
Event Time and Watermarks in KafkaIO
(shared with Apache Beam community)

Background
KafkaIO source in Apache Beam by default uses processing time for event time and last
processing time for source watermark, which is not very useful and inaccurate (e.g. when a
pipeline falls behind realtime). KafkaIO lets user provide custom functions to extract event
timestamps and to set watermark, but the API is does not have sufficient context to implement
source watermark properly by the user. E.g. when the event time is in the past, user can not tell
if it is due to high backlog or due to idle incoming traffic.

Kafka topics since version 0.10.1 can have either “server time” or “producer time” associated
with each record. It would be convenient to support these event times in KafkaIO.

Proposal
The proposal below provides reasonable default implementations for handling both producer
time and server time. In order delivery of records with in Kafka partition makes it possible to
implement a near perfect watermark in the case of server time. Topics with with producer (or
custom) time share the implementation of source watermark from PubsubIO, which keeps track
of timestamp over last minute. Note that Dataflow pipelines use a native implementation of
PubsubIO that has better tracking of event time watermarks both in the case of server side
timestamps as well as with custom timestamps.

A Kafka topic consists of set of partitions. These partitions are distributed evenly among
KafkaIO source splits. As a result, each split consumes from one or more partitions. The records
in each partition are read in order.

Producer time (timestamp type = CREATE_TIME) or with custom timestamps

●​ The reader can not assume any bounds on timestamp spread. PubsubIO source keeps
track of timestamps over last one minute’s worth of messages and returns the lowest
timestamp as watermark. PubsubIO watermark implementation will be refactored and
shared with KafkaIO. In some cases, a topic might have tighter bounds on drift, and user
might want to adjust this duration from default 1 minute. This could be an option to the
source. Both custom timestamps extracted by user handler and producer timestamps
are treated the same way.

Server time (timestamp type = LOG_APPEND_TIME)

●​ As the records are read in the order they are appended to logs on Kafka, the timestamp

https://github.com/apache/kafka/blob/trunk/clients/src/main/java/org/apache/kafka/common/record/TimestampType.java#L25
https://github.com/apache/beam/blob/release-2.2.0/sdks/java/io/google-cloud-platform/src/main/java/org/apache/beam/sdk/io/gcp/pubsub/PubsubUnboundedSource.java#L89
https://github.com/apache/kafka/blob/trunk/clients/src/main/java/org/apache/kafka/common/record/TimestampType.java#L25

monotonically increases, which makes it possible to track “near perfect watermark”:​
​
 partition_watermark = ​
 if (partition reader is not caught up) // i.e. backlog > 0​
 last record timestamp​
 else ​
 last backlog check time // see note below​
 split_watermark = min(partition watermarks)​

●​ When the reader does not receive any records from server (e.g. idle topic), we can
advance the watermark to current time if we are certain that there aren’t any records left
to read. I.e, ​
​
 Instant now = …​
 fetch_latest_offsets();​
 if (latest_offset = consumed_offset)​
 partition_watermark = now - epsilon; // epsilon ~ 1 or 2 sec.​
​
This policy assumes synced clocks on both the workers and the servers, which is likely a
reasonable assumption. But it does not know about any internal delays or in-flight
records on Kafka servers. Setting watermark to 1 or 2 seconds behind ‘now’ might be
good enough in most cases. Another option is to make use of offsetsForTimes()
interface, to check for any records with timestamp >= current_watermark, with the
expectation that Kafka server takes any in-flight records into account. But the the
JavaDoc does not explicitly guarantee. For now, simple policy to keep 1 or 2 buffer might
be good enough.

○​ Another aspect is frequency of polling for latest offsets. Existing implementation
checks latest offsets every 5 seconds (mainly to calculate backlog), which would
delay watermark by 5 to 7 seconds when the source is caught up. We could
increase the frequency in such a case to once every second or so.

https://github.com/apache/kafka/blob/1.0/clients/src/main/java/org/apache/kafka/clients/consumer/KafkaConsumer.java#L1598

	Event Time and Watermarks in KafkaIO
	Background
	Proposal

