Process

Fixed my bricked Korg Electribe (E2) with my flipper

| went
From: This To: This

Process:

1) lused OpenOCD (More specifically xpack since it had better installation instructions) as my
means of MCU manipulation. The manual can be found here. See OpenOCD Notes for more
information on setting up openOCD (xpm flavor) and dont forget to satisfy the prerequisites.

2) Wire up your probes to the correct headers on both your target and FO.

a) Make sure to identify each pin individually in your config file - Raspberry pi (as is used in
the Debrick qguide) does not require this | guess. This took me a few days to figure out.
For the FO it is important to identify them one at a time, each on their own line.

3) With your target powered on and DAP-Link open and configured on your FO and connected via
USB to your computer you are now ready to begin.

4) In a cmd prompt (in your projects folder) type: openocd -f korg.cfg -f am1802.cfg so it loads the
appropriate .cfg files for your interface (FO) and the MCU you want to analyze.

5) If the operation is successfully performed you will get a print out such as this:

DEPRECATED! use ‘gdb memory_map', not 'gdb_memory_map'

DEPRECATED! use 'gdb flash_program’, not 'gdb_flash_program'

trst_and_srst separate srst_gates_jtag trst_push_pull srst_open_drain connect_deassert_srst
DEPRECATED! use 'cmsis-dap backend', not 'cmsis_dap_backend'

https://openocd.org
https://xpack-dev-tools.github.io/openocd-xpack/docs/install/#manual-install
https://openocd.org/doc-release/pdf/openocd.pdf
https://github.com/bangcorrupt/hacktribe/wiki/Debrick#rpi-and-openocd

Fixed my bricked Korg Electribe (E2) with my flipper

DEPRECATED! use 'gdb breakpoint_override', not 'gdb_breakpoint_override'
force hard breakpoints

jtag_ntrst_assert_width: 100

Info : Listening on port 6666 for tcl connections

Info : Listening on port 4444 for telnet connections

Info : Using CMSIS-DAPV2 interface with VID:PID=0x0483:0x5740, serial=DAP_V1Ru7EnT
Info : CMSIS-DAP: SWD supported

Info : CMSIS-DAP: JTAG supported

Info : CMSIS-DAP: FW Version = 2.0.0

Info : CMSIS-DAP: Serial# = DAP_V1RU7EnT

Info : CMSIS-DAP: Interface Initialised (JTAG)

Info : SWCLK/TCK =1 SWDIO/TMS =1 TDI =1 TDO =1 nTRST = 0 nRESET =1
Info : CMSIS-DAP: Interface ready

Info : clock speed 1000 kHz

Info : cmsis-dap JTAG TLR_RESET

Info : cmsis-dap JTAG TLR_RESET

Info : JTAG tap: omapl138.jrc tap/device found: 0x1b7d102f (mfg: 0x017 (Texas Instruments),
part: Oxb7d1, ver: 0x1)

Info : JTAG tap: omapl138.etb enabled

Info : JTAG tap: omapl138.arm enabled

Info : Embedded ICE version 6

Info : omapl138.arm: hardware has 2 breakpoint/watchpoint units

Info: ETM v1.3

Info : [omapl138.arm] Examination succeed

Info : [omapl138.arm] starting gdb server on 3333

Info : Listening on port 3333 for gdb connections

6) While leaving this cmd prompt instance open and connected, start a new instance of cmd
prompt (Windows key + r -> Then type cmd and hit enter) and type telnet localhost 4444 to
begin working with your desired MCU.

From here everything will be entered in this telnet cmd prompt instance.
7) Input: halt
a) Input: dump_image SBL.bin 0x80000000 0x5e40 and wait for that to complete

Fixed my bricked Korg Electribe (E2) with my flipper

b) From here my experience differs from the Debrick guide. | found that inputting the step
command was favorable to allowing the processes to run on their own because aftering
allowing the process to resume | did not notice any progress. Below is taken from the
guide:

With openocd still running, power off bricked electribe and power it back on.

Then stop openocd with €tl + € and run it again.

This time the electribe should be waiting in the ROM bootloader (RBL) in ARM RAM somewhere around Oxfffd5990-0xfffd599c.

8) In other words: after the file has been saved, turn off the E2. power it back on.
a) Inthe cmd prompt you are inputting openOCD commands (not the second telnet cmd
prompt instance) press ctrl+c to stop openocd. Then start it again by pressing the up
arrow or re-typing openocd -f korg.cfg -f am1802.cfg .
b) In the telnet cmd prompt instance hit the up arrow or re-type telnet localhost 4444 to
re-establish the telnet connection and
9) Input: halt - Inmy case | never got to the RAM location Oxfffd5990-0xfffd599¢c. Soll. ..
a) Input step 0x80000000
b) Input: load image SBL.bin 0x80000000 - and wait for that to complete
c) Input: step 0xcO000000
d) Input: load _image SYSTEM.bin O0xcO000000 - and wait for that to complete.
10) | found that if | then Input: step 0x00000000 and then Input: resume my E2 suddenly came
to life. However, you may have better luck following the Debrick guide.

https://github.com/bangcorrupt/hacktribe/wiki/Debrick#rpi-and-openocd
https://github.com/bangcorrupt/hacktribe/wiki/Debrick#rpi-and-openocd

OpenOCD Notes

OpenOCD (xpm) NOTES

1) Once installed make sure the global paths are set up - this made calling for specific .cfg file
MUCH easier for me since | could place everything | needed in one project folder.
a) Verify path setup by opening a command-line interface (cmd prompt/bash shell/ terminal
whatever you are using) in your desired folder and typing openocd --version
You will see something like:

xPack Open On-Chip Debugger 0.12.0+dev-01557-gdd1758272-dirty (2024-04-02-07:27)
Licensed under GNU GPL v2
For bug reports, read

http://openocd.org/doc/doxygen/bugs.html

2) If you are planning on performing these actions on a windows based machine but utilizing WSL
(Windows system for Linux) make sure that your USB ports are available to the distro you have
installed.

a) | installed usbipd
3) You may need to enable telnet in cmd prompt you can do so by:
a) Opening the command prompt .
b) Type pkgmgr /iu:"TelnetClient
c) Restart the command prompt
d) Type telnet to open the Microsoft Telnet Client

Setting up the leads:

Open the app - apps/GPIO/Debug/[SWD-JTAG]DAP Link press left to Config

For greater spacing | switched my swc/swd pins from 2,3 to 10,12 and it will tell you what pins to
connect your leads to by clicking on help and pinout

https://learn.microsoft.com/en-us/windows/wsl/connect-usb

OpenOCD (xpm) NOTES

4) In the Command-Line interface of your choosing navigate to your projects directory (I have
hosted the files | needed to successfully achieve my goal here your files may differ) and ensure
it has been “initialized” by typing xpm init. This will ensure the required .package.json file is
present. You may have to take a few extra steps described here. Once completed you should
now be ready to rock.

https://github.com/luciferseamus/JTAG-DAP-Link/raw/refs/heads/main/Electribe_JTAG_Files.zip
https://xpack-dev-tools.github.io/openocd-xpack/docs/install/#initialise-the-project

usbipd

USBIPD WIN10 INSTALLATION NOTES

In and Admin instance or powershell Input:
wsl --shutdown to shutdown instances of WSL
wsl --update to update it

then enter the command
winget install --interactive --exact dorssel.usbipd-win

1) Then input usbipd list to see currently connected devices. We are looking for
CMSIS-DAP v2
i) | ended up having to share a BUSID with a very wide range (1-10) so if
you are in this boat don’t worry about getting specific. A wide range will
work fine.
2) Share the BUSID with:
i) Type: ushipd bind --busid 1-10 (In my case it was 1-10 your busid
#/range will likely differ)
iii) Then... usbipd attach --wsl --busid 1-10 you will likely see some red
text stating “usbipd: warning: The service is currently not running; a
reboot should fix that.”
iv) Type... usbipd server and you should now see a screen showing
everything being hosted. Leave this window open.

1-18
ently not running; a reboot should fix that.
usbipd bind 1-1@

usbipd list
Connected:
} VID:PID DEVICE

el I]

Persisted:
GUID DEVICE

rently not running;

73 reboot should fix that.
usbipd attach 1-

a
18

usbipd

= » ushipd sery
Microsoft.Hosting.Lifetime[@]
Application started. Press Ctrl+C to shut down.
Microsoft.Hosting.Lifetime[8]
osting environment: Production
Microsoft.Hosting.Lifetime[@]
Content root path: C:\Program Files‘\usbipd-win\
Usbipd.ConnectedClient[1]
Client claimed device at 1-18 (USB\VID_@483&PID_5748\DAP_VIRUTENT).

USBIPD WIN10 INSTALLATION NOTES

3) Verify CMSIS-DAP is available in Linux inputting the /susb command to see what USB
devices your distro has access to.

All other commands “should” be the same regardless of win or linux but | have only attempted
this to its completion in Win10.

Config file

Config (.cfg) file contents

All of these files can be found in a .zip file located here but here are the contents of the .cfg files | used.
This zip file also includes a good copy of my E2’s secondary boot loader (sbl.bin) in case yours has an
issue as well as a copy of a headerless system.bin v2.02 firmware (KORG: Please don’t come after me
for this | am only trying to help people continue to use your great products) for flashing where
appropriate.

Korq.cfg

FO JTAG/SWD in-circuit debugger.
adapter driver cmsis-dap
transport select jtag

adapter gpio tck 10

adapter gpio tms 12

adapter gpio tdi 6

adapter gpio tdo 5

Each of the SWD lines need a gpio number set: swclk swdio
adapter gpio swclk 10

adapter gpio swdio 12

adapter gpio srst 4

#gdb memory_map enable
#gdb flash_program enable

reset_config trst_and_srst
reset_config trst_push_pull

#init
#halt 1000

#adapter speed 0

https://github.com/luciferseamus/JTAG-DAP-Link/tree/main

Config (.cfg) file contents

Credit for this file's content goes to Bangcorrupt. | take no credit for its creation.

am1802.cfg

#
Texas Instruments: am1802
#
if { [info exists CHIPNAME] } {
set CHIPNAME $CHIPNAME
} else {
set _CHIPNAME omapl138

}

source [find icepick.cfg]

Subsidiary TAP: ARM ETB11, with scan chain for 4K of ETM trace buffer
if { [info exists ETB_TAPID] } {

set ETB_TAPID $ETB_TAPID
} else {

set ETB_TAPID 0x2b900f0f
}
jtag newtap $ CHIPNAME etb -irlen 4 -irmask Oxf -expected-id $ ETB_TAPID -disable
jtag configure $_CHIPNAME .etb -event tap-enable \

"icepick_c_tapenable $ CHIPNAME.jrc 3"

Subsidiary TAP: ARM926ejs with scan chains for ARM Debug, EmbeddedICE-RT, ETM.
if { [info exists CPU_TAPID] } {

set CPU_TAPID $CPU_TAPID
} else {

set CPU_TAPID 0x07926001
}
jtag newtap $ CHIPNAME arm -irlen 4 -irmask Oxf -expected-id $_CPU_TAPID -disable
jtag configure $ CHIPNAME.arm -event tap-enable \

"icepick_c_tapenable $ CHIPNAME.jrc 2"

Primary TAP: ICEpick-C (JTAG route controller) and boundary scan
if { [info exists JRC_TAPID] } {

set _JRC_TAPID $JRC_TAPID
} else {

set _JRC_TAPID 0x0b7d102f

}
jtag newtap $ CHIPNAME jrc -irlen 6 -irmask 0x3f -expected-id $_JRC_TAPID -ignore-version

jtag configure $ CHIPNAME.jrc -event setup \

Config (.cfg) file contents

"jtag tapenable $_CHIPNAME.etb; jtag tapenable $ CHIPNAME.arm"

TR

GDB target: the ARM, using SRAM1 for scratch. SRAMO (also 8K)
and the ETB memory (4K) are other options, while trace is unused.
Little-endian; use the OpenOCD default.

set _TARGETNAME $_CHIPNAME.arm

target create $_TARGETNAME arm926ejs -chain-position $_ TARGETNAME
$ TARGETNAME configure -work-area-phys 0x80010000 -work-area-size 0x2000

be absolutely certain the JTAG clock will work with the worst-case

CLKIN = 20 MHz (best case: 30 MHz) even when no bootloader turns
on the PLL and starts using it. OK to speed up after clock setup.
adapter speed 1500

$ TARGETNAME configure -event "reset-start" { adapter speed 1500 }

arm7_9 fast_memory_access enable
#arm7_9 dcc_downloads enable

trace setup
etm config $§ TARGETNAME 16 normal full etb
etb config $§_ TARGETNAME $ CHIPNAME.etb

gdb_breakpoint_override hard
arm7_9 dbgrq enable

reset_config trst_and_srst
jtag_ntrst_delay 100
jtag_ntrst_assert_width 100

	Process
	OpenOCD Notes
	usbipd
	Config file

