Process

I went

From: This To: This

Process:

- 1) I used <u>OpenOCD</u> (More specifically <u>xpack</u> since it had better installation instructions) as my means of MCU manipulation. The manual can be found <u>here</u>. See <u>OpenOCD Notes</u> for more information on setting up openOCD (xpm flavor) and dont forget to satisfy the prerequisites.
- 2) Wire up your probes to the correct headers on both your target and F0.
 - a) Make sure to identify each pin individually in your config file Raspberry pi (as is used in the Debrick guide) does not require this I guess. This took me a few days to figure out. For the F0 it is important to identify them one at a time, each on their own line.
- 3) With your target powered on and DAP-Link open and configured on your F0 and connected via USB to your computer you are now ready to begin.
- 4) In a cmd prompt (in your projects folder) type: *openocd -f korg.cfg -f am1802.cfg* so it loads the appropriate .cfg files for your interface (F0) and the MCU you want to analyze.
- 5) If the operation is successfully performed you will get a print out such as this:

 DEPRECATED! use 'gdb memory_map', not 'gdb_memory_map'

 DEPRECATED! use 'gdb flash_program', not 'gdb_flash_program'

 trst_and_srst separate srst_gates_jtag trst_push_pull srst_open_drain connect_deassert_srst

 DEPRECATED! use 'cmsis-dap backend', not 'cmsis_dap_backend'

DEPRECATED! use 'gdb breakpoint_override', not 'gdb_breakpoint_override'

force hard breakpoints

jtag_ntrst_assert_width: 100

Info: Listening on port 6666 for tcl connections

Info: Listening on port 4444 for telnet connections

Info: Using CMSIS-DAPv2 interface with VID:PID=0x0483:0x5740, serial=DAP_V1Ru7EnT

Info: CMSIS-DAP: SWD supported

Info: CMSIS-DAP: JTAG supported

Info: CMSIS-DAP: FW Version = 2.0.0

Info: CMSIS-DAP: Serial# = DAP V1Ru7EnT

Info: CMSIS-DAP: Interface Initialised (JTAG)

Info: SWCLK/TCK = 1 SWDIO/TMS = 1 TDI = 1 TDO = 1 nTRST = 0 nRESET = 1

Info: CMSIS-DAP: Interface ready

Info: clock speed 1000 kHz

Info: cmsis-dap JTAG TLR_RESET

Info: cmsis-dap JTAG TLR_RESET

Info: JTAG tap: omapl138.jrc tap/device found: 0x1b7d102f (mfg: 0x017 (Texas Instruments),

part: 0xb7d1, ver: 0x1)

Info: JTAG tap: omapl138.etb enabled

Info: JTAG tap: omapl138.arm enabled

Info: Embedded ICE version 6

Info: omapl138.arm: hardware has 2 breakpoint/watchpoint units

Info: ETM v1.3

Info: [omapl138.arm] Examination succeed

Info: [omapl138.arm] starting gdb server on 3333

Info: Listening on port 3333 for gdb connections

6) While leaving this cmd prompt instance open and connected, start a new instance of cmd prompt (Windows key + r -> Then type *cmd* and hit enter) and type *telnet localhost 4444* to begin working with your desired MCU.

From here everything will be entered in this telnet cmd prompt instance.

- 7) Input: halt
 - a) Input: dump image SBL.bin 0x80000000 0x5e40 and wait for that to complete

b) From here my experience differs from the <u>Debrick guide</u>. I found that inputting the step command was favorable to allowing the processes to run on their own because aftering allowing the process to resume I did not notice any progress. Below is taken from the guide:

With openocd still running, power off bricked electribe and power it back on.

Then stop openocd with ct1 + c and run it again.

This time the electribe should be waiting in the ROM bootloader (RBL) in ARM RAM somewhere around 0xfffd5990-0xfffd599c.

- 8) In other words: after the file has been saved, turn off the E2. power it back on.
 - a) In the cmd prompt you are inputting openOCD commands (not the second telnet cmd prompt instance) press ctrl+c to stop openocd. Then start it again by pressing the up arrow or re-typing openocd -f korg.cfg -f am1802.cfg.
 - b) In the telnet cmd prompt instance hit the up arrow or re-type *telnet localhost 4444* to re-establish the telnet connection and
- 9) Input: halt In my case I never got to the RAM location 0xfffd5990-0xfffd599c. So I. . .
 - a) Input step 0x80000000
 - b) Input: load_image SBL.bin 0x80000000 and wait for that to complete
 - c) Input: step *0xc0000000*
 - d) Input: load image SYSTEM.bin 0xc0000000 and wait for that to complete.
- 10) I found that if I then Input: *step 0x00000000* and then Input: resume my E2 suddenly came to life. However, you may have better luck following the Debrick guide.

OpenOCD Notes

OpenOCD (xpm) NOTES

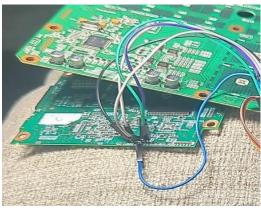
- 1) Once installed make sure the global paths are set up this made calling for specific .cfg file MUCH easier for me since I could place everything I needed in one project folder.
 - a) Verify path setup by opening a command-line interface (cmd prompt/bash shell/ terminal whatever you are using) in your desired folder and typing *openocd --version*

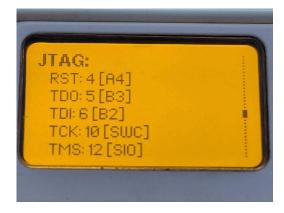
You will see something like:

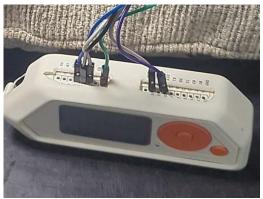
xPack Open On-Chip Debugger 0.12.0+dev-01557-gdd1758272-dirty (2024-04-02-07:27)

Licensed under GNU GPL v2

For bug reports, read


http://openocd.org/doc/doxygen/bugs.html


- If you are planning on performing these actions on a windows based machine but utilizing WSL (Windows system for Linux) make sure that your USB ports are available to the distro you have installed.
 - a) I installed usbipd
- 3) You may need to enable telnet in cmd prompt you can do so by:
 - a) Opening the command prompt.
 - b) Type pkgmgr/iu:"TelnetClient
 - c) Restart the command prompt
 - d) Type telnet to open the Microsoft Telnet Client


Setting up the leads:

Open the app - apps/GPIO/Debug/[SWD-JTAG]DAP Link press left to Config For greater spacing I switched my swc/swd pins from 2,3 to 10,12 and it will tell you what pins to connect your leads to by clicking on help and pinout

OpenOCD (xpm) NOTES

4) In the Command-Line interface of your choosing navigate to your projects directory (I have hosted the files I needed to successfully achieve my goal here your files may differ) and ensure it has been "initialized" by typing xpm init. This will ensure the required .package.json file is present. You may have to take a few extra steps described here. Once completed you should now be ready to rock.

usbipd

USBIPD WIN10 INSTALLATION NOTES

In and Admin instance or powershell Input: wsl --shutdown to shutdown instances of WSL wsl --update to update it

then enter the command

winget install --interactive --exact dorssel.usbipd-win

- Then input usbipd list to see currently connected devices. We are looking for CMSIS-DAP v2
 - I ended up having to share a BUSID with a very wide range (1-10) so if you are in this boat don't worry about getting specific. A wide range will work fine.
- 2) Share the BUSID with:
 - ii) Type: *usbipd bind --busid 1-10* (In my case it was 1-10 your busid #/range will likely differ)
 - iii) Then. . . usbipd attach --wsl --busid 1-10 you will likely see some red text stating "usbipd: warning: The service is currently not running; a reboot should fix that."
 - iv) Type. . . usbipd server and you should now see a screen showing everything being hosted. Leave this window open.

```
PS C:\Windows\system32> usbipd bind -b 1-10
usbipd: warning: The service is currently not running; a reboot should fix that.
PS C:\Windows\system32> usbipd bind --busid 1-10
usbipd: info: Device with busid '1-10' was already shared.
PS C:\Windows\system32> usbipd list
Connected:
       VID:PID DEVICE
046d:c534 USB Input Device
BUSID VID:PID
                                                                                      STATE
1-4
                                                                                      Not shared
1-10 0483:5740 USB Input Device, CMSIS-DAP v2 Adapter, USB Serial Device... Shared
1-11 0a5c:216f DW1560 Bluetooth 4.0 LE Not sha
                                                                                      Not shared
1-13 058f:6362 Alcor Micro USB 2.0 Card Reader
                                                                                      Not shared
Persisted:
GUID
                                         DEVICE
usbipd: warning: The service is currently not running; a reboot should fix that.
PS C:\Windows\system32> usbipd attach --wsl --busid 1-10
PS C:\Windows\system32> usbipd --help
usbipd-win 4.3.0
```

```
PS C:\Windows\system32> usbipd server
info: Microsoft.Hosting.Lifetime[0]
    Application started. Press Ctrl+C to shut down.
info: Microsoft.Hosting.Lifetime[0]
    Hosting environment: Production
info: Microsoft.Hosting.Lifetime[0]
    Content root path: C:\Program Files\usbipd-win\
info: Usbipd.ConnectedClient[1]
    Client claimed device at 1-10 (USB\VID_0483&PID_5740\DAP_V1RU7ENT).
```

USBIPD WIN10 INSTALLATION NOTES

3) Verify CMSIS-DAP is available in Linux inputting the *Isusb* command to see what USB devices your distro has access to.

All other commands "should" be the same regardless of win or linux but I have only attempted this to its completion in Win10.

Config file

Config (.cfg) file contents

All of these files can be found in a .zip file located here but here are the contents of the .cfg files I used. This zip file also includes a good copy of my E2's secondary boot loader (sbl.bin) in case yours has an issue as well as a copy of a headerless system.bin v2.02 firmware (KORG: Please don't come after me for this I am only trying to help people continue to use your great products) for flashing where appropriate.

Korg.cfg

```
# F0 JTAG/SWD in-circuit debugger.
adapter driver cmsis-dap
transport select itag
adapter gpio tck 10
adapter gpio tms 12
adapter gpio tdi 6
adapter gpio tdo 5
# Each of the SWD lines need a gpio number set: swclk swdio
adapter gpio swclk 10
adapter gpio swdio 12
adapter gpio srst 4
#gdb memory_map enable
#gdb flash_program enable
reset config trst and srst
reset_config trst_push_pull
#init
#halt 1000
```

#adapter speed 0

Credit for this file's content goes to Bangcorrupt. I take no credit for its creation.

<u>am1802.cfg</u>

```
#
# Texas Instruments: am1802
if { [info exists CHIPNAME] } {
 set _CHIPNAME $CHIPNAME
} else {
 set CHIPNAME omapl138
source [find icepick.cfg]
# Subsidiary TAP: ARM ETB11, with scan chain for 4K of ETM trace buffer
if { [info exists ETB TAPID] } {
 set _ETB_TAPID $ETB_TAPID
} else {
 set _ETB_TAPID 0x2b900f0f
itag newtap $ CHIPNAME etb -irlen 4 -irmask 0xf -expected-id $ ETB TAPID -disable
jtag configure $_CHIPNAME.etb -event tap-enable \
       "icepick c tapenable $ CHIPNAME.jrc 3"
# Subsidiary TAP: ARM926ejs with scan chains for ARM Debug, EmbeddedICE-RT, ETM.
if { [info exists CPU TAPID] } {
 set _CPU_TAPID $CPU_TAPID
} else {
 set CPU TAPID 0x07926001
itag newtap $ CHIPNAME arm -irlen 4 -irmask 0xf -expected-id $ CPU TAPID -disable
jtag configure $_CHIPNAME.arm -event tap-enable \
       "icepick c tapenable $ CHIPNAME.jrc 2"
# Primary TAP: ICEpick-C (JTAG route controller) and boundary scan
if { [info exists JRC_TAPID] } {
 set _JRC_TAPID $JRC_TAPID
} else {
 set _JRC_TAPID 0x0b7d102f
itag newtap $ CHIPNAME irc -irlen 6 -irmask 0x3f -expected-id $ JRC TAPID -ignore-version
jtag configure $_CHIPNAME.jrc -event setup \
```

Config (.cfg) file contents

"jtag tapenable \$_CHIPNAME.etb; jtag tapenable \$_CHIPNAME.arm"

GDB target: the ARM, using SRAM1 for scratch. SRAM0 (also 8K) # and the ETB memory (4K) are other options, while trace is unused. # Little-endian; use the OpenOCD default. set _TARGETNAME \$_CHIPNAME.arm

target create \$_TARGETNAME arm926ejs -chain-position \$_TARGETNAME \$_TARGETNAME configure -work-area-phys 0x80010000 -work-area-size 0x2000

be absolutely certain the JTAG clock will work with the worst-case # CLKIN = 20 MHz (best case: 30 MHz) even when no bootloader turns # on the PLL and starts using it. OK to speed up after clock setup. adapter speed 1500 \$_TARGETNAME configure -event "reset-start" { adapter speed 1500 }

arm7_9 fast_memory_access enable #arm7_9 dcc_downloads enable

trace setup etm config \$_TARGETNAME 16 normal full etb etb config \$_TARGETNAME \$_CHIPNAME.etb

gdb_breakpoint_override hard arm7 9 dbgrq enable

reset_config trst_and_srst jtag_ntrst_delay 100 jtag_ntrst_assert_width 100