M48. However, due to_backlash from
developers we reverted the change in M49. Fragmenting the behavior between browsers more
than it already is was painful for developers. The flag still exists in Chrome:
chrome://flags/#inert-visual-viewport

Alternatively...

We could switch to use “visual” everywhere instead. This would be more compatible with how
the web works today but has the downside that pinch-zoom can (perhaps unexpectedly) cause
side effects on the page. Particularly on desktop pages that are generally built without testing
with a touchscreen.

Today’s Behavior

Tested using viewporttest.html

Chrome Edge Firefox(*) Safari Safari (i0S)

(Mac)
window.scroll{X|Y} Visual Visual Both Visual Visual
window.scroll[To|By] Visual Visual Both Visual Visual
window.inner{Width|Height} | Visual Visual Both Visual Visual
MouseEvent.client{X|Y} Layout Layout Both Visual Visual
Touch.client{X]Y} Layout N/A Both N/A Visual
DOfument-element[S]FfomP Layout Layout Both Visual Visual
oin
Element. Layout Layout Both Visual (but | Visual
getBoundingClientRect size

unscaled)

Buggy

tbue)

http://crbug.com/571297
http://crbug.com/571297
http://bokand.github.io/viewporttest.html
https://bugs.webkit.org/show_bug.cgi?id=160548

scrollingElement)

Element.scrollintoView(IfNee | Visual Layout Both Visual Visual
ded) (IfNeeded = | (IfNeeded=

N/A) N/A)
Element.scroll{Top|Left} (For | Visual Layout Both Visual Visual

*Firefox has only one viewport but it can be thought of as having both and just always having

the same size and location.

	WebAPIs and Viewports
	Introduction
	“Inert Visual Viewport”
	Alternatively…
	Today’s Behavior

