EE 292S
Ege Turan & Patricia Strutz
Fall 2024

Lab 1: Accelerometer, Gyroscope & Tilt, Dead Reckoning

For live gifs:

https://docs.google.com/document/d/1 ESfZ6nX091tbGOVrwGjnuRKZIN6xzdibY40q WEFK 4/

edit?usp=sharing

Part 1: Simple Tilt Functionality and Allan Deviation

Part 1.1:

Initial Accelerometer and Gyroscope Measurements

We wrote Python code that implements a simple gravity level with respect to the starting XY
plane as described in the spec [Fig. 1]. For raw accelerometer data, we were able to calculate
pitch, roll, and yaw by applying trigonometric functions to the accelerometer's X, y, and z-axis
values, which are gong to be the effect of gravity on each of the axis, which tells us how it must
be oriented. For raw gyroscope data, we did this by integrating the angular velocity over time.
We explained the math behind both these methods on the next page. After converting the raw
sensor output (for both accelerometer and gyroscope) into readable roll, pitch, and yaw angles,
we wanted to test the accuracy of the two separate methods. To do this, we moved our sensor to a
ground truth 45° angle in each axis. We used a 10 Hz sampling rate for this part. The results are

shown in Fig. 2 and Fig. 3.

Fig 1: The definition of tilt

Sensor board (tilted)

Sensor board @ 0 degrees) \e % plane

“Down”

https://docs.google.com/document/d/1E5fZ6nX09ltbGOVrwGjnuRKZJN6xzdibY4oq_WEFK_4/edit?usp=sharing
https://docs.google.com/document/d/1E5fZ6nX09ltbGOVrwGjnuRKZJN6xzdibY4oq_WEFK_4/edit?usp=sharing

Calculating angles for each of the 3 axes:

a. Using accelerometer

Python
Function to calculate roll, pitch, and yaw from accelerometer
def calculate_roll_pitch_yaw_accel(accel):

ax, ay, az = accel

roll = np.arctan2(-ay, np.sqrt(ax**2 + az**2)) * 180 / np.pi # Roll angle

in degrees
pitch = np.arctan2(-ax, np.sqrt(ay**2 + az**2)) * 180 / np.pi # Pitch
angle in degrees

yaw = np.arctan2(ay, ax) * 180 / np.pi # Approximate Yaw angle in degrees

(limited accuracy without magnetometer)
return roll, pitch, yaw

a, 1s the accelerometer reading in x-axis.
a, is the accelerometer reading in y-axis.

a, 1s the accelerometer reading in z-axis.

roll = arctan(-a, / sqrt(a,” + a,’))
pitch = arctan(-a, / sqrt(a,” + a,%))

yaw = arctan(a, / a,)

For yaw, this is a very crude and unreliable estimate.

b. Using gyroscope

Python

Function to integrate gyro data to estimate roll, pitch, and yaw
def integrate_gyro(gyro, dt, current_angles):
roll, pitch, yaw = current_angles
Convert angular velocity from degrees/second to radians/second
gyro_rad = np.radians(gyro)

roll += gyro_rad[@] * dt * 180 / np.pi # Integrate roll
pitch += gyro_rad[1] * dt * 180 / np.pi # Integrate pitch

yaw += gyro_rad[2] * dt * 180 / np.pi # Integrate yaw

Normalize angles to be within -180 to 180
roll %= 360

pitch %= 360

yaw %= 360

roll = roll if roll < 180 else roll - 360
pitch = pitch if pitch < 180 else pitch - 360
yaw = yaw if yaw < 180 else yaw - 360

return roll, pitch, yaw

Gyroscope readings: o,, ®,, ®, (angular velocities around the x, y, and z axes, respectively, in
degrees per second).
Time interval: At = dt

Current angles: (¢,0,y) (\phi, \theta, \psi) roll, pitch, and yaw, respectively.

Running integrate to update roll, pitch, and yaw:
¢n+1 = (I)n + 0)x,n * At
0p1 = 0, + @y, * At

Wn+1 = \ljn + mz,n * At

Deriving tilt:

To do a net tilt calculation as in [Fig. 1], we can compute the angles in the x and y planes

(pitch and roll). We calculate:

tilt = \/pitch > 4 roll °

Fig 2: Experiments to determine the accuracy of accelerometer versus the gyroscope in
determining the angles in our 3 axes, degrees versus time in seconds

150 —— Roll (Accel)
--- Roll (Gyro)

20 40 60 80

100

150 —— Pitch (Accel)
=== Pitch (Gyro)

0 20 40 60 80 100

— Yaw (Accel)
=== Yaw (Gyro)

After seeing similar results over multiple repetitions of this experiment, we concluded that in

pitch and roll, the accelerometer produced more accurate results while the gyroscope tended to

underestimate the true angle. In yaw, however, the accelerometer proved completely useless.

This likely has to do with the gyroscope being erroneous after multiple timesteps due to

integration errors, while the accelerometer struggles to measure yaw due to the gravity vector not

changing significantly in this instance. For this reason, accelerometer data will have less long

term error, while the gyroscope measurements are only useful short term (before integration

errors add up).

Fig. 3: Two more experiments. going to a ground truth angle of 90°. degrees versus time in

seconds

—— Roll (Accel)

- == Roll (Gyro} 150 — Foll (Accel)

——- Roll (Gyro)
100 4

50 1

-50 1
-50
-100 4
-100 1
-150 1
-150
0 20 a0 60 80 100 T " " ‘
0 20 40 60 80 100
150 — Pitch (Accel) 150 —— Pitch (Accel)
-~ Pitch (Gyro) i
=== Pitch (Gyro)
100 4 100
50 50
_s0
~100 -100
_150 -150
[20 40 60 80 100 0 20 40 60 80 100

150] — Yaw (Accel)
--- Yaw (Gyro)

50 4 -50
~100 -100
— Yaw (Accel)
=150 1 ——- Yaw (Gyro) —-150
o 20 40 60 80 100 0 20 40 60 80 100

Fusion Strategy and Results

After this observation, we chose to fuse our sensor measurements through a weighted average of
accelerometer and gyroscope measurements, favoring accelerometer (with weight 0.98, leaving a
0.2 contribution for the gyroscope) for pitch and roll, and favoring gyroscope (with weight 1,
completely ignoring the accelerometer) for yaw. The results shown in Fig. 4 demonstrate the

accuracy of our fused sensor.

. 4: a) Tilting to 45° and 90° angles in different directions. b) Sensor completely stationa

Full rotations, followed by figure 8 movement.

a)

b)

2.0

1.9

:
X
%

m

Fileved Til vs Tarmse

M Pitch 90°

Pitch 45° /

!
:
!
'
.
*
§

"
{
{
i
!
}
}
't
i
{

Tilt to 45" along each diagonal
(tipping the corners down)

Filtered Tilt vs Time

=
©

Filtered Tilt (degrees)

=
~

1.6

15

0.0

2.5

5.0

7.5

10.0

Time (s)

Roll 360°

Pich 360"
. A 4 Ao
i1 I‘IT R Figure 8 movement
IT T L]
RNy R A
i 11 1|,T ! 1 (f ‘f \
i + 1]
& | | 1 I ? b
TRRHSIA SRR
g | 1 | | . .] & | #| T +
l L] 1 | . 1 [1 ! | | | ‘ ‘
I [4 - . . r|*“ T|"”# ll|
a0 f #* » % " 1# . T LNTT‘ -;| ib‘ﬂT
'R IR .*EILE}' *
Lo WA NI =t

Part 1.2: Allan deviation plots for raw accelerometer and gyroscope data

For the Allan deviation plot, we collected 30 minutes of data from the completely stationary

sensor in a room at ~26°C [Fig. 5].

Fig. 5: Allan deviation plots for a

roscope and b) accelerometer.

Allan Deviation - Gyroscope

— Gyro X
—— Gyro Y
— Gyro Z
MNoise which oscillates s
over longer time frames [/
7 slope =-0.5 blegins to influence
= bigger groups of
c 102 averaged data. =~1
S
3
]
c e =0.5
=
< As we average over i
longer and longer clusters ’
noise effects and White/gaussian
deviation decrease . . |
noise region)
y
~ —~
>
f
Quantization noise region - %/—
100 10t 1Eﬁ|. K 10°
Tau (s) ICKEr ~ Random walk & steady drift
Averaging over the time spans along the noise (1/f)
decreasing slope corrects noise which region As we average over longer
osclllates quickly. Eventually, we average enough that and longer amounts of time,
the fast-oscillating noise is mostly deviation creeps back up
corrected for. At about 100s, we no NOL‘_!E becomes correlated
w ; longer see an improvement, there s~ again due to effects such as
S|Ope$ quantlfy a plateau due to effects such as the temperature and noise in
decade / decade trends average itself starting to move the power supply
Allan Deviation - Accelerometer
6x10°*
4x10°*
3 Slope =-0.5
=2 -
F 3Ix107 Slope = 1
=
H
o
§2x107
=
1074 4 —Ccel X N
—— AccelYy White/Quantization Noise Bias Instability ¥
—— Accel Z 1/f noise .
{) Random Walk & Steady Drift
10° 10! 10? (f noise) 10°
Tau (s)

For the accelerometer, we saw relatively similar results for measurements in the x and y
directions, while the z-direction data had more noise. For the sake of the graph, only the x and y
data points were specifically labeled but the regions hold for the z-direction as well. The first
region of the graph shows a decreasing white noise with increasing tau - this makes sense, as this
random, independent noise is averaged out with larger values of tau. The bias instability region

reflects the near minimal noise level, at which point averaging does not show significant

improvement anymore and flicker noise is most present. In the final region, we see increased
noise again as random walk processes such as bias drift and slow, frequency dependent

fluctuations (f noise) create cumulative effects that increase for larger values of tau.

Part 2: Implementing a 1-D Kalman filter to determine position based on

acceleration measurements in a single axis (X-axis only)

1-D Kalman Filter
For Part 2, we increased sampling rate to 100Hz after getting unstable results at 10Hz. To build
our Kalman Filter, we tried 2 different approaches:
a) Assuming constant acceleration; state vector includes position, velocity, and acceleration;
sensor data is inputted as measurement
b) Assuming constant velocity; state vector includes position and velocity; acceleration is
inputted as a control input with a control input matrix to describe effect on position and

velocity

The limitation of (b) was that we could not account for noise variance in our measurements;

ultimately, we chose option (a). Thus, our 1-D Kalman Filter consisted of the following matrices:

kf.F = np.array([[1, dt, 0.5xdt**2],

[@, 1, dt],
0, o, 111) kf.H = np.array([[0, @, 1]1])

kf.x = np.zeros(3) kf.P = np.eye(3)*le-2 kf.Q = np.eye(3)

meas_var = le2
kf.R = np.array([[meas_varl]])

Bias Calibration

10

In order to reduce the bias in our x-axis sensor measurements that is introduced through gravity
in the case of a slight roll or pitch, we added a 5 second calibration period to our data collection
script. Since gravity is large, it overpowered noise during our calibration step. Moreover, during
this time, the acceleration measurements along each axis were recorded, then averaged over the
time period, to also remove any noise skewing in a certain direction. The bias was subtracted
from the following sensor measurements. For simplicity, we saved raw sensor data to a file
before processing it using the Kalman filter. For collecting our data, we used a ruler to measure

out 6ft to use as a ground truth measurement.

Kalman Filter Results and Adjustments to Reduce Errors

In the Kalman filter, the acceleration measurements were fed in one at a time as measurement
inputs. We adjusted the measurement variance, process noise covariance, and initial covariance
matrix to achieve the most accurate results. As seen in Fig. 6, this produced somewhat
reasonable results, but the position estimate was severely impacted by a small positive bias from
the velocity prediction not returning fully to 0 when stationary, creating a huge error over time.
One possible explanations for this phenomenon is an asymmetry in the Kalman acceleration
prediction, such that integration of acceleration does not go to 0, causing a bias velocity to

remain. This could be, for instance, due to the smoothing of the peak acceleration.

To resolve this issue, we introduced a small clamp into our measurements: if the measured
acceleration was below 0.1 m/s?, we reported to the Kalman Filter that the measurement was 0.
We got this 0.1 m/s* threshold by observing the drift over many experiments; from Fig 7., we can
see that the stagnation of acceleration below 0.1 m/s* at about 0.07 m/s* from 8.1s through 10.6s,
where it is supposed to be 0 causes a large skew. This dramatically reduced the rate at which
error accumulates, see Fig. 7. We tried a third approach to see if we could eliminate the bias
entirely: still clamping acceleration, and additionally damping velocities when below a threshold
value'. This approach sacrifices accuracy for more precision and stability - as the estimated peak

distance traveled is less than the ground truth value [Fig. 8].

Error Calculation

' in practice, this meant for |velocity| < 0.05, velocity = (velocity * 0.9) at each iteration

11

In all cases, we calculated error by assuming a constant velocity between the stationary
beginning position and the stationary peak distance, then back at the same rate. While this is not
directly a ground truth measurement, it is the ideal movement we wished to capture. From there,
we took the absolute value of the difference in Kalman prediction and ground truth, and plotted

this value as our error.

6: 6ft. fast speed. there-and-back in a nearly-straight line (no minimum-clamping on accel

Position estimate error as a function of time

—— ideal constant velocity path
kalman position estimate

— error
2.0

1.51

position (m)

0.5 1

0.0

0.0 25 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time (s)

Kalman Gains

Kalman Filter Estimates

le-6
5
T T T
4 2.0 —— KF position estimate |
c
‘s 3 / /
2 _/
c ~15
) £
G2 z
& 210
! é
0.5
0
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 0.0
Time (s) 0.0 25 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.0008 T T r
04 VA —— KF velocity estimate |
< 0.0006 0.3
8 7
£ 02
2 £
£ 0.0004 £
8 z 01 —\ [~
: : \ /
g 00

0.0002 - \ /,
-0.1
0.0000 o2 \"‘V\ /‘AJ

0.0 25 50 75 100 125 150 175 200 0.0 2.5 5.0 75 10.0 12.5 15.0 17.5 20.0
Time (s)
0.916 o [T
Tl ol
g0 £ o r\MA | i
8 ooz % ool T NV AU
% oon2 s AL] YL
0911 T o2 LA M
< 1y W
0.910 037 — KF accel estimate i Nt
0909 o0 25 50 75 00 s o0 s 200 0.0 2.5 5.0 75 10.0 125 15.0 17.5 20.0
Time (s)
Kalman Filter Acceleration Estimate Raw X Acceleration
— KF accel estimate o6 T rawx aceel
0.3 l
0.4
0.2 t
0.2 L
0.1
~
%
£ [,\,/u 0.0
= 00 A
%
< -0.2 I
~01 ”
=02 -0.4
-0.3
-0.6 | “
0.0 25 5.0 75 10.0 125 15.0 17.5 20.0 0.0 25 5.0 75 10.0 125 15.0 17.5 200

Time (s) Time (s)

Position estimate error as a function of time

—— ideal constant velocity path
—— kalman position estimate
1.751 —— error
1.50
1.254
E 1.00
<
2
B
@
3
2
0.75 4
0.50
0.25 4
0.00
0.0 2.5 5.0 7.5 10.0 125 15.0 17.5 20.0
time (s)
Kalman Filter Estimates Kalman Gains
le-6
5]
1.754 —— KF position estimate
1.50 1 4
= 1.254 £
£ &5
c 1.00 4 c
2 K]
G 0.751 =P
& &
0.50
14
0.25
0.00 4 0
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (s)
0.4 7
—— KF velocity estimate 0.0008
0.3+
- 029 < 0.0006
E ©
= 014 (i
> =
2 £ 0.0004 4
S 004 k)
] 2
= -0.14 0.0002
0.2+
—0.3 0.0000 A
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 0.0 2.5 5.0 75 10.0 12.5 15.0 17.5 20.0
Time (s)
0.916 -
0.3+
= 0.915 A
024
2 0.914
£ 014 £
c o 0.913
S 0.0+ =
;Ej o014 g 09121
° 02 0.911 A
S 024
< o3l 0.910
) —— KF accel estimate
T T T T T T T T T 0.909 1 T T T T T T T T T
0.0 25 5.0 7.5 10.0 12,5 15.0 17.5 20.0 0.0 2.5 5.0 75 10.0 12.5 15.0 17.5 20.0

Time (s)

Acceleration (m/s"2)

0.3

0.2

0.1

0.0

Kalman Filter Acceleration Estimate

Raw X Acceleration

14

T T
—— KF accel estimate

0.6

0.4

0.2

0.0

-0.2

ll

~——— raw x accel

II |rw»wm ||

Wi

——

0.0

2.5

5.0

7.5

10.0
Time (s)

12,5

0.0

7.5

10.0
Time (s)

125

15

8: 6ft. fast speed. there-and-back in a nearly-straight line (minimum-clamping on accel and

diminishing velocity bias for low velocities: this approach sacrifices accuracy for more stabilit

Position estimate error as a function of time

—— ideal constant velocity path
—— kalman position estimate
1.75
— error
1.50 1
1.25 1
E 1.00
c
2
E
o
a
0.75
0.50
0.25 A
0.00
0.0 2.5 5.0 7.5 10.0 125 15.0 17.5 20.0
time (s)
Kalman Filter Estimates
Kalman Gains
1.50 = -
—— KF position estimate
1.254 le—6
5
€ 1.00 1
£ 41
c
0.75 4
2 £
i)]
& 0501 o3
2
| =,
0.25 §
0.00 1 14
0.0 25 5.0 75 10.0 125 15.0 17.5 20.0 o
T B 0‘.0 215 5:0 7?5 16.0 12‘.5 15:.0 17‘.5 2(;.0
031 —— KF velocity estimate Time (s)
024 0.0008 -
g
0.1 1
E, = 0.0006 -
£ 0.0 8
3 -0.14 2 0.0004 1
Ea g
-0.2 B
0.0002 +
~0.34
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 0.0000 1] T 1 1 1 1 1 1
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (s)
0.3 0.916
<024 0.915 4
2
é 0.14 c 0.914
5 0.0 & 0.913
® o]
£ -0.1 S 0.912 1
° <
S 021 0.911
< 0.910
037 — KF accel estimate :
T T T T T T T T T 0.909 1
0.0 25 5.0 75 10.0 125 15.0 17.5 20.0 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Time (s)

16

Fast vs Slow Movement

The results above are all variations on the same dataset from when the sensor was moved 6ft in
the x-direction quickly. We also recorded some data where the sensor moved slower, but noticed
quickly that the signal-to-noise ratio dramatically worsens, which strongly impacts the precision
and accuracy of the results [Fig. 9]. Intuitively this makes sense, as higher speeds of movement

results in stronger acceleration, which results in higher SNR.

For very slow motion [Fig. 10], the noise becomes nearly indistinguishable from the actual

movement.

Fig 9: 61t slow, there-and-back (minimum-clamping on accel

Position estimate error as a function of time

—— ideal constant velocity path
kalman position estimate
- error

1.5

1.0

0.5

position (m)

0.0

-1.0

0 5 10 15 20 25
time (s)

Kalman Filter Estimates Kalman Gains

0.50] —— i [
—— KF position estimate 0.0008
0.25
£ 0.0006
g 000 &0
= c
é -0.25 £ 0.0004
= 2
8 -050 8
0.0002
-0.75
~1.00 0.0000
0 5 10 15 20 25 0 3 10 1 20
Time (s
T T [
0.05 ”A-\,"\A"\,__/J_ —— KF velocity estimate | 0.008
g 000 le' £ 0.006
£ \ [S
= -0.05 S 0.004
: E
g -0.10
] r\.j\/d\' M J oo
-0.15 W/
0.000
—0.20 0 5 10 15 20
0 5 10 15 20 25
Time (s
T
037 — KF accel estimate
_ 0.08
q 02
a £
R l | A | ot & 0.06
5 ool LWl A UL 2 N :
B L1 <00
o}
g 0.1 { | | r 1
I+
< oo 0.02
-03 0 5 10 15 20
0 5 10 15 20 25
Time (s)
Kalman Filter Acceleration Estimate Raw X Acceleration
— KF accel estimate oe —— rawxaccel |
0.3 1 l
0.4
0.2
0.2 + f
0.1
ié 0.0
5 00
H ~
o1 HH | | 02
-02 04
o2 -0.6
00 25 50 75 100 125 150 175 200 00 25 50 75 160 15 150 175 200
Time (s}

Time (s)

Fig. 10: Very slow movement (near stationary)

18

Kalman Filter Acceleration Estimate Raw X Acceleration
0.3 4
—— KF accel estimate raw x accel
0.4 1
0.2 1
0.2 1
~ 014
<
2
E
s 097 0.0
-1
o
o
8 0.1
<
_02 4
-0.2 1
—0.4
—-0.3 1
0 5 10 15 20 25 0 5 10 15 20 25
Time (s) Time (s)
Final Approach

We saw the best results for minimum-clamping on accel and thus chose the approach

shown in [Fig 6].

Aggregate Error

To see the aggregate error, we collected data by doing rounds of back and forth over a 1ft
distance, both at a faster pace [Fig. 10] and a slower pace [Fig. 11]. Note that the direction of the
drift is reversed in the two plots as we accidentally collected these measurements with different
orientations in the x-axis. As before, we observed higher SNR for faster speeds and lower SNR
for slower speeds from the raw data and the results.

In figure 12, we tested the approach that involves clamping. Especially at slower speeds,
this stability approach may be used to keep error accumulation to a minimum as it significantly

decreased our accumulated error:

19

eed. many back-and-forth in a nearly-strai

Kalman Gains

Kalman Filter Estimates

0.0008
.% 0.0006 o7 —— KF position estimate
(U]
c By
S
2 0.0004 4 =
5 €
< 5§ 21
0.0002 =
a
&
0.0000 ~3 4
0 2 4 6 8 10 12 14
T‘me() =4 T T T T T T T T
0 2 4 6 8 10 12 14
0.008
- 0.504 —— KF velocity estimate
5 0.006
© 025+
z 2
'g 0.004 A E 0004
2 z
2 S —0.25
0.002 4 °
> -0.501
0.000 4 —0.75
0 2 4 6 8 10 12 14 _1.001
Time (s) 0 2 4 6 8 10 12 14
3
0.08 —— KF accel estimate
~ 24
S
5 &
& 0.06 1 2
® =
o o
< 0.044 £ 01
ko]
8 17
0.02 <
Y
0 2 4 6 8 10 12 14 : T T p : - T "
Time (s) 2 1 12
Kalman Filter Acceleration Estimate Raw X Acceleration
3
—— KF accel estimate 44 raw x accel
2 34
—~ 24
<1
o
£ 14
=4
i
& 01 1
o
Qo
]
o] —14
<
_1 4
_2 4
-24 _3 |

Time (s)

2 4 6 8 10 12 14
Time (s)

Fig 10.b: Error annotation for 1ft. fast speed. many back-and-forth in a nearly-straight line

Position (m)

11.a.: 11t

accel

Velocity (m/s) Position (m)

Acceleration (m/s~2)

04 E=UTm

E=08m

==18m

‘ —— KF position

Kalman Filter Estimates

0.6 1

0.4

0.2

0.0

0.75 1
0.50 1
0.25 1
0.00
—0.25 1

—0.50 1

—— KF position estimate

0 5 10 15 20

—— KF velocity estimate

0 5 10 15 20

—-0.75

—— KF accel estimate

10 12

Kalman Gains

slow speed. many back-and-forth in a nearly-straight line (minimum-clampin

Position Gain

5 10
Time (s)

0.0008 -

0.0006 -

0.0004

Velocity Gain

0.0002 -

0.0000

5‘ 1‘0
Time (s)

0.916
0.915
0.914

<

& 0.913

E 0.912

go
0.911 4

0.910 1

0.909

5 10
Time (s)

20

on

21

Kalman Filter Acceleration Estimate Raw X Acceleration
0.8 —— KF accel estimate raw x accel
0.6 4 1.0
~ 041
L 0.5
£ 024
c
S
8 0.0 0.0
K5}
[
9
2 -0.21
_05 4
—0.4 1
_06 4
1.0
0 5 10 15 20 0 5 10 15 20
Time (s) Time (s)

Fig 11.b: Error annotation for 1ft, slow speed. many back-and-forth in a nearly-straight line

ped — EF position estimate

. 044
E
5 02
2
£ 004

=021

0 5 10 15 20
Time (s)

accel and diminishing velocity bias for low velocities; this approach sacrifices accuracy for more

stability).

Kalman Filter Estimates

0.1

0.0

—— KEF position estimate

[\

-0.1

\

/

Position (m)

-0.2

\

/

\/

-0.3

0

5

0.2 1

T

0.1

T
—— KF velocity estimate /n\l\.r,\

y

Velocity (m/s)

20

—— KF accel estimate |

A

W,

-0.25

"

Acceleration (m/s”2)

\

-0.50

-0.75

10

15

20

Position (m)

—— KF position estimate

E=0.08m

10

Time (s)

15

20

22

23

Part 3: Implementing a 2-D Kalman filter to determine position and
trajectory based on acceleration measurements in a multiple axes (X-Y

plane)

1. We now create a Kalman filter that uses the X/Y axes of the accelerometer as well as the yaw
sensor to determine position in an X/Y plane. We have a transfer function that includes position,
velocity and acceleration for both x and y axes. At each step, we calculate the new x and y
acceleration from the sensor reading and current yaw state.

2. The Kalman naturally fuses all three pieces of data (two accels (x and y) and one gyro).

3. As above, we moved our sensor in straight lines. We moved 6ft right, 6 ft up, 6ft left, and 6ft
down, which should bring us to the start, but we see that starting the first direction change, we hit

problems that accumulate some error.

Given our performance metric is deviation after the sensor has returned to the starting point, we

have 1.35 meters of error, which is only about 18.75% of the entire distance (1.8m x 4).
On the plot, if we analyze the motion in only x axis or only y axis through [Fig. 14], we see that
overall, we have a pretty good estimate. This fusion with the gyro has a worse accumulated error

across the 12 feet traveled than the single-axis accelerometer because the problem is a lot more u

Fig. 13: 2D Kalman Position estimate for a 6ft by 6ft planar square motion

Position Y (m)

2D Trajectory of Estimated Position

0.75

0.50

0.251

0.00

—0.25

—0.50

—0.75 A

—1.00 1

® Start Position
® End Position

0.00

0.25

0.50

0.75

1.00
Position X (m)

1.25

1.50

1.75

1750

1500

1250

1000

750

500

250

Time Progression (s*107-2)

24

Fig. 14:

Kalman Filter Estimates for 2D Movement

1.51

—— KEF position x

Position X (m)

0.0 1

N —

0.0

2.5

5.0

10.0 12,5 15.0 17.5 20.0

0.4 1

0.2 1

0.0 1

Velocity X (m/s)

—0.2 1

—— KF velocity x

0.6

0.0

2.5

5.0

10.0 12,5 15.0 17.5 20.0

0.4 1

0.2 1

0.0 1

—-0.2 1

—0.4 1

Acceleration X (m/s”2)

0'6

—— KF accel x

Fig. 15:

T

0.0

T

2.5

T T

5.0

10.0 12,5 15.0 17.5 20.0

Position Y (m)

-1.01

Velocity Y (m/s)

—0.4

Acceleration Y (m/s”2)

—-0.5 1

-0.2 1

25

—— KF position y
0.5 4

0.0 A

10.0 12,5 15.0 17.5 20.0

0.4 4 —— KF velocity y
0.2 4

0.0 A

0.0

10.0 12,5 15.0 17.5 20.0

-2 4

—4

T
—— KF accel y

0.0

10.0 12,5 15.0 17.5 20.0

26

i) |

. HJ ”l,w.ﬁ

|

acceleration (m/s"2)

—— raw accel x
——— raw accel y

—-0.8 1

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time (s)

From Fig. 15, we can see that, overall, the x-axis looks a lot more symmetrical on the way there
and back compared to the y-axis, which seems more asymmetrical and also seems to be the
source of a lot of the error in the previous plot. One hypothesis we have is that the sensor header
is more prone to movement and change of orientation on its y-direction that its x-direction,

which might cause some unintentional tilt, movement, and error accumulation on the y-axis.

Part 4: Implementing a 3-D Kalman filter to determine position and

trajectory based on acceleration measurements in all axes (X-Y-Z space)

Using the same raw data as Part 2 (6ft by 6ft square, as planar as we could movement), we also

wanted to see the leakage and error on the z-axis.

Fig. 16: 3D Kalman Position estimate for a 6ft by 6ft planar square motion

3D Trajectory of Estimated Position with Time Color Gradient

e Start Position
e End Position

1750
0.00 1500
—0.02
0.04__
£ 1250
—0.06ry N
<
g o
0.085 by
7 b
o
0.10% S
1000 2
(%]
0.12 0
g
0.14 &
g
916 750 F
. 500
&mor;1.36 m 0.00 &
0.00 0.25. 5"
0.25 = «\'00
)
250
1.50 e 00
0

We see the leakage and drift on the z-axis although there was minimal movement on that axis.

We see that some of the error and motion accumulates on the z-axis, which was hidden on our

plot for Part 3.

28

References used (read through) for Allan deviation analysis:
https://www.researchgate.net/profile/Tayfun-Akin/publication/224351551/figure/fig1 0/AS:399668698730505@ 147

2299851625/Allan-variance-plot-of-the-fabricated-gyroscope-obtained-by-processing-the-measured.png

https://www.phidgets.com/docs/Allan Deviation Guide

https://edstem.org/us/courses/66163/discussion/5476742

https://edstem.org/us/courses/66163/discussion/5486378
https: hi m Allan_Deviation_Gui

https://www.researchgate.net/profile/Tayfun-Akin/publication/224351551/figure/fig10/AS:399668698730505@1472299851625/Allan-variance-plot-of-the-fabricated-gyroscope-obtained-by-processing-the-measured.png
https://www.researchgate.net/profile/Tayfun-Akin/publication/224351551/figure/fig10/AS:399668698730505@1472299851625/Allan-variance-plot-of-the-fabricated-gyroscope-obtained-by-processing-the-measured.png
https://miro.medium.com/v2/resize:fit:1400/1*DNQ_HPfVew15DPIfqU_0JQ.png
https://mwrona.com/posts/gyro-noise-analysis/
https://www.phidgets.com/docs/Allan_Deviation_Guide
https://edstem.org/us/courses/66163/discussion/5476742
https://edstem.org/us/courses/66163/discussion/5486378
https://www.phidgets.com/docs/Allan_Deviation_Guide

	Lab 1: Accelerometer, Gyroscope & Tilt, Dead Reckoning
	Part 1: Simple Tilt Functionality and Allan Deviation
	
	Part 1.1:
	Part 1.2: Allan deviation plots for raw accelerometer and gyroscope data

	Part 2: Implementing a 1-D Kalman filter to determine position based on acceleration measurements in a single axis (X-axis only)
	

	Part 3: Implementing a 2-D Kalman filter to determine position and trajectory based on acceleration measurements in a multiple axes (X-Y plane)
	Part 4: Implementing a 3-D Kalman filter to determine position and trajectory based on acceleration measurements in all axes (X-Y-Z space)

