Graphs of Linear Equations

Graphing from a Table

 Given the following linear equation, create a table of solutions. Use the table to graph the line.

$$y = \frac{2}{3}x - 1$$

x	у

- Identify 2 additional points, one that is a solution to the equation and one that is not a solution. Plot these 2 points.
- Draw a slope triangle on your graph to verify that the slope is $\frac{2}{3}$.

*Slope refers to the measure of how steep a line is, calculated as the ratio of the vertical change (rise) to the horizontal change (run) between any two points on that line.

y

Standard Form: Ax + By = C

 Given the following linear equation, create a table of solutions. Use the table to graph the line.

$$2x + 4y = 4$$

0 0

x

Explain why, when a linear equation is written in standard form, both the horizontal and vertical intercepts are easily located.

• Draw a slope triangle on your graph. What is the slope?

Slope-Intercept Form: y = mx + b

 Given the following linear equation, create a table of solutions. Use the table to graph the line.

x	у
0	

$$y = -4x + 2$$

Identify 2 points on the line
 (or in the table) and use the
 equation below to verify that the slope is – 4.

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

- Explain why this form, y = mx + b, is called slope-intercept form.
- Without using a table, graph the equation $y = -\frac{1}{2}x 3$ on the coordinate plane above.

Point-Slope Form: $y - y_1 = m(x - x_1)$

 Given the following linear equation, create a table of solutions. Use the table to graph the line.

х	у

y - 3 = 2	2(x+1)
-----------	--------

• Rewrite the equation above into slope-intercept form y = mx + b.

+ +	+ +		<u></u> 6 	-	-	+	 	-
			5					
			4					
			3					
			2					
			1					
-6 -5	-4 -3	-2 -	1	1	2	3	4 5	, ₆
-6 -5	-4 -3	-2 -	1 -1	1	2	3	4 5	5 6
-6 -5	-4 -3	-2 -		1	2	3	4 5	6
-6 -5	-4 -3	-2 -		1	2	3	4 5	6
-6 -5	-4 -3	-2 -		1	2	3	4 5	6
-6 -5	-4 -3	-2 -		1	2	3	4 5	6 6
-6 -5	-4 -3	-2 -		1	2	3	4 5	6

• What is similar and what is different between point-slope form and slope-intercept form?

Slope-Intercept Form	Standard Form	Point-Slope Form
y = mx + b	Ax + By = C	$y - y_1 = m(x - x_1)$