
Web Zero, with m-ld1 
project delta 

Hypothesis 
The first implementation of the Web was read-only, and while content editing has become a 
feature since ("Web 2.0"), it has been fenced into isolated 'platforms'. We will demonstrate a 
secure re-democratised version of the read/write Web, with multi-collaborator editable apps 
and data that can be owned by anyone, backed by universal identifiers, a standard data 
representation, and access control; in which no page or dataset is a silo. We call this "Web 
Zero". 

In this vision, data is stored and used in reactive, replicated Linked Data datasets. By Linked 
Data, we mean named with universal identifiers, using HTTP URLs as much as possible, in 
RDF-compatible, machine-readable formats2. By replicated, we mean that applications 
working with the data are able to create a local, read-writeable copy which remains 
eventually consistent with other copies, with low latency (when the network allows). By 
reactive, we mean that each application is able to immediately react to and reflect changes 
in that local copy, whether caused by local operations or operations in other copies. 

Together, these properties support open collaboration across the Web. For instance, in 
Linked Data Platform3, an RDF Source is a resource which can be fully represented as RDF 
data. LDP specifies means for updating such a resource using PUT and PATCH methods, 
but offers no means to collaborate in real time on editing such a resource. We intend to 
demonstrate that such a specification would be both possible and useful. 

We will not produce a complete specification in this project, as that work should be done by 
a broader working group. Instead, we will produce a set of concrete software components 
which demonstrate that such an approach is practical, and which will make it simple for 
developers to create such collaborative applications over Linked Data resources (such as 
Solid and Linked Data Platform Resources) with compelling, responsive user interfaces. 
These libraries will not be mere proofs of concept — we expect developers to use these 
libraries in actual applications. 

Delta from 2022 draft 
The primary focus of the project remains to deliver content editing as a first-class property of 
the Web. 

In our analysis, we have noted that Web-delivered software today is frequently oriented to 
'apps', rather than 'pages'. The greatest value we can offer to the Web with our core 

3 https://www.w3.org/TR/ldp/ 
2 https://www.w3.org/DesignIssues/LinkedData.html 
1 NLnet ref. 2022-02-056 



technology, m-ld, is a developer-friendly solution for highly-interactive local-first Web 
applications using Linked Data semantics. 

Therefore, our choice is to focus on closing the gap between our core capability and the 
most impactful modern tooling for Web apps. We will create a layered open-source 
library, starting with core m-ld, building on that with support for ReactiveX 
Observables, and then providing React.js hooks to use those Observables – a layer 
that could be easily reimplemented for any framework.The two different apps will be 
able to share live data 

Local-first web applications can still benefit from secure durable storage of data on a server. 
They also rely on a message delivery mechanism, which in practice must be either a 
deployed service (like a message broker) or a cloud service. While these are cheap to set 
up, they may become expensive in the long run due to operational costs, provider markup 
and service over-specification. 

We will provide and run an open-source cloud service that fulfils these requirements for 
collaborative web apps using m-ld, to eliminate getting-started overhead for trials, research, 
personal projects and startups, and to ultimately provide a basis for revenue from scale-ups 
and enterprises. In our demonstration we will emphasise that the Gateway is used for 
convenience and data durability, but is optional, and could be self-hosted. 

We will still demonstrate a secure collaborative editable Web – our demo will build an 'app' 
that uses its own code, via React, to manipulate the DOM.4 This app will not require a 
'backend' data store, but a clear direction will be provided for apps that wish to use one. 

2022 proposal 2023 project plan changes 

Functional specification - 5 days - € 2.600 Now together in the Analysis milestone 

Project establishment and outreach - 5 days 
- € 2.600 

DOM ↔ RDF translation (code + unit tests) 
- 15 days - € 7.800 

We will not address DOM manipulation 
directly, as it is better done using existing 
frameworks & libraries. We will demonstrate 
example UI elements, including for conflict 
resolution. 

Page editing controls (minimal) - 10 days - 
€ 5.200 

Integration with OIDC provider - 10 days - 
€5.200 

In this project we will develop examples and 
tests to show identity integration, in 
Security Support. Specific UI controls will 
be the choice of the app. Security controls ("sharing") - 5 days - 

€2.600 

System tests 10 € 5.200 Suitable testing is assumed for all code 
components. 

4 More detail on the motivation for this can be found here. 

https://gist.github.com/Peeja/0212d1a299d78d92ddf3d5563e6bd1f9


2022 proposal 2023 project plan changes 

SHACL (subset) schema constraints 15 
€7.800 

Replaced with the more general Data 
Types Support. Static types are more 
important to our audience than runtime 
dynamic types. 

Binary literals 10 € 5.200 Approach to be considered in the Text 
Editing Support milestone (which has 
similar needs), but not to be engineered in 
full. 

Text CRDT integration (timeboxed) 10 
€5.200 

This remains a part of Text Editing 
Support, which also includes library 
support. 

- new for 2023 - Added Collaborative Web Library (see 
below) 

- new for 2023 - Added Gateway (see below) 

Planning 
See accompanying project plan document. 


	Web Zero, with m-ld1 
	Hypothesis 
	Delta from 2022 draft 
	Planning 

