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EE 292S  

Ege Turan & Patricia Strutz 

Fall 2024 

Lab 1: Accelerometer, Gyroscope & Tilt, Dead Reckoning 
 

For live gifs: 

https://docs.google.com/document/d/1E5fZ6nX09ltbGOVrwGjnuRKZJN6xzdibY4oq_WEFK_4/

edit?usp=sharing  

 

Part 1: Simple Tilt Functionality and Allan Deviation 
 

Part 1.1:  
 
Initial Accelerometer and Gyroscope Measurements 

We wrote Python code that implements a simple gravity level with respect to the starting XY 

plane as described in the spec [Fig. 1]. For raw accelerometer data, we were able to calculate 

pitch, roll, and yaw by applying trigonometric functions to the accelerometer's x, y, and z-axis 

values, which are gong to be the effect of gravity on each of the axis, which tells us how it must 

be oriented. For raw gyroscope data, we did this by integrating the angular velocity over time. 

We explained the math behind both these methods on the next page. After converting the raw 

sensor output (for both accelerometer and gyroscope) into readable roll, pitch, and yaw angles, 

we wanted to test the accuracy of the two separate methods. To do this, we moved our sensor to a 

ground truth 45˚ angle in each axis. We used a 10 Hz sampling rate for this part. The results are 

shown in Fig. 2 and Fig. 3.  

 

Fig 1: The definition of tilt 

  

 

https://docs.google.com/document/d/1E5fZ6nX09ltbGOVrwGjnuRKZJN6xzdibY4oq_WEFK_4/edit?usp=sharing
https://docs.google.com/document/d/1E5fZ6nX09ltbGOVrwGjnuRKZJN6xzdibY4oq_WEFK_4/edit?usp=sharing
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Calculating angles for each of the 3 axes: 

a.​ Using accelerometer 

# Function to calculate roll, pitch, and yaw from accelerometer 
def calculate_roll_pitch_yaw_accel(accel): 
    ax, ay, az = accel 
    roll = np.arctan2(-ay, np.sqrt(ax**2 + az**2)) * 180 / np.pi  # Roll angle 
in degrees 
    pitch = np.arctan2(-ax, np.sqrt(ay**2 + az**2)) * 180 / np.pi  # Pitch 
angle in degrees 
    yaw = np.arctan2(ay, ax) * 180 / np.pi  # Approximate Yaw angle in degrees 
(limited accuracy without magnetometer) 
    return roll, pitch, yaw 

ax is the accelerometer reading in x-axis.​

ay is the accelerometer reading in y-axis.​

az is the accelerometer reading in z-axis. 

roll = arctan(-ay / sqrt(ax
2 + az

2))​

pitch = arctan(-ax / sqrt(ay
2 + az

2))​

yaw = arctan(ay / ax) 

For yaw, this is a very crude and unreliable estimate. 

 

b.​ Using gyroscope 

# Function to integrate gyro data to estimate roll, pitch, and yaw 
def integrate_gyro(gyro, dt, current_angles): 
    roll, pitch, yaw = current_angles 
    # Convert angular velocity from degrees/second to radians/second 
    gyro_rad = np.radians(gyro) 
     
    roll += gyro_rad[0] * dt * 180 / np.pi  # Integrate roll 
     
    pitch += gyro_rad[1] * dt * 180 / np.pi  # Integrate pitch 
     
    yaw += gyro_rad[2] * dt * 180 / np.pi    # Integrate yaw 
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    # Normalize angles to be within -180 to 180 
    roll %= 360 
    pitch %= 360 
    yaw %= 360 
 
    roll = roll if roll < 180 else roll - 360 
    pitch = pitch if pitch < 180 else pitch - 360 
    yaw = yaw if yaw < 180 else yaw - 360 
 
    return roll, pitch, yaw 

Gyroscope readings: ωx, ωy, ωz (angular velocities around the x, y, and z axes, respectively, in 

degrees per second). 

Time interval: Δt = dt 

Current angles: (ϕ,θ,ψ) (\phi, \theta, \psi) roll, pitch, and yaw, respectively. 

 

Running integrate to update roll, pitch, and yaw: 

ϕn+1 = ϕn + ωx,n * Δt 

θn+1 = θn + ωy,n * Δt 

ψn+1 = ψn + ωz,n * Δt 

 

Deriving tilt: 

To do a net tilt calculation as in [Fig. 1], we can compute the angles in the x and y planes 

(pitch and roll). We calculate: 

 𝑡𝑖𝑙𝑡 =  𝑝𝑖𝑡𝑐ℎ 2 +  𝑟𝑜𝑙𝑙 2

 

Fig 2: Experiments to determine the accuracy of accelerometer versus the gyroscope in 

determining the angles in our 3 axes, degrees versus time in seconds 
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After seeing similar results over multiple repetitions of this experiment, we concluded that in 

pitch and roll, the accelerometer produced more accurate results while the gyroscope tended to 

underestimate the true angle. In yaw, however, the accelerometer proved completely useless. 

This likely has to do with the gyroscope being erroneous after multiple timesteps due to 

integration errors, while the accelerometer struggles to measure yaw due to the gravity vector not 

changing significantly in this instance. For this reason, accelerometer data will have less long 

term error, while the gyroscope measurements are only useful short term (before integration 

errors add up). 
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Fig. 3: Two more experiments, going to a ground truth angle of 90˚, degrees versus time in 

seconds​

 

 

 

Fusion Strategy and Results 

After this observation, we chose to fuse our sensor measurements through a weighted average of 

accelerometer and gyroscope measurements, favoring accelerometer (with weight 0.98, leaving a 

0.2 contribution for the gyroscope) for pitch and roll, and favoring gyroscope (with weight 1, 

completely ignoring the accelerometer) for yaw. The results shown in Fig. 4 demonstrate the 

accuracy of our fused sensor. 

 

Fig. 4: a) Tilting to 45˚ and 90˚ angles in different directions. b) Sensor completely stationary. c) 

Full rotations, followed by figure 8 movement. 

a) 
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b) 

 

c)  
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Part 1.2: Allan deviation plots for raw accelerometer and gyroscope data 

 

For the Allan deviation plot, we collected 30 minutes of data from the completely stationary 

sensor in a room at ~26˚C [Fig. 5]. 

 

Fig. 5: Allan deviation plots for a) gyroscope and b) accelerometer. 
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For the accelerometer, we saw relatively similar results for measurements in the x and y 

directions, while the z-direction data had more noise. For the sake of the graph, only the x and y 

data points were specifically labeled but the regions hold for the z-direction as well. The first 

region of the graph shows a decreasing white noise with increasing tau - this makes sense, as this 

random, independent noise is averaged out with larger values of tau. The bias instability region 

reflects the near minimal noise level, at which point averaging does not show significant 
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improvement anymore and flicker noise is most present. In the final region, we see increased 

noise again as random walk processes such as bias drift and slow, frequency dependent 

fluctuations (f noise) create cumulative effects that increase for larger values of tau. 

 

 

 

Part 2: Implementing a 1-D Kalman filter to determine position based on 

acceleration measurements in a single axis (X-axis only) 
 

 
1-D Kalman Filter 

For Part 2, we increased sampling rate to 100Hz after getting unstable results at 10Hz. To build 

our Kalman Filter, we tried 2 different approaches: 

a)​ Assuming constant acceleration; state vector includes position, velocity, and acceleration; 

sensor data is inputted as measurement 

b)​ Assuming constant velocity; state vector includes position and velocity; acceleration is 

inputted as a control input with a control input matrix to describe effect on position and 

velocity 

 

The limitation of (b) was that we could not account for noise variance in our measurements; 

ultimately, we chose option (a). Thus, our 1-D Kalman Filter consisted of the following matrices: 

 

 

Bias Calibration 
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In order to reduce the bias in our x-axis sensor measurements that is introduced through gravity 

in the case of a slight roll or pitch, we added a 5 second calibration period to our data collection 

script. Since gravity is large, it overpowered noise during our calibration step. Moreover, during 

this time, the acceleration measurements along each axis were recorded, then averaged over the 

time period, to also remove any noise skewing in a certain direction. The bias was subtracted 

from the following sensor measurements. For simplicity, we saved raw sensor data to a file 

before processing it using the Kalman filter. For collecting our data, we used a ruler to measure 

out 6ft to use as a ground truth measurement. 

 

Kalman Filter Results and Adjustments to Reduce Errors 

In the Kalman filter, the acceleration measurements were fed in one at a time as measurement 

inputs. We adjusted the measurement variance, process noise covariance, and initial covariance 

matrix to achieve the most accurate results. As seen in Fig. 6, this produced somewhat 

reasonable results, but the position estimate was severely impacted by a small positive bias from 

the velocity prediction not returning fully to 0 when stationary, creating a huge error over time. 

One possible explanations for this phenomenon is  an asymmetry in the Kalman acceleration 

prediction, such that integration of acceleration does not go to 0, causing a bias velocity to 

remain. This could be, for instance, due to the smoothing of the peak acceleration. 

 

To resolve this issue, we introduced a small clamp into our measurements: if the measured 

acceleration was below 0.1 m/s2, we reported to the Kalman Filter that the measurement was 0. 

We got this 0.1 m/s2 threshold by observing the drift over many experiments; from Fig 7., we can 

see that the stagnation of acceleration below 0.1 m/s2  at about 0.07 m/s2 from 8.1s through 10.6s, 

where it is supposed to be 0 causes a large skew. This dramatically reduced the rate at which 

error accumulates, see Fig. 7. We tried a third approach to see if we could eliminate the bias 

entirely: still clamping acceleration, and additionally damping velocities when below a threshold 

value1. This approach sacrifices accuracy for more precision and stability - as the estimated peak 

distance traveled is less than the ground truth value [Fig. 8]. 

 

Error Calculation 

1 in practice, this meant for |velocity| < 0.05, velocity = (velocity * 0.9) at each iteration 
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In all cases, we calculated error by assuming a constant velocity between the stationary 

beginning position and the stationary peak distance, then back at the same rate. While this is not 

directly a ground truth measurement, it is the ideal movement we wished to capture. From there, 

we took the absolute value of the difference in Kalman prediction and ground truth, and plotted 

this value as our error. 

 

Fig 6: 6ft, fast speed, there-and-back in a nearly-straight line (no minimum-clamping on accel)​
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Fig 7: 6ft, fast speed, there-and-back in a nearly-straight line (minimum-clamping on accel)
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Fig 8: 6ft, fast speed, there-and-back in a nearly-straight line (minimum-clamping on accel and 

diminishing velocity bias for low velocities; this approach sacrifices accuracy for more stability)​

​
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Fast vs Slow Movement 

The results above are all variations on the same dataset from when the sensor was moved 6ft in 

the x-direction quickly. We also recorded some data where the sensor moved slower, but noticed 

quickly that the signal-to-noise ratio dramatically worsens, which strongly impacts the precision 

and accuracy of the results [Fig. 9]. Intuitively this makes sense, as higher speeds of movement 

results in stronger acceleration, which results in higher SNR. 

 

For very slow motion [Fig. 10], the noise becomes nearly indistinguishable from the actual 

movement. 

 

Fig 9: 6ft, slow, there-and-back (minimum-clamping on accel) 
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Fig. 10: Very slow movement (near stationary) 
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Final Approach 

We saw the best results for minimum-clamping on accel and thus chose the approach 

shown in [Fig 6]. 

 

Aggregate Error 

To see the aggregate error, we collected data by doing rounds of back and forth over a 1ft 

distance, both at a faster pace [Fig. 10] and a slower pace [Fig. 11]. Note that the direction of the 

drift is reversed in the two plots as we accidentally collected these measurements with different 

orientations in the x-axis. As before, we observed higher SNR for faster speeds and lower SNR 

for slower speeds from the raw data and the results. 

In figure 12, we tested the approach that involves clamping. Especially at slower speeds, 

this stability approach may be used to keep error accumulation to a minimum as it significantly 

decreased our accumulated error:​
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Fig 10.a: 1ft, fast speed, many back-and-forth in a nearly-straight line (minimum-clamping on 

accel)​
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Fig 10.b: Error annotation for 1ft, fast speed, many back-and-forth in a nearly-straight line​

 

 

Fig 11.a.: 1ft, slow speed, many back-and-forth in a nearly-straight line (minimum-clamping on 

accel) 
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Fig 11.b: Error annotation for 1ft, slow speed, many back-and-forth in a nearly-straight line 

 

 

Fig 12: 1ft, slow speed, many back-and-forth in a nearly-straight line (minimum-clamping on 

accel and diminishing velocity bias for low velocities; this approach sacrifices accuracy for more 

stability).  
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Part 3: Implementing a 2-D Kalman filter to determine position and 

trajectory based on acceleration measurements in a multiple axes (X-Y 

plane) 
 

1. We now create a Kalman filter that uses the X/Y axes of the accelerometer as well as the yaw 

sensor to determine position in an X/Y plane. We have a transfer function that includes position, 

velocity and acceleration for both x and y axes. At each step, we calculate the new x and y 

acceleration from the sensor reading and current yaw state. 

2. The Kalman naturally fuses all three pieces of data (two accels (x and y) and one gyro).  

3. As above, we moved our sensor in straight lines. We moved 6ft right, 6 ft up, 6ft left, and 6ft 

down, which should bring us to the start, but we see that starting the first direction change, we hit 

problems that accumulate some error. 

 

Given our performance metric is deviation after the sensor has returned to the starting point, we 

have 1.35 meters of error, which is only about 18.75% of the entire distance (1.8m x 4).  

 

On the plot, if we analyze the motion in only x axis or only y axis through [Fig. 14], we see that 

overall, we have a pretty good estimate. This fusion with the gyro has a worse accumulated error 

across the 12 feet traveled than the single-axis accelerometer because the problem is a lot more u 

 

Fig. 13: 2D Kalman Position estimate for a 6ft by 6ft planar square motion 
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Fig. 14:​

 

Fig. 15: 
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From Fig. 15, we can see that, overall, the x-axis looks a lot more symmetrical on the way there 

and back compared to the y-axis, which seems more asymmetrical and also seems to be the 

source of a lot of the error in the previous plot. One hypothesis we have is that the sensor header 

is more prone to movement and change of orientation on its y-direction that its x-direction, 

which might cause some unintentional tilt, movement, and error accumulation on the y-axis. 

 

Part 4: Implementing a 3-D Kalman filter to determine position and 

trajectory based on acceleration measurements in all axes (X-Y-Z space) 

 

Using the same raw data as Part 2 (6ft by 6ft square, as planar as we could movement), we also 

wanted to see the leakage and error on the z-axis. 

 

Fig. 16: 3D Kalman Position estimate for a 6ft by 6ft planar square motion 
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We see the leakage and drift on the z-axis although there was minimal movement on that axis. 

 

We see that some of the error and motion accumulates on the z-axis, which was hidden on our 

plot for Part 3. 
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References used (read through) for Allan deviation analysis:​
https://www.researchgate.net/profile/Tayfun-Akin/publication/224351551/figure/fig10/AS:399668698730505@147

2299851625/Allan-variance-plot-of-the-fabricated-gyroscope-obtained-by-processing-the-measured.png 

https://miro.medium.com/v2/resize:fit:1400/1*DNQ_HPfVew15DPIfqU_0JQ.png 

https://mwrona.com/posts/gyro-noise-analysis/ 

https://www.phidgets.com/docs/Allan_Deviation_Guide 

https://edstem.org/us/courses/66163/discussion/5476742 

https://edstem.org/us/courses/66163/discussion/5486378 

https://www.phidgets.com/docs/Allan_Deviation_Guide  

 

https://www.researchgate.net/profile/Tayfun-Akin/publication/224351551/figure/fig10/AS:399668698730505@1472299851625/Allan-variance-plot-of-the-fabricated-gyroscope-obtained-by-processing-the-measured.png
https://www.researchgate.net/profile/Tayfun-Akin/publication/224351551/figure/fig10/AS:399668698730505@1472299851625/Allan-variance-plot-of-the-fabricated-gyroscope-obtained-by-processing-the-measured.png
https://miro.medium.com/v2/resize:fit:1400/1*DNQ_HPfVew15DPIfqU_0JQ.png
https://mwrona.com/posts/gyro-noise-analysis/
https://www.phidgets.com/docs/Allan_Deviation_Guide
https://edstem.org/us/courses/66163/discussion/5476742
https://edstem.org/us/courses/66163/discussion/5486378
https://www.phidgets.com/docs/Allan_Deviation_Guide
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