
Skills Workshop 4: Introduction to
Coding

Objective

Background Information

Arduino Integrated Development Environment

Variables, Loops, and Conditions

Syntax:
Datatypes:

Operators

Constants and Variables

Conditional Statements

Loops

Libraries

Commonly Used Arduino Functions

Code Flowchart

Hardware

Ultrasonic Sensor

Liquid Crystal Display (LCD)

Light Emitting Diode (LED) and Pulse Width
Modulation

Materials

Activity

Procedure

Part 1: Liquid Crystal Display Exercise

Part 2: Creating A Code Flowchart

Part 3: Integrate the LED, Ultrasonic Sensor, and
Serial Monitor

Part 4: Enabling the Data Streamer

Part 5: Data Collection

Part 5: Data Analysis

Assignment

Skills Workshop 4 Technical Memo

Skills Workshop 4 Presentation

Objective
By the end of this workshop, students will be able to:

1.​ Write a program in the Arduino IDE that records data from a sensor

2.​ Extract, tabulate, and visualize the recorded data from a sensor

Background Information
Coding is the process of writing instructions for a computer to interpret, resulting in a

computer program which allows the computer to execute certain tasks. In engineering

disciplines, coding facilitates the interactions between software and hardware systems.

Applications include consumer electronics, surgical instruments, and aerospace control

surfaces. Coding is used in all professional fields. This lab will serve as an introduction

to writing code for an Arduino UNO microcontroller.

Arduino Integrated Development Environment
The Arduino Integrated Development Environment (IDE) is a program that can be used

to edit, compile, and upload code to a supported microcontroller.

Programs written in Arduino IDE are called sketches. A basic sketch can be broken up

into three different areas: global, setup, and loop. These areas are shown in Figure 1.

●​ Global: Contains constants and imported libraries

●​ Setup: Functions that run once at the start of the program. Setup functions

often are used to activate pins and sensors in the program

●​ Loop: Functions that run continuously after the Setup functions. Code in the

Loop Area will continue to run while the Arduino is powered. In many

professional environments, the Loop will run for the duration of the data

collection period. Functions often used in most of the program to read

sensors and switch pins HIGH to LOW.

Figure 1 shows a screenshot of the program’s interface and how this sketch interacts

with the Arduino.

●​ Verify: Checks code for errors and points those errors

●​ Upload: Verifies code and uploads it to the Arduino board

●​ Console: Shows errors found in the hardware

●​ Serial Monitor: Sends and receives messages to and from the board

Figure 1: Arduino IDE Components

Variables, Loops, and Conditions
The Arduino programming language is based on C/C++, but it is designed to be simpler

and easier to learn. The most intuitive way to think about programming is like building

with LEGO blocks: certain rules must be followed and different building blocks can be

used to build bigger parts.

Syntax:

●​ Every line must either end with a semicolon ; unless it is a conditional, loop, or

function

●​ Comments start with a //

○​ Comments are text that the program ignores

○​ Used to label and explain code

○​ These are essential in coding to explain your thought process to

other users who may interact with the program

Datatypes:

Datatypes are the different kinds of data values that can be used, manipulated and

stored using C++. Table 1 includes the most basic and widely used data types.

Table 1: Common Datatypes in Code

Datatype What it stores Default value Notes

Boolean A true value (1, TRUE, HIGH) or

a false value (0, FALSE, LOW)

0, FALSE,

LOW

-

int An integer number (-5, 15, 1047, etc.) 0 Can be

positive or

negative

double A decimal number (-0.5, 123.77, etc.) 0 Can be

positive or

negative

char A single character (‘c’, ‘A’, ‘5’, ‘?’, etc.) Indeterminate Must be

enclosed in

single quotes

string A sequence of characters (“Hello

World!”,

“10”, “157+5”, etc.)

Empty (“”) Must be

enclosed in

double

quotes

Operators
Operators perform operations on variables and constants. The results of these

operations are usually stored in a variable. Table 2 includes common operators.

Table 2: Common Operators in Code

Operator What it does Notes

= Assigns a value to a variable Mathematical symbol

+ Adds two or more values Mathematical symbol

- Subtracts two or more values Mathematical symbol

* Multiplies two or more values Mathematical symbol

/ Divides two or more values Mathematical symbol

++ Increment by 1 Usually used in loops

-- Decrement by 1 Usually used in loops

== Checks if two values are equal Usually used in

conditionals

!= Checks if two values are not equal Usually used in

conditionals

> or < Less than/greater than comparison Usually used in

conditionals

<= or >= Less than/greater than or equal to

comparison

Usually used in

conditionals

&& or || Boolean AND or Boolean OR used to

cascade multiple Boolean operations

Usually used in

conditionals

Constants and Variables
Constants and variables hold data according to their datatype. They need to be given a

name so they can be referenced later. Constants hold data that will not change while a

program is running. Constants usually contain information like pin numbers or sensor

threshold values. Variables contain data that will change while a program is running.

Variables usually contain sensor values and other values that will interact mathematically

within the program. Figure 2 shows an example of how to create different constants and

variables.

Figure 2: Examples of Different Constants and Variables in Arduino IDE

Conditional Statements
Conditional statements run code enclosed by their curly brackets when a condition is

met (Figure 3).

Figure 3: Example Conditional Statement in Arduino IDE

Loops
Loops are control structures that allow a set of instructions to be repeated, either a

specific number of times or until a certain condition is met. They are essential for

condensing repetitive tasks and reducing code redundancy. There are two primary types

of loops used in this lab: while-loops and for-loops.

While-loops are used when an action needs to continue until a specific condition is no

longer true. The loop keeps running as long as the condition remains true. For-loops are

used when a task needs to be repeated a discrete number of times. Although their

syntax may seem complex at first, most for-loops follow a standard structure. Inside the

parentheses, the first part initializes a counting variable (typically i for index), the second

part defines the condition under which the loop continues, and the third part updates

the counting variable (usually by incrementing or decrementing it).

Figure 4: Example While and For Loops

Libraries
In programming, a library refers to a collection of pre-written code that serves a

specified purpose, reducing the amount of code a programmer needs to write. For

example, the Math library provides usable functions that can perform math operations

such as calculating the square root, or trigonometry calculations). In Arduino

programming, libraries are commonly used in conjunction with different components

such as motors, screens, and sensors, and allows programmers to have an easier time

working with them.

Commonly Used Arduino Functions
Table 3: Common Functions in Arduino Code

Function What it does

pinMode(pin,mode) Sets a pin as an INPUT or OUTPUT

digitalWrite(pin, value) Sets a digital output pin to HIGH or LOW

digitalRead(pin) Reads a digital input pin as HIGH or LOW

analogWrite(pin, value) Sets an analog output pin to a value 0-255

analogRead(pin) Reads an analog output pin as a value 0-255

delay(milliseconds) Pauses the program for a certain amount of time

delayMicroseconds(micr

oseconds)

Pauses the program for a certain amount of time (in

microseconds)

Serial.begin(baud rate) Starts serial communication at the given baud rate

Serial.println(value) Prints the value (variable) to the Serial Monitor on a new

line

pulseIn(pin, value) Measures the length (in microseconds) of a HIGH or

LOW pulse on a pin.

map(value, fromLow,

fromHigh, toLow, toHigh)

Re-maps a number from one range to another

Code Flowchart
A critical preliminary step in coding is being able to map out what your program or

circuit will do before you begin the actual coding process. One effective method of doing

so is a code flowchart, which is a visual depiction of the building blocks of a program. A

code flowchart can help outline the essential functions of a program and illustrate

logical relationships between the steps of the program, such as loops, conditionals, and

mathematical operations. This step is important not only to simplify the code into more

manageable segments, but allows for a baseline to refer to when writing code. A code

flowchart represents the actions that a program will iterate through, and should not refer

to how the code itself is written.

The flowchart below (Figure 5) depicts a self watering pot with bluetooth reminders to

refill water and fertilizer.

Figure 5: Example Code Flowchart

Hardware
This lab uses a set of physical components commonly found in embedded systems to

simulate a real-world data collection and feedback process. Each component plays a

specific role in the system and understanding how they work individually helps explain

how they function together.

Ultrasonic Sensor
An ultrasonic sensor (HC-SR04) measures the distance between itself and a nearby

object by sending out pulses through two ultrasonic transducers. One is a transmitter

that sends out ultrasonic pulses and the other is a receiver that detects reflected waves.

The pinout configuration of the sensor can be seen in Figure 6.

Figure 6: Pinout of the HC-SR04 courtesy of How to Mechatronics

The sensor has four pins: VCC and GND connect to 5.00 V and GND and Trig and Echo

go to any digital pin on the Arduino. The Trig pin sends out a short burst of high

frequency ultrasonic pulses and when those pulses hit an object they reflect back to the

Echo pin. The time between the trigger and echo is used to measure the distance using

the speed of sound.

The following formula is used to calculate distance in centimeters:

 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = (𝑆𝑝𝑒𝑒𝑑(𝑐𝑚/µ𝑠) * 𝑇𝑖𝑚𝑒(µ𝑠)) / 2

Dividing by two accounts for the time it takes for the sound to travel to an object and

back. Speed is the speed of sound, 340.00 m/s, which is converted to 0.034 cm/µs,

since the Time, or the duration of a pulse measured by the ultrasonic sensor, is

measured in microseconds (µs).

Liquid Crystal Display (LCD)
The LCD screen is used to display real-time information about a system, in this case, the

duration measured by the ultrasonic sensor. This lab uses a 16x2 character LCD screen

with an I2C interface, which simplifies wiring by reducing the number of required

connections to only four pins (Figure 7).

Figure 7: LCD I2C Pinout Diagram

VCC and GND connect to 5V and GND. SDA and SCL are connected to analog pins A4
and A5, and represent special designated pins on the Arduino – Serial Data and Serial

Clock. The SDA line carries the data being transmitted, while the SCL line provides the

timing signal that keeps both the microcontroller and the LCD synchronized during

communication. These designated I2C pins must be connected correctly for the screen

to function. Once connected, the screen can be initialized using the LiquidCrystal_I2C
library.

Table 4 shows common functions provided by the library for the LCD to function

properly.

Table 4: Commonly Used Functions from LCD I2C Library

Function What it does

init() Initializes the LCD screen. Must be called before using other

functions

backlight() Turns on the LCD backlight

noBacklight() Turns off the LCD backlight

setCursor(col,

row)

Sets the position of the cursor (column, row) for printing text.

Columns start at 0

print(“text”) Prints the text at the current cursor position. Accepts strings,

numbers, or variables

clear() Clears all text from the display

nodisplay() Turns off the display without losing contents

Light Emitting Diode (LED) and Pulse Width Modulation
An LED is commonly used to provide real-time visual feedback for different systems.

Since digital pins can only support two states, ON or OFF, brightness can be controlled

by analog pins with Pulse Width Modulation (PWM) – a method that rapidly switches the

pin on and off to simulate varying light levels. The analogWrite() function accepts

values between 0 and 255, where 0 represents a 0% duty cycle, and 255 represents a

100% duty cycle. The Duty Cycle refers to the percentage of time a digital pin stays on

during one complete cycle, where higher values result in the signal being ON for a

greater portion of time. This can result in effects such as a brighter LED, or lower duty

cycles making the LED appear dimmer. To translate distance values to brightness levels,

the map() function is used to scale readings into a range appropriate for PWM output.

The map() function supports the following format:

map(value, fromLow, fromHigh, toLow, toHigh)
Where value is the number to be converted, fromLow and fromHigh define the original

range of values and toLow and toHigh represent the new range to which the value should

be mapped.

Materials
●​ Arduino

●​ Arduino USB Connector

●​ LCD

●​ LED

●​ 220 Ω Resistor

●​ Ultrasonic Sensor

●​ Wires

●​ Target

Activity
This workshop lab simulates a quality assurance process at a hardware manufacturing

company, where the objective is to evaluate the performance of an ultrasonic distance

sensor. The activity involves programming a microcontroller to collect pulse duration

measurements from the sensor and determining the speed of sound to compare to the

known speed of sound.

The system under test consists of three main components:

●​ An ultrasonic sensor that measures the distance between the sensor and a

nearby object.

●​ An LED that varies in brightness depending on the measured distance, offering

visual feedback.

●​ An LCD screen that displays real-time values for both distance and LED

brightness.

The procedure begins with designing the code through creating a coding flowchart,

wiring the components, and writing code to initialize and control each part of the

system. Once operational, the setup collects data over a fixed time period. These

readings are imported into Excel via a data streamer, and analyzed to evaluate the

relationship between measured speed of sound and known speed of sound.

This workshop lab introduces key concepts in coding, embedded systems, and testing,

including microcontroller programming using Arduino, interfacing with digital sensors,

real-time data display, and basic data analysis. It emphasizes how software can be used

to interpret sensor input and generate meaningful output, as well as how logical

structures in code relate to system behavior and testing protocols.

Procedure
Part 1: Liquid Crystal Display Exercise

1.​ Wire the circuit according to the wiring diagram below in Figure 8.

Figure 8: LCD and Arduino Circuit Diagram (https://wokwi.com/)

* Checkpoint: TA must approve the circuit before moving on to Step 2 *

2.​ Plug the Arduino into the monitor using the USB connector provided. The LCD

should light up briefly once connected.

3.​ Launch the Arduino IDE software and start a new sketch. Important: for safety

purposes, make sure to disconnect the Arduino from any power source whenever

wiring new components to the Arduino

4.​ Download the LiquidCrystal_I2C zip folder (Do not extract the file). Click

Sketch, Include Library, and Add .ZIP Library (Figure 9). Select the

LiquidCrystal_I2C .ZIP file and accept.

https://wokwi.com/
https://drive.google.com/file/d/1XYJVDXcsG0QVZAgJLM5iJTY5-ZKpYFAS/view?usp=sharing

Figure 9: Click Path for Adding .ZIP Library in Arduino

5.​ Navigate to the Global Area of the arduino sketch.

a.​ Import the LiquidCrystal_I2C library.

b.​ Declare the LiquidCrystal_I2C object as lcd. Important: The lcd object

requires 3 parameters to create successfully: the address of the lcd (in this

case 0x27), and the numbers of Columns and Rows on the screen itself.

In this lab, a 16 x 2 display is used.

6.​ Navigate to the Setup Area of the arduino sketch. This is also referred to as the

setup() function.

a.​ Call the LiquidCrystal_I2C function to initialize the display.

b.​ Call the LiquidCrystal_I2C function to turn on the backlight of the display.

There will not be any immediate results from calling these functions.

7.​ Navigate to the Loop Area of the arduino sketch. This is also referred to as the

loop() function.

a.​ Call the LiquidCrystal_I2C function that sets the cursor to the top left of

the LCD. This function accepts two integers, Column and Row.

b.​ Call the LiquidCrystal_I2C function that prints “Hello World” to the LCD

starting at the coordinate the cursor was set to.

8.​ Select the Arduino Uno as the board for the sketch, seen in Figure 10 below.

Figure 10: Arduino Selection/Connection Menu

9.​ Select the COM port that your Arduino is plugged into (Figure 11). Note: If the

COM port is listed as PORT 1, plug the Arduino into another port and repeat this

step.

Figure 11: Arduino Other Board and Port Menu

10.​Navigate to the top left corner of the Arduino interface and select Verify. This will

compile the code and catch any syntax errors.

11.​Upload the sketch to the Arduino. This will automatically run the code, printing

“Hello World” on the LCD.

* Checkpoint: TA must verify the results before moving on to Part 2 *

Part 2: Creating A Code Flowchart
1.​ Log into your LucidChart account, which should have been created after the

lecture. Note: This software is useful for flowcharts and beneficial for the

SLDP.

2.​ Refer to the example provided, and construct a code flowchart that outlines

that reflects part 3 of the lab. Refer to the overview of the lab for details.

* Checkpoint: TA must approve the flowchart before moving on to Part 3 *

Part 3: Integrate the LED, Ultrasonic Sensor, and Serial
Monitor

1.​ Disconnect the power cable from the Arduino.

2.​ Wire the circuit according to the wiring diagram below in Figure 12.

a.​ Connect the Ultrasonic Sensor to the corresponding digital pins. Connect

ECHO to pin 8 and Trig to pin 9. Note: If you connect the TRIG and ECHO

to different pins, you will need to modify the code accordingly.

https://www.lucidchart.com/pages/landing?utm_source=google&utm_medium=cpc&utm_campaign=_chart_en_us_mixed_search_brand_exact_&km_CPC_CampaignId=1457964857&km_CPC_AdGroupID=57044764032&km_CPC_Keyword=lucidchart&km_CPC_MatchType=e&km_CPC_ExtensionID=&km_CPC_Network=g&km_CPC_AdPosition=&km_CPC_Creative=442433231228&km_CPC_TargetID=kwd-33511936169&km_CPC_Country=9004338&km_CPC_Device=c&km_CPC_placement=&km_CPC_target=&gad_source=1&gad_campaignid=1457964857&gbraid=0AAAAADLdSjC6OpGl55cYrCPM_3vN5xqEn&gclid=CjwKCAjwg7PDBhBxEiwAf1CVuxkHxS8U_Zys1TxROHK9Ech6piPa-Vfrt5x7V_FuXMCBRbC7JfCF1RoCQ58QAvD_BwE

Figure 12: Full Circuit Diagram (https://wokwi.com/)

b.​ Make sure to not block the emitter and receiver of the ultrasonic sensor.

Note: Connect wires behind the emitter and receiver as in Figure 13.

https://wokwi.com/

Figure 13: Proper Placement and Connection of Ultrasonic Sensor

c.​ Connect the anode of the LED to pin 5 and the cathode of the LED to

GND. Note: Refer to Figure 14 to determine the cathode and anode of the

LED.

Figure 14: LED Cathode and Anode

* Checkpoint: TA must approve the circuit before moving on to Step 3 *

3.​ In the Global Area:

a.​ Declare three constant integers. These represent the TRIG (trigger) and

ECHO of the Ultrasonic Sensor and the LED. These variables must be set

to the pins they are connected to.

b.​ Declare a float that represents the duration value that will be measured by

the Ultrasonic Sensor.

c.​ Declare one integer that represents the brightness of the LED.

4.​ In the Setup Area:

a.​ Set the trigger and led variable as output pins, and the echo as an input
pin.

b.​ Call the function to turn on the serial monitor with a baud rate of 9600.

5.​ In the Loop Area:

a.​ Delete the previous code for the LCD in the loop area.

b.​ Ultrasonic Sensor

i.​ Turn off the trigger signal for two microseconds, then send out a

signal for ten microseconds. Turn offthe trigger signal again.

ii.​ Set the variable that represents the duration of the signal to

receive a pulse input from the sensor.

c.​ LED Brightness Mapping

i.​ Set the integer variable that represents brightness to call the

function that maps the duration to the duty cycle of the LED. Note:

the further the object, the dimmer the LED should be. Note: Map a

duration of 0 → 3000 to an LED brightness of 255 → 0.

ii.​ Call the function to send an analog signal to the LED that uses the

brightness variable above.

d.​ Printing Data

i.​ Call the function(s) to print duration on the LCD.

ii.​ Call the function to print duration on the Serial monitor. Note: The

data must print in the format displayed in Figure 15 for proper data

collection.

iii.​ Set a delay of 500 microseconds.

Figure 15: Serial Monitor Data Format

Part 4: Enabling the Data Streamer
1.​ Download the Student Data Sheet as an Excel file and go to File > Options >

Add-ins. Options is the last tab.

2.​ Under Manage, select COM Add-ins click Go.

3.​ Select 'Microsoft Data Streamer for Excel' add-in and then click OK. Other add-ins

should be unselected.

4.​ Click 'Connect a Device' under the Data Streamer > Data Sources and select

'Arduino Uno (COM#)'.

5.​ Navigate to the 'Settings' tab at the bottom of the screen. Change parameters to

the following:

https://docs.google.com/spreadsheets/d/106RBJa8JhNEvVYzsArkXKE-4CV2OysmL/edit?usp=sharing&ouid=100215762625371235485&rtpof=true&sd=true

a.​ Data interval (ms) = 1000 ms (unchanged)

b.​ Data rows = 100

Part 5: Data Collection

Figure 16: Ultrasonic Sensor, Meterstick, and Target Setup

1.​ Align the Ultrasonic Sensor with the meter stick, placing it at the 0 cm mark on

the lab workstation. Note: Ensure the sensor is perpendicular to the length of the

meter stick and faces straight ahead (Figure 16).

Figure 17: Ultrasonic Sensor Placement on Breadboard

2.​ Position the flat target by placing it 5 cm away from the sensor along the meter

stick. Note: Ensure the ultrasonic sensor is in line with the edge of the

breadboard for correct readings (Figure 17).

3.​ Check the LCD screen to verify that duration is printing and updating.

4.​ Begin recording data (Press Start Data).

a.​ Make sure the target is perpendicular to the lab bench and directly in front

of the sensor (Figure 16).

5.​ Wait for the reading to stabilize on the LCD screen..

6.​ Record the duration values obtained from the ultrasonic sensor for 2 minutes (or
until the 100 data points are collected).

7.​ Press Stop Data. Copy the duration and time values to the corresponding excel

data tab.

8.​ Repeat the above steps for each 5 cm interval up to 50 cm.

Part 6: Data Analysis

1.​ Complete the Student Data Sheet and associated graphs.

Assignment
Skills Workshop 4 Technical Memo
Prepare a memo of no more than 750 words, written from the perspective of an employee

addressing a supervisor at an electronic component manufacturing company. The employee is

testing the accuracy of an ultrasonic component that the manufacturer intends to sell. This

memo will communicate the results of the test completed. This memo should include any

illustrations (graphics, figures, images) that will aid in the supervisor’s understanding of the

results.

Use the subject line and outline below to complete this assignment:

Subject: Progress on Coding for Ultrasonic Sensor Testing

In the body, include:

●​ A list of who completed the work and the date it was completed

●​ A brief description of the experimental procedure, including:

○​ A description of assembled circuit, including a labeled circuit diagram

○​ An explanation of the code, including a code flow chart and screenshot of

commented code

●​ A presentation of the data obtained from the experiment, through illustrations such as

tables and graphs, and accompanying descriptions of each illustration

●​ An analysis of the data obtained, including:

○​ A discussion of the accuracy and precision of the results. Note: the standard for

the ultrasonic sensor is the speed of sound at 343.00 m/s in air at 20.00 °C or

1,125.00 ft/s in air at 68.00 °F.

○​ A discussion of any errors or discrepancies in the results

○​ Suggestions for improvements and follow-up experiments

Skills Workshop 4 Presentation

This assignment is due at 11:59 PM the night before Recitation 5.

In teams, create a slide deck in PowerPoint based on this skills workshop. This presentation
should follow the guidelines included in the How to Give a Technical Presentation slide deck for
guidelines on presentation style and formatting. Teams will present this slide deck during
Recitation 5; all presentations must be no more than 5 minutes long. Your recitation instructors
will give you feedback based on this rubric.

https://docs.google.com/presentation/d/1ELqW_d03lgZeSJnrJoNt3DJok-g55FP3t7NUP2I6fIg/pub?start=false&loop=false&delayms=60000
https://docs.google.com/document/d/e/2PACX-1vSrZn2d4OIYEw9j4A-hzX5QFUzFoHfNCwUvSOiwc_EOTcXQKPNz0OMp_pSatw_5G_wjuBq5CpZckFcn/pub

The presentation should include:

●​ The objective of the experiment
●​ A brief explanation of the motivation behind the experiment
●​ A brief walkthrough of any relevant scientific concepts, theories, or vocabulary needed to

understand the data collected
●​ A description of the experimental procedure, including:

○​ A description of assembled circuit, including a labeled circuit diagram

○​ An explanation of the code, including a code flow chart

●​ A presentation of the data obtained from the experiment, through illustrations such as

tables and graphs, and accompanying descriptions of each illustration

●​ An analysis of the data obtained, including:

○​ A discussion of the accuracy and precision of the results. Note: the standard for

the ultrasonic sensor is the speed of sound at 343.00 m/s in air at 20.00 °C or

1,125.00 ft/s in air at 68.00 °F.

○​ A discussion of any errors or discrepancies in the results

○​ Suggestions for improvements and follow-up experiments

	Skills Workshop 4: Introduction to Coding
	
	Objective
	Background Information
	Arduino Integrated Development Environment
	Variables, Loops, and Conditions
	Syntax:
	Datatypes:

	
	Operators
	
	Constants and Variables
	Conditional Statements
	Loops
	Libraries
	Commonly Used Arduino Functions
	Code Flowchart

	Hardware
	Ultrasonic Sensor
	Liquid Crystal Display (LCD)
	Light Emitting Diode (LED) and Pulse Width Modulation

	Materials
	Activity
	Procedure
	Part 1: Liquid Crystal Display Exercise
	Part 2: Creating A Code Flowchart
	Part 3: Integrate the LED, Ultrasonic Sensor, and Serial Monitor
	Part 4: Enabling the Data Streamer
	
	Part 5: Data Collection
	
	Part 6: Data Analysis
	

	Assignment
	Skills Workshop 4 Technical Memo
	Skills Workshop 4 Presentation

