
Last Update: 2020.09.28

CS542200 Parallel Programming
Homework 1: Odd-Even Sort

Due: Mon October 26, 2020 11:59

1​ GOAL

This assignment helps you get familiar with MPI by implementing a parallel
odd-even sort algorithm. Experimental evaluations on your implementation are
required to guide you analyze the performance and scalability of a parallel program.
You are also encouraged to explore any performance optimization and parallel
computing skills in order to receive a higher score.

2​ PROBLEM DESCRIPTION

In this assignment, you are required to implement the odd-even sort algorithm using
MPI. Odd-even sort is a comparison sort which consists of two main phases:
even-phase and odd-phase. In each phase, processes perform compare-and-swap
operations repeatedly as follows until the input array is sorted.

In even-phase, all even/odd indexed pairs of adjacent elements are compared. If the
two elements of a pair are not sorted in the correct order, the two elements are
swapped. Similarly, the same compare-and-swap operation is repeated for odd/even
indexed pairs in odd-phase. The odd-even sort algorithm works by alternating these
two phases until the input array is completely sorted.

For you to understand this algorithm better, the execution flow of odd-even sort is
illustrated step by step as below: (The array is sorted in ascending order)

1

Last Update: 2020.09.28

1.​ [Even-phase] even/odd indexed adjacent elements are grouped into pairs.

2.​ [Even-phase] elements in a pair are swapped if they are in the wrong order.

3.​ [Odd-phase] odd/even indexed adjacent elements are grouped into pairs.

4.​ [Odd-phase] elements in a pair are swapped if they are in the wrong order.

5.​ Run even-phase and odd-phase alternatively until no swap happens in both
even-phase and odd-phase.

The above example is a simple case where the number of MPI tasks(processes) and
the size of array are the same. But your implementation for the homework must be
able to handle an arbitrary number of MPI tasks and array elements by letting each
process manage a sub-array partition instead of a single array element. More details
on the implementation restrictions are given in Section 4.

2

Last Update: 2020.09.28

3​ INPUT / OUTPUT FORMAT

1.​ Your program is required to read an unsorted array from an input file, and
generate the sorted results to another output file.

2.​ Your program accepts 3 input parameters separated by space. They are:

i、​ (Integer)​ the size of the array n (1 ≤ n ≤ 536870911)

ii、​ (String)​ the input file name

iii、​ (String)​ the output file name

Your program will be tested by our judge system with the command below:

$​ srun -Nnodes -nNPROC ./hw1 n in_file out_file

​ Noted, NPROC is the number of processes, nodes is the number of nodes and
hw1 is the name of your binary code.

3.​ The input file contains n 32-bit floats in binary format. The first 4 bytes
represents the first floating point number, the fifth to eighth byte represents the
second one, and so on. (Sample input files will be given by our judge system.)

4.​ The output file must be generated by following the same format of the input file.
(Sample output files will also be given by our judge system.)

Note:

The float here refers to IEEE754 binary32, as known as single-precision
floating-point.

​ You can use the float type in C/C++.

Any valid float values are possible to show up in the input, except the
following values:

●​ -INF

●​ +INF

●​ NAN

3

Last Update: 2020.09.28

4​ WORKING ITEMS

1.​ Problem assignments: You are required to implement a parallel version of
odd-even sort under the given restrictions. Your goal is to optimize the
performance and reduce the total execution time.

●​ A process can sort or perform any computations on its own local elements.

●​ For the odd-even sorting phases, a process can only exchange its local
elements with its neighbor processes according to the communication
pattern described in Section 2. For instance, MPI task with rank 5 can only
exchange elements with ranks 4 and 6, but not the ones with rank 3, 7.
Note that the neighbor relationship is not circular. For example, if your
MPI program creates 10 processes, MPI task with rank 0 cannot send any
message to rank 9 during the sorting, and vice versa.

●​ However, any communication method, including collective
communications (i.e., broadcast, gather, scatter, etc.), are allowed for
initialization before the sorting begins, or termination checking.

2.​ Requirements & Reminders:

●​ Must use MPI-IO (MPI_File* functions) to do file input and output. The
example code of MPI-IO can be found in the
“/home/pp20/share/hw1/sample/mpiio.cc”

●​ Must follow the input/output file format and execution command line
arguments specifications described in Section 3.

●​ The implemented algorithm must follow the odd-even sort principle,
and comply with the restrictions described in Section 4.1. If you are
not sure whether your implementation follows the rules, please discuss
with TA for approval.

4

Last Update: 2020.09.28

5​ REPORT

1.​ Title, name, student ID

2.​ Implementation

Briefly describe your implementation in diagrams, figures, sentences, especially
in the following aspects:

✔​ How do you handle an arbitrary number of input items and processes?

✔​ How do you sort in your program?

✔​ Other efforts you’ve made in your program.

3.​ Experiment & Analysis ​
Explain how and why you do these experiments? Explain how you collect
those measurements? Show the results of your experiments in plots, and
explain your observations.

i、​ Methodology

(a).​ System Spec (If you run your experiments on your own cluster)​
Please specify the system spec by providing the CPU, RAM, disk and
network (Ethernet / InfiniBand) information of the system.

(b).​ Performance Metrics: How do you measure the computing time,
communication time and IO time? How do you compute the values in
the plots?

ii、​ Plots: Speedup Factor & Time Profile

●​ Conduct strong scalability experiments, and plot the speedup and
time profile results as shown in figure 1 and figure 2.​
(Please note that these plots are just examples of how you can layout
your figures, and you are unlikely to get the same results)

●​ Your plots must contain at least 4 settings (e.g., scales) for both single
node and multi-node environments.

●​ Make sure your plots are properly labeled and formatted.

●​ You are encouraged to generate your own test case with proper
problem size to ensure the experimental results are accurate and
meaningful. (e.g. Make sure the execution time is long enough to have
meaningful difference for comparison)

5

Last Update: 2020.09.28

Figure 1: Time profile Figure 2: Speedup

iii、​ Discussion (Must base on the results in your plots)

●​ Compare I/O, CPU, Network performance. Which is/are the
bottleneck(s)? Why? How could it be improved?

●​ Compare scalability. Does your program scale well? Why or why
not? How can you achieve better scalability? You may discuss for
the two implementations separately or together.

iv、​ Others ​
You are strongly encouraged to conduct more experiments and analysis
of your implementations.

4.​ Experiences / Conclusion

It can include these following aspects:

✔​ Your conclusion of this assignment.

✔​ What have you learned from this assignment?

✔​ What difficulties did you encounter in this assignment?

✔​ If you have any feedback, please write it here. Such as comments for
improving the spec of this assignment, etc.

6

Last Update: 2020.09.28

6​ GRADING

1.​ [40%] Correctness

●​ There are 40 test cases.

●​ You can see all 40 of them at /home/pp20/share/hw1/testcases

●​ You lose 1 point for each failed case.

2.​ [20%] Performance

It is graded by the execution time of your program on 6 hidden test cases
(similar to public testcase 35-40). Incorrect results will not get any point.

3.​ [20%] Report

It is graded based on the evaluations, discussions and writing in your report.
Higher score will be rewarded if more detailed performance analysis of your
implementation can be shown or explained by experiments.

4.​ [20%] Demo

Demo will mainly focus on the following aspect:

✔​ Explain your implementation.

✔​ Explain the key results and findings from your report.

✔​ Your extra efforts. (Why do you deserve more bonus points?)

5.​ Policy

✔​ Do not copy others' code. Zero point will be given to the cheater (even
copying code from the Internet).

✔​ No late submission after the deadline will be accepted.

7

Last Update: 2020.09.28

7​ HOMEWORK SUBMISSION & REMINDER

1.​ Upload your report in pdf format named hw1_student_id.pdf (e.g.
hw1_108062100.pdf) on iLMS before the deadline.

2.​ Upload your source code and Makefile to iLMS before the deadline.

i、​ hw1.cc

ii、​ Makefile

3.​ A self-checking script is provided to verify the correctness of your code. To
test, simply type the command hw1-judge under your source code directory.

4.​ Since we have limited resources for everyone to share, please start your work
ASAP to avoid long queuing delay. Do not leave it until the last day!

5.​ A scoreboard system will be available for you to check out the current
ranking of your implementation. ​
Go to http://apollo.cs.nthu.edu.tw/pp20/scoreboard/hw1 to check the
scoreboard.

6.​ You are welcome to ask questions through iLMS!

8

http://apollo.cs.nthu.edu.tw/pp20/scoreboard/hw1

	1​GOAL
	2​PROBLEM DESCRIPTION
	3​INPUT / OUTPUT FORMAT
	4​WORKING ITEMS
	5​REPORT
	6​GRADING
	7​HOMEWORK SUBMISSION & REMINDER

