

Apprenticeship Portfolio
Founders & Coders

September 2021 - November 2022

1

[COMPANY NAME]

About the website

[COMPANY NAME] is the company’s own website. We recently revisited the project and
gave it new look and content updates. There is a showcase of our most recent and
popular projects, as well as info about the team, our approach, etc.

Scope of my given tasks 👓

I took up a few different tasks in the creation of the website. I was involved in the
front and back end, focusing on building, styling and testing individual components.
The main technologies I used were Next.js and Stitches in the front end and Sanity
CMS for the back end. For visual regression testing, I used Storybook and Chromatic in
continuous integration.

Software Development Lifecycle
Stages

Planning

Roles the team took on for the project

Our team in [COMPANY NAME] consists of designers, producers and developers.
Each one has a distinct role in their goals and the tasks they have to carry out.

The designers work in most stages of a project: the conception of the idea, the
prototypes and wireframes, the core user stories, designs, typography and layouts.

As this is the second iteration of this project, we already had many elements
available, like the brand, representative colours and company values. This time we
also had lots of projects to talk about, as well as an expanded team. We focused on
putting all these things together in a storytelling manner and presenting our work in
an engaging way.

2

Sprint structure & build order

This was an internal, medium size project that we were working on in parallel with
client work. Some hours were allocated for it every week, and the goal was to launch
the new version as soon as possible during the 2022 summer.

The Agile approach was better suited as a development methodology in the case of
this project. In particular, the goal for the development team was to create as many
tickets as possible in a granular way, so that anyone with availability could pick
anything up. As soon as a working feature was built and reviewed, it was added to
the codebase no matter how small or big.

We tried to avoid the more solid structure of a waterfall approach, considering that
the available time was not secure in a consistent way. The agile approach allowed us
some flexibility and since we had all our epics and main stories ready, we could work
on them in a distributive fashion inside the team.

Analysis

During the discovery phase, we consider different options regarding the
technologies we would use. As we are a digital studio, our projects are pretty
media-heavy and the visual aspect is very important. Next.js is usually our preferred
framework for the front end since it offers many out-of-the-box optimisations and
the deployment process is quite straightforward with Vercel. There were a few other
things that needed consideration though.

I completed a code planning exercise with the company's senior developer. Here we
looked at the software requirements and how it affects different parts of our stack.

Our primary considerations were:

●​ Organising architecture in an effort to scale up the product. For example,
showcasing the projects is the highlight of the website, and we should be able
to add more in the future in a simple and intuitive way.

●​ Presenting our material in an equally visually appealing way on desktop and
mobile. Which styling framework would offer flexibility in doing so?

●​ Identifying common design patterns, so we can divide the work into
functional components that can be reused.

●​ Effectively storing our content. Although we initially planned for this to be a
static website, we quickly realised that storing content in the codebase would
be highly impractical. Whenever we would like to add a new project, update
info about the team or anything else relevant, a developer would need to

3

modify the codebase. ​
To make things more flexible and accessible to everyone in the team, we
added we decided to use Sanity CMS for content management.

User research findings

We conducted user research internally and tried to put the collective experience of
the team into action. This was particularly useful in helping me understand the
needs of the project better in terms of brand, delivery and functionality.

Some of the main points that were made:

-​ We need to communicate our work with potential clients/collaborators.
Showcasing our products in an engaging and informative way that shows the
true spirit of the team.

-​ Increase our presence on social platforms. The website should be performant
SEO-wise.

-​ Demonstrate our skill as a team to take care of all different parts of a product
and deliver high-quality results.

-​ Present ourselves as neutral in terms of style. We can mould our stylistic
approach according to clients’ requests and thus present a range of variety.

The general consensus was that we want an [CLIENT ONE]ed website, where the
main characters are the projects. We do not need fancy visual effects which could
distract from the material, but instead, clear structure and sections. We ended up
with three main pages: one for the projects, one for the team and one for the
company approach and values.

Design

Here are some first ideas using the artwork with the company’s featured characters
that showcase potential layouts, colours, typefaces etc.

4

The main characteristics were:

●​ accessibility - the users should be able to easily navigate the website and
access all sections with any input device.

●​ [CLIENT ONE]ed interface - the interface should be simple and clear, with no
hidden flows. The company projects are in the spotlight as soon as somebody
lands on the page.

●​ aesthetically pleasing - the website should communicate professionalism
and confidence, but be approachable and warm. We do not create complex
methods of consumption and when we use animation or any interaction, it
should serve the purpose of improving the user experience.

Colours and [COMPANY NAME] mascots

Based on all considerations described above, this became the chosen colour palette.

These colours have been part of the [COMPANY NAME] brand since the beginning
and have been used in the illustrations that feature the studio characters: the dog,
bird, turtle and fox. These figures represent the values we share collectively as a team
about collaboration, trust and creativity.

5

The “Homepage”

The homepage is simple and effective. On desktop, all completed projects appear on
the left side, while the company’s statement always appears on the right. On mobile,
the statement stays on top and the projects follow.

6

The Homepage

Navigation and other pages

The user can navigate the other pages through the menu in the navigation bar.

The general structure of the pages is quite homogenous, with lots of visual assets
and intersecting text that provides the context. Much of the content one can see in
the “home” and “approach” pages comes from the same components.

The Approach page

7

Lastly, the footer summarises useful links and a newsletter that is prompting the user
to keep in touch.

CTA & footer

Build

Technical decisions

The major technical choices we had to make based on the nature of the website
were the following:

●​ Where should we store the content? Is the website going to be big enough to
justify using CMS? In fact, when I started building the first components, all
data was static, stored in a javascript file along with the rest of the codebase.
The number of finished projects was not that large yet, and the variety was still
limited. But the project number kept growing and showcasing them became
our main focus. We wanted to add flexibility to how we manage an existing
page and how we add more projects, delete old ones, etc. This is why we
decided to use a headless cms, Sanity CMS.

●​ For the front end, we went with Next.js, which combines all the advantages of
the React library, while at the same time offering server-side rendering. That
means that it combines quite well with the headless cms since it can
communicate with data coming from some sort of database, make requests
to it and retrieve them server-side. At the same time, it can statically generate
websites. All these qualities make it more performant compared to React.

8

Stack I am using

Here is a list of main technologies we are using in the project:

●​ Next.js for the front-end and server-side rendering
●​ Sanity for content management (CMS)
●​ Storybook with Chromatic for designing components in isolation and visual

regression testing

Version control system and collaboration

As in all projects, we are using Git as a version control system. This allows us to
manage and keep track of the source code of the project. The project repository is
hosted on GitHub, a cloud-based hosting service for managing Git repositories.

Each developer works on a separate branch of the main one when working
individually. A branch that contains completed work and has been reviewed by the
team is getting merged into main and becomes part of the codebase.

9

Deploy

The website is being deployed in Vercel, a platform built by the Next.js creators. It
offers seamless integration with Next applications, as the deployment happens
automatically with every push to a GitHub branch, which can be easily merged into
production.

Having automatic deployments for both development and production environments
is extremely helpful, as we can easily check and share new features, without extra
work overhead. Among many other features, Vercel offers Environment Variables
storage, and integration with external services like Doppler (for environment
variables management) and GitHub, as well as custom domain names.

Maintain

The project is currently considered completed as all main and extra features have
been built and the website is launched. We have the flexibility to add new projects
we want to showcase since the content is dynamically managed with Sanity CMS.
That means that no development work is needed unless our testing suite tracks an
error or visual regression or a new feature is designed in the future.

10

Examples & code evidence

Building the Sanity schema

At the first stages of building the application, we decided to implement the
front end and back end separately, since some of the designs were not yet
agreed upon at the time, although the structure of the content was known.

I started creating the Sanity database schema for the backend, so I could start
populating the content database.

Here is an example of the teamMember component, which holds information for
each team member.

11

The code above creates an object in the schema under the name teamMember, which
has three fields: name, job and image. It also creates an object preview with the team
member's name and image, for a better user experience when inputting content.

This is how it shows in the CMS:

[IMAGE REDACTED]

When clicking on each member, an editor opens up where we can edit the member
properties:

[IMAGE REDACTED]

Database content modelling

The journey to building a content model with Sanity was an important part of the
project. The nature of data here implies some relationships between different pieces
of information. I made sure to trace the more obvious connections first, so I could
build the core of the schema.

As an example, each project page has the avatars of the team members who work on
it, like so:

[IMAGE REDACTED]

This is possible since, inside the project object in the Sanity schema, I have added a
reference to the teamMember:

12

These are the fields in the CMS:

[IMAGE REDACTED]

This is a very important concept here. The structure of the content is very close to the
relational database paradigm since data is grouped in a logical way and is getting
interconnected with other data from other groups. Instead of tables, we have
different types of objects, which form arrays of objects or/and documents. All of
these can refer to one another, which ultimately creates a graph of structured data,
which can be queried.

Components reusability

One of the main principles in designing and implementing this project is the
concept of components. Blocks that are either identical visually or in terms of
purpose are grouped together and we try to serve them through one piece of code.

13

One example is the projects section.

All these different sections
here are served by the same
piece of code in the front and
back end.

 The thumbnail cards are
being rendered by the
CardHome.tsx component,
which accepts the following as
props: media, meta, subtitle,
theme, title, cardButtonLabel,
status, style and
backgroundColor. This data
comes from the CMS since
each project has its dedicated
properties object.

Once this data is available to the component, the project card renders with the
project image, background colour, title project and all other properties mentioned
above.

14

Here is an example of two project cards side by side - we can see how these common
properties are applied:

These are the sections in the CMS that send
this data to the front end.

The same process has been followed in all
pieces that follow the same patterns of
repetition. In this way, we can freely create
more content that comes from much less
code. Most bugs can be identified in a more
efficient way and the codebase is easier to
maintain.

15

[CLIENT FOUR]

About the project
This website was built upon request from [CLIENT FOUR]. According to the company,
[CLIENT FOUR] uses the power of marketing to communicate the climate projects
that will save our planet. Their goal is to make scientific information more accessible
for environmental start-ups and help them be heard and establish their message.

Planning & Design

During the discovery phase of the project, I had the chance to explore the idea
behind [CLIENT FOUR], its position in the industry and its values. [COMPANY NAME]
arranged a workshop, where we could delve deep into the drives, needs and aims of
the client.

The main consideration

There is a gap between the amount of scientific data and how it translates to the
audiences and they stressed how important it is for them to bridge this gap. One of
the main considerations was to make the site look ‘scientific’ enough so it speaks to
the academic audience, but at the same time accessible, so it could attract people
regardless of background. “Green” and “spacious” were two main keywords that kept
coming up in discussions.

Time restrictions

The timeframe was quite tight for this project, based on the client's scheduling. As
they wanted to launch the soonest possible, the agreed time ended up being 4
weeks, including QA testing and potential amends the client could request.
There was a discussion on where the site content would be stored - would it be static
or dynamic? The client said they would like to be able to maybe change the content
in the future, which meant I would have to implement some CMS for the backend,
such as Sanity for example. Due to the time constraints though, as well as the higher
cost of this, a static site was decided, so all data is hardcoded.

16

Using components with Storybook

What is Storybook?

For this project, I am using Storybook, a tool for building UI components in isolation.
This is particularly helpful given the nature of the project. The website has more of an
editorial feeling and everything is arranged visually into blocks.

[IMAGE REDACTED]

First, I identified layout similarities among all these blocks and grouped them
together. The following two blocks seem like they could be grouped together. They
both have an svg icon, title, some content and an image, which translates into the
props ({icon, title, content, image}), but present variations in their layout.
It only makes more sense for these 2 to be coming from the same component. I have
added an extra prop pageLayout, which controls which of the two layouts will be
activated by the block calling it.

17

This is how my code is organised. I have an ArticleBlock.tsx file, which is the
component itself, as well as an ArticleBlock.stories.tsx, which controls the
component’s entry in Storybook.

●​ In the stories file, I am creating different versions of the component, by
passing different fixture data based on the design.

●​ Here we have 2 variations, left and right, that are being passed like this into
storybook:

const fixtures: StoryFixtures<typeof ArticleBlock> = {​
 left: {​
 pageLayout: 'left',​
 children: <SunIcon />,​
 title: `Helping you plan, connect and deliver with great partners`,​
 content: `After the workshop, you may feel you need help building assets (website, video), or

running a​
 campaign (fundraising, influencers). We can help.​
 ​
 We will either find the right partners to do this for you, negotiate with them to work "at

cost", and help brief them. We are well connected within the agency / creative world and will use our

network to help you scale up. Or do it ourselves if we can, charging for our time at cost.`,​
 mediaImage: {​
 image: {​
 src: '/images/people_gathering.jpg',​
 altText: 'People gathering',​
 width: 989,​
 height: 686,​
 },​
 layout: 'responsive',​
 objectFit: 'cover',​
 },​
 },​
 right: {​
 pageLayout: 'right',​
 children: <SpikesIcon />,​
 title: `Stakeholder Campaigns on neglected climate topics`,​
 content: `We believe there are neglected topics which are critical to climate yet poorly understood

by key stakeholders such as politicians, philanthropists, CEOs, Media & influencers etc.​
​
 Some stories are screaming to be told and are needed to nudge decisions taken by stakeholders. For

example, key actions needed around Methane, or the role of the ocean as a climate solution.​
 ​
 Facts and figures are not enough: we can invite some of the best creative and strategic minds to

help tell these stories in a way which is persuasive, powerful, and relevant for stakeholders - creating

highly influential and targeted campaigns.​
 ​

18

 We are working with founders, scientists and agencies to bring to life these topical stakeholder

campaigns.`,​
 mediaImage: {​
 image: {​
 src: '/images/ripples.jpg',​
 altText: 'Ripples in water',​
 width: 541,​
 height: 686,​
 },​
 layout: 'responsive',​
 objectFit: 'cover',​
 },​
 },​
}

This is how this information appears in Storybook 🚀

19

I followed the same pattern of work for the whole project. Blocks that accept the
same types of arguments are stemming from a common component, which is being
reused per case. This way I am promoting reusability, while at the same time making
the code more sustainable.

Procedures & version control

The way the request was given by the client during our workshops, helped us
understand our main workflows.

●​ the user needs to land on a homepage, which should provide all necessary
information regarding the agency and its principles.

●​ the user needs to know more specifics about the agency’s actions and
projects.

●​ the user needs to have access to a privacy policy, so they understand how CA
utilises their data

●​ the user needs to be provided with a 404 page, in case their request cannot
be fulfilled

Once the design team had agreed on the branding and assets with the client, they
created the first iteration of how the website will look like. Although not all things

20

were finalised yet, the development team had to start working on setting up the
project and creating the components that were implied by the design.

The reason we could do that is that the suggested layout was unlikely to change, so
since we use Storybook, we could start creating our library of components there and
use them as the client pleases, with any assets they provide.

We use GitHub as a version control system and tool for communication among
developers.

●​ The 4 points above served as our EPICS in developing the application. These
are generic tickets that only get fulfilled by many sub-tickets and come
together at the end of the building period when I put all pages together.

●​ this is part of the Issues page - all tickets are tagged, and stories derive from
the bigger epics

●​ every issue is tagged with very specific information
1.​ the developer who’s working on it
2.​ the suggested area (web, cms, content, story, epic, styling, bug, etc..)
3.​ the project board
4.​ the sprint number
5.​ any linked PRs.

As soon as I would start working on a ticket, I would tag it as in progress and it
would move under the same category in our automated kanban board on GitHub.

21

The board is the main endpoint of reference for the whole team. Everybody could see
in which stage of the build I was at times, the open tickets, what was coming next
etc. This helped communication a lot by reducing unnecessary info and focusing on
the things I actually had to implement.

This workflow proved especially helpful during the QA, as all team members could
write requests under Issues, which I then sorted and started working on. In every
new PR, I would link the issue back and tag the member who would need to do the
reviewing and approving.

Continuous Integration

The automated tests provided by Vercel (the deployment service) as well as the
Chromatic (for Storybook) were running every time I pushed a new PR. This way I
could ensure that every new piece of code I was adding was not breaking the
existing one and that all components kept working as expected.

I set the workflows for Chromatic under the .github > workflows folder. I ask for the
components to be redeployed there with every new PR so that Chromatic can
perform its visual regression testing.

This is a screenshot from Chromatic. It shows all successful builds of my Storybook
components, as indicated by the green coloured circle:

22

Opening the last build, I can see all current components of the website along with
their stories. Since this process is happening automatically through CI, I do not have
to inspect Chromatic unless a test fails during deployment.

This setup provides the necessary flexibility on projects with lots of components like
this one and makes the QA process quite smoother, not only for me but for the team
as well. When a change that alerts Chromatic happens, I can inspect it and decide if it
comes from regression, in which case I fix it. If not, that means it comes from an
updated component and I simply replace it with the newer version by accepting the
changes.

23

Where is the content of the website stored?

This is a static website, where information is presented in an editorial style. Due to
this nature, we opted out of using a CMS, since this data is not going to be changing
often. Instead, all data/content can be found inside the package.

Different outputs, different sources 🔀

1. Data in Storybook

Since we are using storybook, the content we pass in the components and which can
be accessed through the storybook server for our stories comes from fixtures, which
are placed inside each .stories.tsx file.

In the following example, the MissionBlock has its own MissionBlock.stories.tsx
file, in which we pass the content, which we will see in its story.

24

https://www.notion.so/Climate-Agency-9fb45d29fa954bfb94ca9a60b05928d0

2. Data in Pages

The content we see when we visit the website though comes from a different source.
For this, we have a dedicated folder under src called data, in which we store all
content in objects, which are being passed as props into their corresponding
components.

Let’s take the Background block as an example this time - this is how we store the
data object in our homepage.tsx file:

And this is how this data is being passed into the component calling it (along with
the declaration of its types, since we are using Typescript):

25

Requested changes from the client after release 🌍
As it is very often the case, the client had recently had a couple of requests, some
additional changes/features they’d like, a couple of months after the initial release.

[IMAGE REDACTED - shows an internal team conversation]

The initial request included mostly copy changes, but later on, a couple more things
were added, since one of the board members of the client’s company pointed out
that the image captions were not very “capturing” and were most probably skipped
by most users.

This is how it looked in the first release:

Our producer, [PRODUCER / DESIGNER], informed us of the client's concern, and our
senior designer started working on some amends, so I could have some designs to
work with.

Will’s proposed solution was to place the caption inside the green strip, which is
already part of the brand of [CLIENT FOUR]. This way, we could have something like
the image below: Images can have a caption (green strip), credit, both or none.

26

The client approved this solution and so I proceeded to implement it.

Technical considerations regarding the captions

In the initial implementation, the green strip was part of the rendered image. I chose
this solution at the time since the time was extremely limited and we had the
images already in our design files.

With the new design though, this wouldn’t work, so I let the team know, so they can
prepare new image files to include and also that I have enough time to work on it
based on my estimation.

[IMAGE REDACTED - shows an internal team conversation on Slack]

This time I made a separate component for the green strip, calling it
InnerTextCaption with an absolute position property. Any image container now
assumes a relative position, so that the green part can always stay at the bottom of
each image and be responsive along with the image.

This is how the InnerTextCaption component works:

import { styled } from 'styles/stitches.config'​
​
interface InnerTextCaptionProps {​
 children?: string​
 className?: string​
}​
​
export const InnerTextCaption = ({​
 children,​
 className,​

27

}: InnerTextCaptionProps) => {​
 return (​
 <InnerCaptionContainer className={className}>​
 <p>{children}</p>​
 </InnerCaptionContainer>​
)}​
​
const InnerCaptionContainer = styled('figcaption', {​
 position: 'absolute',​
 width: '100%',​
 backgroundColor: '$green',​
 color: '$black',​
 left: 0,​
 bottom: 0,​
 p: '$8',​
 fontFamily: '$workSans',​
 fontWeight: '$medium',​
 fontSize: '$XXS',​
 lineHeight: '$XXS',​
​
 letterSpacing: '$small',​
 whiteSpace: 'pre-line',​
​
 '& > p': {​
 maxWidth: '430px',​
 },​
})

Now all captions (if existing) are rendered through this component
(InnerTextCaption), whereas the image credit (if existing) is rendered through the
already existing TextCaption component (that was initially rendering the caption).

An example of the result is this:

28

Now the component is easily reusable and this way I was able to make all changes in
a fast, efficient and error-free way. It is also easy to spot potential errors since the
component has its own entry in Storybook, which runs Chromatic for visual regression
every time I push a new commit through GitHub.

The carbon footprint of the website

One important consideration (as it is for all projects) is the carbon footprint of the
website, even more so due to its nature being a climate website.

The website is live at [WEBSITE URL]. When I ran this URL at [WEBSITE URL] which
assesses how carbon footprint friendly the project is, I got this result.

I made an actual effort to reduce the carbon footprint as much as possible by
following these actions:

●​ creating as many reusable components as possible. This helped in reducing
the size of the code, as well as unnecessary repetition and clutter. Things that
look the same or almost the same are rendered by the same component.

●​ including only necessary assets for the website. I also asked the designer team
to provide compressed versions of the images, so this way I could significantly
reduce the overall size of the build.

●​ building the media components using the next/image API, which provides an
optimal way of handling image files, in terms of quality, sizes, lazy-loading etc.

As you see from this result, one thing that could be subject to improvement is the
site hosting itself. The website is currently hosted on Vercel, which is a common (and
obvious) choice for projects built with Next.js, since according to their website:

29

https://climateagency.net/
https://www.websitecarbon.com/

My company has a Vercel account, where we are hosting our Next.js projects since
this has all the benefits seen above and provides a seamless experience for both
users and developers. This is a trade-off we make as a company, which I am sure we
might be able to re-assess in the future with all available choices we currently have in
the market.

30

[CLIENT ONE]

About the project

[CLIENT ONE] is a revolutionary enterprise Saas/Paas customer analytics platform
that knows when and why a customer will buy from one retailer/brand instead of
another.

“The [CLIENT ONE] platform was created in response to the desperate need for better
customer analytics, capable of looking outward from a business across a wider
sector. Traditional customer analytics tend to be predominantly inward-looking; they
only really give detail on the company commissioning them.

The [CLIENT ONE] platform defines a value for 'relative attractiveness' (RA) for a given
experience and customer mission. Growth comes from increasing RA, understanding
how to increase RA is what our friction-versus-reward tools do.”

[Image shows brief provided by client one]

From the company’s brief

What they wanted to achieve in partnering with [COMPANY NAME]

The previous website was built more than three years ago. With their increasingly
complicated product offering, the people at [CLIENT ONE] found it was no longer
sufficiently informing and engaging the enterprise’s audience about their product
and what they do.

Their main goal was to improve how they communicate their product and use fresh
visual language to talk about their identity. In terms of the main actions that
somebody could take on the website, this is one of the flowcharts we ended up with
during the discovery phase:

31

Examples & code evidence
The ‘Quiz’ pages

One of my main contributions to the website was the implementation of the `Quiz`
pages. This is essentially a large form, broken down into smaller steps, in which the
potential client can discover what are their needs and ultimately communicate with
the enterprise.

The user can launch the quiz by clicking the Get started button from the
Homepage:

[Gif shows client page and interaction with the ‘get started’ button]

How this works

Through a series of steps, the user is prompted to give answers to the provided
questions. Every answer is saved and used in the subsequent steps till the end.

The whole quiz is a page which links to five different steps through dynamic routes.
What this practically means is that for each potential route there is a specific layout
and functionality, but its main content depends on the data the user has inputted, so
it renders accordingly.

32

This flowchart summarizes the functionality:

Each one of the steps renders some static content that comes from Sanity. For
example, see how step 1 looks on the website and compare it with its Sanity entry:

33

Each This is the entry for step 1 in the CMS. All the content the user access and
choose from through this page comes from here:

Using svg as visual language & technical considerations

One of the elements decided as part of the brand was the spark. The spark appears
everywhere in one form or another in a range of rotations and in two versions: filled
or outlined.

34

They are used in various components and are always displayed using a variation of
the X & Y axis (and never flat).

Client communication

The following component takes as props a card component that represents a
company package available for sale. We can have up to three cards that state the
features of each package and the differences compared to the others.

Initially, there were different considerations for the styling of the package card. The
client wanted to use some colour in a way that is representative of the brand (playful,
intriguing) but at the same time not overflow the component with more
information. We ended up with this particular solution, according to which a spark
sits at the top left of each card, with each colour, variation and rotation randomised
each time.

The client asked for having potentially the ability to choose the spark configuration
through the CMS, as this is the case for other parts of the application as well, but we
opted out of that, since:

●​ it is a smaller component, reused in different places in the website, and
selecting a spark for each one of these cases would be a tedious process for
the content manager

●​ with the chosen solution we bring some extra motion, making these parts
visually dynamic and more playful

Technical considerations

35

The state that “decides” the random properties for the sparks is being handled by the
parent component. This is in accordance with our practice to include functionality in
children's components as little as possible and only when absolutely needed.

I return as many state objects as the number of cards of available packages. Each
state represents a spark object with all the information that needs to be rendered.

const [randomSpark, setRandomSpark] = useState(​
 packages?.map(() => {​
 return {​
 _type: 'spark',​
 fill: '',​
 stroke: '',​
 rotationX: 0,​
 rotationY: 0,​
 variant: '1',​
 }​
 })​
)

All these properties change every time the component re-renders, that is on a
“refresh” in this case. To make this happen, I had to randomise these properties
inside a useLayoutEffect for as many sparks as we have.

useLayoutEffect(() => {​
 setRandomSpark(​
 packages?.map(() => {​
 const colors = ['#FE4546', '#7D6EFE', '#F4D53B', '#6EC750']​
 const rotations = [0, 22.5, 45]​
 const randomColorIdx = Math.floor(Math.random() * colors.length)​
 const randomRotationXIdx = Math.floor(Math.random() *

rotations.length)​
 const randomRotationYIdx = Math.floor(Math.random() *

rotations.length)​
 const randomVariant = Math.floor(Math.random() * 7) + 1​
​
 return {​
 _type: 'spark',​
 fill: colors[randomColorIdx],​

36

 stroke: colors[randomColorIdx],​
 rotationX: rotations[randomRotationXIdx],​
 rotationY: rotations[randomRotationYIdx],​
 variant: randomVariant.toString(),​
 }​
 })​
)​
 }, [packages])

Why useLayoutEffect?

I had to use useLayoutEffect instead of the usual useEffect in this case. When I first
tried useEffect, although the sparks were rendering correctly they would never
change on “refresh”. It seemed like no more new randomised values were produced,
which was unexpected.

After some searching, I had to ask for help from the senior developer of the team and
discuss what the possible problem might be in this case. He suggested that
although my thinking was correct to place the randomisation inside a useEffect, I
was forgetting something important: the spark is an svg and every time some or all
of its properties change, another svg has to render, which is a change in the DOM.

(I had to go a bit deeper and do some reading, this article was particularly helpful in
understanding this nuanced difference between the two hooks.)

For this and other similar cases (non-static assets), useLayoutEffect works best, since
this hook runs synchronously immediately after React has performed all DOM
mutations.

Lastly, I pass the state information into the spark prop of each package card like this,
making sure I let the component know the type of the spark is the same as the one
coming from the CMS configuration (since this is how we have typed the spark in the
whole project and this is how it is being recognised by the components):

{packages &&​
 packages.map((item, idx) => (​
 <PackageCard​
 key={idx}​

37

https://kentcdodds.com/blog/useeffect-vs-uselayouteffect

 spark={​
 randomSpark && (randomSpark[idx] as SanityGenerated.Spark)​
 }​
 {...item}​
 />​
))}

38

[CLIENT THREE]

About the project
[CLIENT THREE] is a talent consultancy for hypergrowth enterprises based in
California. They focus on building brands, acquiring talent and sharing their hiring
expertise with entrepreneurs and tech companies.

This project is quite extensive in terms of technologies used in the frontend, due to
its complicated interface and advanced interactions. A great part of the things that
happen visually are built with the Three.js library and mostly in Vanilla Javascript.​
​
My work on this project was explicitly focused on building components in the front
and back end and styling them according to designs. I have used the usual stack of
Next.js, Sanity CMS and Tailwind.

39

Examples & code evidence
Integrating Iubenda and cookie banner

The website is using cookies and presents the user with an informative banner
when they land on the page for the first time.

[Image shows company site]

As with all websites of similar services, this one too complies with European and
international laws regarding user privacy and personal data handling.

To manage the legal requirements and make sure they are covered properly,
we use an external service called Iubenda, which provides businesses with all
necessary solutions to ensure their websites or apps are compliant with the law
across multiple countries and legislations.

Here, I set up the company’s page on the Iubenda’s website and included a
cookie solution along with the Privacy and Cookie Policy. There are quite a few
services available, but here I have chosen the two main ones.

[Image shows cookie options associated with company url]

The service generates a script for each solution, which I pass into our codebase.
For cookies, I pass the code into a regular tsx configuration file with the
dangerouslySetInnerHTML method. Then I just import it in the root of the
project, in the _app.tsx file under the <Head /> tag, like so:

40

What remains to be done after this process is the styling of the banner. This can
get a bit tricky sometimes since the code that comes from Iubenda is in markup
with pre-defined classes attached, which cannot be changed. So, to apply a
specific style, I usually have to track down the class name of a specific element
via devTools in chrome, and then use it with the CSS framework I am working
with to apply the design.

The styling rules should be part of the global css file, so here I have added
everything in the ../styles.css that is being called in _app.tsx.

41

	
	Apprenticeship Portfolio
	Founders & Coders
	September 2021 - November 2022
	[COMPANY NAME]
	About the website
	Scope of my given tasks 👓

	Software Development Lifecycle Stages
	Planning
	Roles the team took on for the project
	
	Sprint structure & build order

	Analysis
	User research findings

	Design
	Colours and [COMPANY NAME] mascots
	
	
	
	
	
	
	
	
	The “Homepage”
	The Homepage
	Navigation and other pages

	Build
	Technical decisions
	Stack I am using

	
	
	
	Version control system and collaboration

	
	
	Deploy
	Maintain

	
	
	
	Examples & code evidence
	Building the Sanity schema
	
	
	
	
	Database content modelling
	Components reusability

	[CLIENT FOUR]
	About the project
	Planning & Design
	The main consideration
	Time restrictions

	Using components with Storybook
	What is Storybook?

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Procedures & version control
	Continuous Integration
	
	
	
	Where is the content of the website stored?
	Different outputs, different sources 🔀
	1. Data in Storybook
	
	
	
	
	
	
	
	
	
	2. Data in Pages

	Requested changes from the client after release 🌍
	Technical considerations regarding the captions

	The carbon footprint of the website

	
	[CLIENT ONE]
	About the project
	What they wanted to achieve in partnering with [COMPANY NAME]

	Examples & code evidence
	The ‘Quiz’ pages
	How this works

	Using svg as visual language & technical considerations
	Client communication
	Technical considerations
	Why useLayoutEffect?

	
	[CLIENT THREE]
	About the project

	
	
	
	Examples & code evidence
	Integrating Iubenda and cookie banner

