To be logical is to be literal and consistent. The pure logic of space and time—that's what a lot of mathematics is—is the <u>a priori</u> study of space and time, and in the same way, the pure logic of action is the a priori study of action. On the foundation of the pure logic of space and time, physics is built. Mathematics, *well insofar as it's the pure logic of space and time* (e.g., arithmetic, algebra, calculus, geometry), is the foundation for physics. And in the same way, on the foundation of the pure logic of action—that's what <u>Ludwig von Mises</u> calls "praxeology"—economics, linguistics, and the rest of the sciences of human action and the human mind are built.

Notation (e.g., the notation of arithmetic) is useful in the pure logic of space, time, and action because English, Japanese, and every other natural language evolved not only for literality but also for non-literality, not only for consistency but also for non-consistency.

There's already good notation for the pure logic of space and time (e.g., "1 + 1 = 2"), which helps tremendously in physics etc. One of my goals is to make good notation for the pure logic of action.

One of my other goals, which won't be so obvious in its utility, is actually to make my own mathematical notation too, my own notation for the pure logic of space and time. Why? Because I don't want compartmentalization. The traditional notation of, say, arithmetic, won't fit well with my praxeological notation. I want an integrated system of notation for the pure logic of space, time, and action—aesthetically integrated, even.

In order to test my system of notation, I'll use it for physics and economics before then moving onto linguistics.

In linguistics, one of my goals is to integrate my mathematical and praxeological notation into a natural-language-like artificial language.